
Research Article
A Transcriptomic Analysis Reveals Diverse Regulatory Networks
That Respond to Cold Stress in Strawberry (Fragaria×ananassa)

Yong Zhang,1 Yunting Zhang,2 Yuanxiu Lin,2 Ya Luo,1 Xiaorong Wang,2 Qing Chen ,1

Bo Sun ,1 Yan Wang ,2 Mengyao Li,1 and Haoru Tang 1,2

1College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
2Institute of Pomology and Olericulture, Sichuan Agricultural University, 611130 Chengdu, China

Correspondence should be addressed to Haoru Tang; htang@sicau.edu.cn

Received 20 December 2018; Revised 19 May 2019; Accepted 22 May 2019; Published 5 August 2019

Academic Editor: Ernesto Picardi

Copyright © 2019 Yong Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Strawberry is often subjected to cold stress in temperate regions when insulation measures are not strictly applied in protected
cultivation. Cold stress adversely influences plant growth and development by triggering a massive change to the transcriptome.
To provide the potential strategies in improving strawberry cold tolerance and give a glimpse into the understanding of the
complex cold signaling pathways in plants, this study identified attractive candidate genes and revealed diverse regulatory
networks that responded to cold stress in strawberry (Fragaria×ananassa) by a transcriptomic analysis. Totally, there were 2397
differentially expressed genes (DEGs) under cold stress treatment (T1) vs. normal treatment (CK). Of these, 1180 DEGs were
upregulated, while 1217 DEGs were downregulated. Functional enrichment analysis showed that DEGs were significantly
(adjusted P value < 0.05) overrepresented in six pathways including plant hormone signal transduction, flavonoid biosynthesis,
mitogen-activated protein kinase (MAPK) signaling, starch and sucrose metabolism, circadian rhythm, and alpha-linolenic acid
metabolism. The cold signaling initiated expression of downstream cold-responsive (COR) genes with cis-acting element ABRE
or CRT/DRE in the ABA-independent or ABA-dependent pathway to impel plant defense against the stress. Strikingly,
GIGANTEA (gene id 101308922), two-component response regulator-like PRR95 (gene id 101295449), and ethylene-responsive
transcription factor ERF105-like (gene id 101295082) were dramatically induced under low-temperature treatment, indicating
that they played an important role in response to cold stress in strawberry.

1. Introduction

Owing to their sessile lifestyle, plants are forced to have
evolved a variety of adaptive mechanisms to cope with the
ever-changing environment and stress elicitors [1]. Cold
stress, a low-temperature injury involving freezing (<0°C)
and chilling (0-15°C), is one of the major environmental
stress factors, which adversely affect plant growth and
development and greatly limit agricultural productivity and
geographical distribution [2]. Plant in acclimation to cold
stress will trigger reorchestrating of metabolism, remodeling
of cell and tissue structures, and reprogramming of gene
expression [3, 4].

It has been extensively reported that cold stress triggers
the increase of the endogenous ABA level and the exogenous
application of ABA improves the cold tolerance of plants

[5, 6]. The recent evidences suggest that the cold stress-
induced change in plant growth and development is tightly
linked to the intracellular IAA gradient [7]. Meanwhile, other
hormones have been demonstrated to be involved in
response to cold stress [8–11]. Collectively, the intricate
interaction and crosstalk among various plant hormones
control a wide range of physiological processes in mediating
plant cold response. Additionally, sugar metabolism always
allied with hormone signaling to regulate the growth, deve-
lopment, and stress response in plants [12, 13] and various
sugars such as sucrose, trehalose, fructans, and raffinose
participate in maintaining membrane integrity under cold
stress [14].

Large-scale profiling of gene transcripts has revealed a
sweeping change to the plant transcriptome, elucidating a
diversity of transcriptional regulatory networks in response

Hindawi
International Journal of Genomics
Volume 2019, Article ID 7106092, 13 pages
https://doi.org/10.1155/2019/7106092

https://orcid.org/0000-0002-1276-1064
https://orcid.org/0000-0003-3306-656X
https://orcid.org/0000-0002-2460-7697
https://orcid.org/0000-0001-6008-2747
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7106092


to the cold signal [2]. The CBF/DREB1- (C-repeat binding
factor/dehydration-responsive element-binding proteins 1-)
dependent responsive pathway which plays a central role
among these transcriptional regulatory routes has been
extensively studied and well characterized [15]. The CBF/
DREB factors including CBF1/DREB1B, CBF2/DREB1C,
and CBF3/DREB1A belong to the AP2/ERF (APETALA
2/ethylene-responsive factor) family, which can recognize
and bind to the CRT/DRE (C-repeat/dehydration response
element) cis-acting DNA regulatory element in the promoter
regions of many cold-responsive (COR) genes [16, 17]. The
COR genes with the ABRE (ABA-responsive element) or
DRE/CRT element in their promoters decide to respond to
the cold stress in the ABA-dependent or ABA-independent
pathway [6, 18]. Recently, Kim et al. [19] revealed that two
inducers of CBF expression (ICE1 and ICE2) can directly
activate CBF1, CBF2, and CBF3 expression under low-
temperature treatment and proposed a unified ICE-CBF cold
acclimation pathway. Combining with the negative regula-
tion of CBF2 to the transcription levels of CBF1 and CBF3
[20], ICE-CBF2 was considered as an attenuator to mediate
cold signaling, which coordinated with HOS1-mediated
attenuation of ICE activity at the protein level [19, 21]. In
addition, extensive variation of CBFs and other genes in the
cold-responsive transcriptome was gated by the circadian
clock [22, 23], implying a crosstalk between circadian rhythm
and cold signaling [24].

Strawberry is often subjected to cold stress in temper-
ate regions with cold fall and winter temperatures and fre-
quent spring frost events, when insulation measures are
not strictly applied in protected cultivation [25, 26]. To
provide the potential strategies in improving strawberry
cold tolerance and give a glimpse into the understanding
of the complex cold signaling pathways in plants, this
study analyzed diverse regulatory networks that responded
to cold stress and characterized multiple cold-responsive
genes in strawberry leaves.

2. Results and Discussion

2.1. Genome-Wide Analysis of Transcriptional Response to
Cold Stress. Plants tightly coordinate environmental stimuli
(e.g., cold stress) with gene expression and metabolism. To
identify the cold-responsive gene expression profile in
strawberry at the genome-wide level, we performed tran-
scriptome analysis using RNA-Seq. Totally, there were 2397
differentially expressed genes (DEGs) under cold stress treat-
ment (T1) vs. normal treatment (CK). Of these, 1180 DEGs
were upregulated, while 1217 DEGs were downregulated
(Figure 1, Table S1). This gene set number was quite
comparable to a previous study as revealed in Arabidopsis
[27], suggesting that cold stress triggered an extensive
transcriptional reorganization in Fragaria×ananassa as
that in Arabidopsis. It has been demonstrated that the
amount of DEGs is linked with the exposure time at low
temperature [28, 29]. Generally, the number of cold-
responsive transcripts that increased to a maximum in a
short term and short exposure to cold stress is certainly
adequate if the purpose is to assess gene expression only

[30, 31]. Thereby, this study applied the short-term stress
strategy. However, this is not enough to provide deep
insight into the physiological and metabolic aspects. A
comprehensive consideration should be taken from the
molecular, agronomic, or physiology perspective to bridge
the knowledge gaps between short- and long-term effects of
the genes and their products [32]. It has been documented
that DEGs were distributed in various cold response
pathways. Functional enrichment analysis showed that six
pathways of plant hormone signal transduction, flavonoid
biosynthesis, mitogen-activated protein kinase (MAPK)
signaling, starch and sucrose metabolism, circadian rhythm,
and alpha-linolenic acid metabolism were significantly
(adjusted P value < 0.05) overrepresented in the DEGs
(Figure 2, Table S2), indicating that those genes pronounced
in the enriched pathways may play the pivotal roles in
response to cold stress in strawberry.

2.2. Hormone Signaling Involved in Cold Response. As shown
above, hormone signaling had the most significant change
(P value = 2 79 × 10−5) during the cold stress process
(Table S2). Many genes indeed displayed altered expression
levels in several hormone-mediated branches, such as
abscisic acid (ABA), auxin (IAA), cytokinin (CK), gibberellin
(GA), ethylene (ET), brassinosteroid (BR), jasmonic acid
(JA), and salicylic acid (SA) (Figure 3). These hormones play
important roles in mediating plant defense response against
abiotic and biotic stresses by amplifying the initial stress
signal and initiating a second round of signaling [1, 33]. In
recent years, melatonin has also been demonstrated to
regulate key gene expression against stressors in abiotic
and biotic stress conditions [34]. During recovery in
wheat, foliar melatonin application could enhance the cold
priming-induced tolerance to subsequent low-temperature
stress [35]. Obviously, most of the hormone signaling
pathways in strawberry leaves exposed to cold stress were
inhibited, particularly for auxin, gibberellin, and jasmonic
acid (Figure 3), which generally are obligated to cell
elongation, division, cycle, and growth [36]. This is
consistent with the well-documented knowledge that a
remarkable growth reduction often occurs under cold
stress [37]. In hormonal crosstalk that regulates cold
stress-mediated growth and development of plants, auxin
transport is one of the common targets, which changes
the intracellular auxin gradient [7, 38]. Moreover, some
components of the cold signaling pathway, like NUP160
and SIZ1, were demonstrated to link to auxin signaling
[39–41]. More recently, the auxin-sensitive repressors
(Aux/IAA) were proposed as hubs to integrate diverse
environmental signals. Two Aux/IAA genes, IAA5 and
IAA19, were directly regulated by CBF1 and DREB2A
in response to abiotic stress [42]. The auxin signaling
severely hindered after low-temperature treatment in this
study indicated its important role in cold response.
Previous studies showed that GA and JA can cooperatively
regulate diverse aspects of plant growth, development, and
defense through DELLA and JAZ proteins [43, 44] and
JA prioritizes defense over growth by interfering with GA
signaling cascade [44]. In contrast, ABA and salicylic acid
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signaling branches were stimulated (Figure 3). Under low
temperature or other elicitors, plants activate expression
of downstream genes with cis-acting element ABRE and
CRT/DRE in ABA-independent and ABA-dependent
pathways. A transient accumulation of endogenous ABA

is a typical physiological change in plants during cold
stress, which contributes to cold tolerance [45], and the
application of exogenous ABA enhanced cold resistance
by elevating carbon isotopic fractionation, maintaining
cell membrane stability, and optimizing photosystem II
process [46]. Besides, ABA signal can integrate into sugar
and reactive oxygen species signaling pathways to regulate
plant cold tolerance and leaf senescence [6]. As shown,
differentially expressed genes were enriched in the MAPK
pathway and ABA, ethylene, and jasmonic acid routes that
showed significantly impacted expression levels of genes
in connection with abiotic stress defense (Figure S1). The
transduction of second messengers and hormone signals
by mitogen-activated protein kinases (MAPKs) in plants
regulates gene expression to facilitate adaptation and
survival in the face of diverse stresses [47, 48]. However,
the precise mechanisms responsible for cold defense have
yet to be deciphered.

2.3. Sugar Metabolism in Response to Cold Stress.Notably, the
sugar metabolism network changed significantly in acclima-
tion to cold stress (Figure 2). In addition to their essential
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Figure 2: Functional enrichment analysis of differentially expressed
genes. Pathways with adjusted P value < 0.05 were shown (see
Materials and Methods).
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roles as energy sources, carbon precursors, substrates for
polymers, and storage and transport compounds, sugars
can act as signals to regulate gene expression related to
plant growth, development, metabolism, and stress resistance
[4, 49]. As is well known, soluble sugars (saccharose,
raffinose, stachyose, and trehalose), sugar alcohols (sorbitol,
ribitol, and inositol) can be cryoprotectant molecules to save
the cellular metabolism by protecting the integrity of mem-
branes and cellular organelles in response to cold stress
[50]. A remarkable trend could be observed that polysaccha-
rides were degraded to soluble, simple sugars (Figure 4). For

example, starch synthesis was inhibited, while its deconstruc-
tion to maltose/glucose was activated (Figure 4). The same
metabolism flux also occurred in cellodextrin decomposi-
tion, which might be hydrolyzed/catabolized into glucose/
raffinose by glycosidase (gene id 101290740) (Figure 4).
These simple, easily metabolizable sugars did not likely
undergo cellular respiration, as glycolysis, the pentose phos-
phate pathway, and the citrate cycle were not impacted
(Figures S2-S4). Increased soluble sugars ensure a robust
adaptation to future freezing stress [51]. Trehalose is
believed to play a protective role against different abiotic
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stressful cues, and plants exhibit enhanced tolerance as a
result of the trehalose biosynthesis gene overexpression [52].

Intriguingly, trehalose metabolism-related genes showed
comparable expression levels to the CK (Figure 4), suggesting
that trehalose was not regulated in the samemanner as gluco-
se/disaccharide, indicating its complex regulatory role during
cold acclimation in plants [53].

2.4. Circadian Clock in Response to Cold Stimulus. Circadian
clock is an endogenous 24h timekeeper that allows plant to
anticipate the daily changes in the environment by adjusting
biological activities and coordinates the responses to envi-
ronmental stresses [24]. It is widely accepted that circadian
rhythm is involved in cold acclimation in Arabidopsis and
disruption of the circadian clock has indelible responsibility
for extensive variation in the cold-responsive transcriptome
[22, 23, 39]. Two major components in regulation of the
circadian clock are circadian clock-associated 1 (CCA1) and
late elongated hypocotyl (LHY), two MYB transcription
factors that have been identified to positively regulate the
CBF-dependent cold responsive pathway [39]. In strawberry,
the ortholog of both CCA1 and LHY is a LHY-like protein
(gene id 101293425; Figure 5). The expression level of
the LHY-like gene was slightly repressed by cold stimulus
(Table S1), suggesting a probable different regulatory
network of the LHY component associated with the CBF
pathway. Two additional elements of the circadian clock,
GIGANTEA (GI) (gene id 101308922) and two-component

response regulator-like PRR95 (gene id 101295449), were
dramatically upregulated (approximately 60- to 70-fold;
Figure 5). The GI gene previously has been identified as a
circadian clock component involving flowering, phytochrome
B signaling, and carbohydrate metabolism [54, 55]. Its role
in mediating the cold acclimation in Arabidopsis has been
investigated, possibly via a CBF-independent fashion [56].
Cold stress could enhance the GI expression, and then
GI activates the production of soluble sugar, which is
conducive to cold adaptation [57].

In our study, the GI-like gene was one of the most upreg-
ulated genes in response to cold stress (Table S1), indicating
its important role during cold acclimation in strawberry. In
addition, the two-component response regulator-like PRR95
was also induced by cold stress (Figure 5 and Table S1).
Although evidence has been found in maize that PRR95
was sensitively regulated by cold temperature [58], its role
in contribution to cold adaptation is under elucidation.

2.5. Flavonoid and α-Linolenic Acid Metabolism in Cold
Response. Intriguingly, flavonoid and α-linolenic acid synthe-
sis pathways were inactivated under cold stress as many
genes were downregulated (Figures 6 and 7). It has been
extensively reported that the induction of transcriptomic
modifications directed towards the increase of flavonoid bio-
synthesis can increase resistance to cold stress and protect the
plant from reactive oxygen species (ROS), especially those
reactions involved in anthocyanin biosynthesis [59–61].
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Moreover, flavonoids have been considered to modulate
auxin transport in dependence on their quality by direct or
indirect interactions with cellular transport and regulatory
mechanisms and then control the plant growth and develop-
ment [62–64]. Thus, the inhibition of flavonoid biosynthesis
could be clearly biased with respect to affect the auxin trans-
port in response to cold stress in strawberry. In addition, the
reduction of secondary metabolism may benefit for energy
economy, thus favoring plant overcoming the cold environ-
ment. Certain stimuli activate phospholipases to release α-
linolenic acid (18 : 3) frommembrane lipids, and then α-lino-

lenic acid is converted to jasmonic acid (JA) by a series of
enzymatic reactions [65, 66]. The data showed that the tran-
script levels of genes involving this pathway were signifi-
cantly downregulated, which was consistent with the
inhibition of jasmonic acid (JA) signaling, further emphasiz-
ing the important role of JA in response to cold stress. It has
been documented that JA plays a positive role in improving
plant cold tolerance by regulating the ICE-CBF cascade or
ICE-CBF independent pathway [67]. Furthermore, JA is
known to form crosstalk with other major phytohormones
in response to cold stress [68].
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2.6. Response of Cold Stress-Involved Components. The
C-repeat binding factor (CBF) pathway is the best-
documented regulatory pathway with a role in cold toler-
ance in Arabidopsis [29, 69]. The CBF1-like gene was indeed
significantly upregulated in cold condition (Table S3),
suggesting a role involved in cold adaptation in strawberry.

However, all CBF-like genes were not highly transcribed
(e.g., RPKM< 20) in cold stress condition as revealed in
Arabidopsis (Figure 8 and Table S3) [27, 29]. This is in line
with the expression of the CBF inducer ICE1 (inducer of C-
repeat binding factor expression 1) since ICE1 was slightly
downregulated, rather than induced by cold stimulus
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(Figure 8). Nevertheless, a recently identified transcription
factor ERF105-like (gene id 101295082) was dramatically
induced under cold stress condition (Figure 8), indicating
its regulatory importance for cold acclimation in strawberry
leaves. Whether ERF105 is capable to function in combination
with the CBF pathway needs to be investigated [70].
Moreover, some other ERF genes were demonstrated to
function in cold tolerance [71]. For instance, PtrERF109 of
trifoliate orange (Poncirus trifoliata) directly bound to the
promoter of a peroxidase- (POD-) encoding gene PtrPrx1
to modulate ROS homoeostasis, thus playing a positive role
in response to cold stress [72].

Additionally, a putative cold shock gene (gene id
101295689) was also highly expressed with a significant
fold change (fold change > 2 and P value < 8 95 × 10−69;
Figure 8). Further deciphering cold shock protein would
benefit the cold stress study in plants and offer informative
knowledge regarding the regulatory architecture of cold
response in plants.

2.7. Validation of Digital Expression Profiles by qRT-PCR. To
further confirm the reliability and accuracy of Illumina RNA-
Seq expression profile data, we performed qRT-PCR assays on
ten selected cold-responsive unique transcripts. As shown in
Figure 9(a), all selected unique transcripts displayed expres-
sion profiles similar to those observed in RNA-Seq data.
Moreover, the high correlation (R2 = 0 98) described by a sim-
ple linear regression equation indicated the good consistency
between the two analysis techniques (Figure 9(b)).

3. Conclusion

The mechanism of cold response in plants is very intricate,
involving an array of physiological and biochemical modifi-
cations, multiple transcriptional regulatory pathway coordi-
nation, and cold-responsive gene expression alteration. Our
study identified massive genes that significantly responded
to cold stimuli in strawberry leaves, and these genes were
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significantly overrepresented in six pathways of plant hor-
mone signal transduction, flavonoid biosynthesis, mitogen-
activated protein kinase (MAPK) signaling, starch and
sucrose metabolism, circadian rhythm, and alpha-linolenic
acid metabolism. Most of the hormone signal pathways in
strawberry leaves exposed to cold stress were inhibited, par-
ticularly for auxin, gibberellin, and jasmonic acid, while
ABA and salicylic acid signaling branches were stimulated,
indicating that a remarkable growth reduction can contribute
to defend against cold stress in plants. A remarkable trend
was observed that polysaccharides were degraded to soluble,
simple sugars that could be cryoprotectant molecules. The
significant orchestration of genes involving the circadian
clock signaling suggested that disruption of the circadian
clock had indelible responsibility for extensive variation in
the cold-responsive transcriptome. Moreover, GI, PRR95,
and ERF105 were the attractive candidate genes for further
study of cold stress in plants.

4. Materials and Methods

4.1. Plant Materials and Treatments. The strawberry seed-
lings were grown in plastic pots (120mm × 100mm) filled
with a 1 : 1 (v/v) mixture of soil and perlite in the greenhouse
of Sichuan Agricultural University. Temperature was set at
20/14°C (day/night), and relative humidity was 75%. Cold
stress treatment was conducted on six-leaf-stage seedlings
under natural condition. Strawberry seedlings were divided
into two groups—the first group (at 20°C) was the control.
As the cold stress treatment, another group was moved
to an artificial intelligence growth chamber (4 ± 1°C,
88.8μmol·m–2·s–1·16 h·d–1, and 70 ± 5% relative humidity)
for 4 days. The leaves were collected at 96h after cold
stress treatment and prepared in triplicate.

4.2. RNA Extraction, Sequencing, and Data Analysis. The
leaves of strawberry were collected and immediately frozen
in liquid nitrogen. Leaves were finely ground in liquid nitro-
gen, and ~100mg ground powders were mixed with 1mL
TRIzol reagent (Invitrogen, Carlsbad, CA, USA), followed
by adding 0.2mL chloroform for protein denaturation. After
centrifugation at 12000 g for 15min, the supernatant was
taken and then RNA was precipitated by adding 0.5mL
isopropanol. Total RNA was further purified by DNase I
(RNeasy Mini Kit, QIAGEN, Hilden, Germany). RNA
concentration and OD260/OD280 were measured with a
Nanodrop 2000c (Thermo Scientific, Waltham, MA, USA),
and RNA integrity was checked by agarose gel electrophore-
sis and an Agilent 2100 (Agilent Technologies, Santa Clara,
CA, USA).

The qualified RNA with an OD260/OD280 > 1 8 and
RIN RAN integrity number > 7 0 was prepared according
to Shenzhen BGI (Shenzhen, China) and sequenced on an
Illumina HiSeq 2500 platform (San Diego, CA, USA).
Read mapping and counting using TopHat2 (version
2.0.12) [73] and HTSeq (version 0.6.0) [66] was performed
with default parameters using the genome from the
National Center for Biotechnology Information (NCBI)
[74]. Mapped reads to exons were used to calculate nor-

malized transcript abundance (defined by RPKM) [75]
and to perform differential gene expression analysis by
GFOLD (version 1.1.4) [76] and DEGseq (version 1.28.0)
[77]. Genes with a DEGseq P value < 1 × 10−4 were con-
sidered to be statistically differentially expressed at a robust
significance level. Because genes with ∣GFOLD∣ > 1 are empir-
ically more likely to be of biological importance [76], a com-
bined criterion of ∣GFOLD∣ > 1 and P < 1 × 10−4 was applied
for genome-wide differential gene analysis [77]. RNA-Seq
raw data are available at the SRA database under accession
number PRJNA512251.

Functional enrichment analysis involves the statistical
identification of a particular function category or expression
subclass that is overrepresented in the whole gene collection.
Total differentially expressed genes were submitted to the
Kyoto Encyclopedia of Genes and Genomes (KEGG) [78],
and the significantly enriched pathway (adjusted P value <
0.05) was estimated [79]. Enriched pathways were subse-
quently mapped by relative gene expression levels (vs. the
CK sample) and visualized by the pathview [80].

4.3. Ortholog Searching. Putative orthologs of cold stress
regulators (e.g., CBFs, ICE1, and ERF105) in Arabidopsis
thaliana [29, 69, 81] were searched using BLASTP
(identity > 50%, E value < 1 × 10−10, and coverage > 60%)
against the genome-wide proteins of F. vesca (GCF_
000184155.1).

4.4. Data Plotting. All figures were plotted on the R program
platform (version 3.3.1) (http://www.r-project.org/).

Data Availability

The NCBI SRA accession is PRJNA512251, and the release
date is on 2020-01-27. My SRA records will be accessible
with the following link after the indicated release date:
https://www.ncbi.nlm.nih.gov/sra/PRJNA512251.
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