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Abstract: Since urinary tract infections (UTIs) are closely associated with oxidative stress, we devel-
oped ROS-sensitive nanoparticles for ciprofloxacin (CIP) delivery for inhibition of UTI. Poly(D,L-
lactide-co-glycolide) (PLGA)- selenocystamine (PLGA-selenocystamine) conjugates were attached to
methoxypoly(ethylene glycol) (PEG) tetraacid (TA) (TA-PEG) conjugates to produce a copolymer
(abbreviated as LGseseTAPEG). Selenocystamine linkages were introduced between PLGA and TA
to endow reactive oxygen species (ROS) sensitivity to nanoparticles. CIP-incorporated nanoparticles
of LGseseTAPEG copolymer were fabricated by W/O/W/W emulsion method. CIP-incorporated
nanoparticles responded to H2O2 and then their morphologies were disintegrated by incubation
with H2O2. Furthermore, particle size distribution of nanoparticles was changed from mono-modal
distribution pattern to multi-modal distribution pattern by addition of H2O2. CIP release from
nanoparticles of LGseseTAPEG copolymer was faster in the presence of H2O2 than in the absence
of it. In antibacterial study using Escherichia coli (E. coli), free CIP and free CIP plus empty nanopar-
ticles showed dose-dependent inhibitory effect against growth of bacteria while CIP-incorporated
nanoparticles have less antibacterial activity compared to free CIP. These results were due to that
CIP-incorporated nanoparticles have sustained release properties. When free CIP or CIP-incorporated
nanoparticles were introduced into dialysis membrane to mimic in vivo situation, CIP-incorporated
nanoparticles showed superior antibacterial activity compared to free CIP. At cell viability assay,
nanoparticles of LGseseTAPEG copolymer have no acute cytotoxicity against L929 mouse fibroblast
cells and CCD986sk human skin fibroblast cells. We suggest LGseseTAPEG nanoparticles are a
promising candidate for CIP delivery.

Keywords: urethritis; infectious disease; reactive oxygen species; stimuli-sensitive nanoparticles;
redox-responsive

1. Introduction

A urinary tract infection (UTI), which is a bacterial infection in the part of urinary
system, is one of most common infectious disease in human healthcare problems [1,2].
Although a UTI can occur anywhere in the urinary tract system such as kidneys, ureters,
bladder and urethra, it most frequently develops in the urethra and bladder. Especially,
UTI is also frequently associated with urinary catheters, most common devices for urinary
tract treatment, and urinary catheter-associated UTIs may causes urinary dysfunction [3,4].
These issues cause significant problem in human health care morbidity [3–5]. Furthermore,
oxidative stress can be elevated due to the UTIs, i.e., lipid peroxidation levels were increased
in urine samples while catalase and superoxide dismutase activities were decreased [6].
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Then, oxidative stress by UTIs causes oxidative damage in the urinary system resulting in
urinary dysfunction [7,8]. To solve these problems, diverse types of antimicrobial agents
including fluoroquinolone antibiotics have been used to treat UTIs [4,5]. However, the
increase of pathogen drug resistance problems is also problematic in the clinic [9]. Among
various antibiotics, the antibacterial efficacy of ciprofloxacin (CIP) is well-established in
the treatment of UTI and various other infectious diseases [10–12]. CIP for antibacterial
treatment is currently available as twice daily oral administration form and a once-daily
extended release formulation [13]. However, these may disturb the normal intestinal
environment, i.e., oral administration of CIP affects to the normal intestinal microflora,
resulting in diarrhea and opportunistic infections [14]. Therefore, novel drug delivery
systems are required to treat UTIs effectively.

Nanoparticle-based drug delivery systems have been extensively investigated to en-
hance the therapeutic efficacy of bioactive agents, anticancer agents, antibiotics, etc. [15–17].
Especially, stimuli-sensitive nanoparticles have been spotlighted for the last two decades
since stimuli-sensitive drug delivery to specific sites of the body enables conventional
drugs to target diseased cells or tissues with some response to a stimulus [18–21]. For
example, nanoparticles composed of hyaluronic acid and poly(L-histidine) copolymer
having disulfide linkages respond to the acidic pH/redox potential of tumors and then
deliver anticancer drugs against tumors in a site-specific manner [19]. Stimuli-sensitive
nanoparticles efficiently deliver CIP in an on-demand manner in infectious microenvi-
ronment models in vivo and thus show improved therapeutic efficacy compared to free
CIP [21–23]. Alomary and Ansary reported that proanthocyanin-capped biogenic TiO2
nanoparticles showed inhibitory behavior against biofilm formation through ROS genera-
tion [24]. Among the various stimuli, oxidative stress in an infectious microenvironment
or an inflammation environment can be feasible targets for therapeutics since the reactive
oxygen species (ROS) level is known to be elevated in the region of bacterial infection or
site of inflammation [6,25,26]. Kurutas et al., reported that lipid peroxidation levels were el-
evated in the urine samples with decreased levels of catalase and superoxide dismutase [6].
Furthermore, UTIs are known to aggravate oxidative stress in diabetic patients [26]. These
issues may provide possibilities for oxidative species-mediated drug delivery systems
against infectious disease such as UTIs.

In this study, we fabricated CIP-encapsulated nanoparticles using a star-shaped copoly-
mer composed of methoxy poly(ethylene glycol) (mPEG) and poly(D,L-lacide-co-glycolide)
(PLGA) having a diselenide linkage and a tetraacid (abbreviated as LGseseTAPEG). Since
diselenide linkages can be cleaved under oxidative stress, these nanoparticles can be used
to deliver CIP in a ROS-specific manner against UTI [27]. We studied ROS-sensitivity and
ROS-sensitive drug release of LGseseTAPEG nanoparticles, and their antibacterial activity.

2. Materials and Methods
2.1. Materials

Poly(D,L-lactide-co-glycolide) (Resomer® RG 502H, Evonik Ind. AG, Rellinghauser
Straße 1—11, 45128 Essen, Germany, M.W.: 8000 g/mol) having a free carboxylic acid
group at one end of the polymer was supplied by Evonik Ind. MePEG NH2 (Molec-
ular weight (M.W.): 5000 g/mol) was supplied by SunBio Co. Ltd. (Seoul, Korea).
TA was purchased from Frontier Scientific Co. Ltd. (Logan, UT, USA). Ciprofloxacin
HCl (CIP), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDAC), N-
hydroxysuccinimide (NHS), dimethylsulfoxide-d6 (DMSO-d6) form, deuterium oxide (D2O),
selenocystamine dihydrochloride, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bro-
mide (MTT), triethylamine (TEA, 99%, density = 0.726 g/mL at 25 ◦C) and Luria-Bertani
(LB) broth were purchased from Sigma-Aldrich Co. (St. Louis, MO, USA). Dialysis mem-
brane (molecular weight cut-off: 2000 g/mol, 8000 g/mol) was purchased from Spectrum
Lab., Inc. (New Brunswick, NJ, USA). All organic solvents used such as DMSO, ethyl
alcohol, methylene chloride and chloroform were HPLC grade.
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2.2. Synthesis of LGseseTAPEG Copolymer
2.2.1. TA-PEG Conjugates

TA (46.7 mg, 0.11 mM) was dissolved in 10 mL DMSO with equal amount of EDAC
(21 mg, 0.11 mM) and NHS (12.7 mg, 0.11 mM). This was stirred magnetically for 3 h
and then mPEG-NH2 (500 mg, 0.1 mM) was added to this reaction mixture, which was
magnetically stirred for 24 h. Following this, the reaction mixture was placed in a dialysis
membrane (MWCO, 2000 g/mol) and dialyzed against deionized water for 2 days. To
prevent saturation, the water was exchanged every 3 h and, after that, the dialyzed solution
was lyophilized for more than 2 days. The reaction yield was higher than 95.4% (w/w) by
measurement of the mass of each chemical. The yield was calculated using the following
expression:

Yield (%, w/w) = [Weight of final product/(weight of TA + weight of PEG)] × 100. (1)

2.2.2. PLGA-Selenocystamine Conjugates (LGsese)

PLGA (2400 mg, 0.3 mM) was dissolved in 20 mL DMSO with EDAC (57.5 mg, 0.3 mM)
and NHS (34.5 mg, 0.3 mM) and then stirred magnetically for 3 h. To this reaction mixture
an excess of selenocystamine HCl (479 mg 1.5 mM) was added along with a trace amount of
TEA (3 mM, 0.42 mL). The mixture was stirred magnetically for 24 h and then the resulting
solution was placed in a dialysis membrane (MWCO: 2000 g/mol) to remove unreacted
chemicals by dialysis against deionized water for 2 days with exchange of water every 3 h.
The resulting solution was finally lyophilized for 3 days.

2.2.3. LGseseTAPEG Copolymer

TA-PEG conjugate (545 mg) dissolved in 20 mL DMSO was mixed with EDAC (57.5 mg,
0.3 mM) and NHS (34.5 mg, 0.3 mM). Then, this mixture was magnetically stirred for 3 h
and, following this, 2400 mg of LGsese conjugates was added. This reaction mixture was
further stirred for 1 day and then dialyzed against deionized water for 2 days using a
dialysis membrane (MWCO: 8000 g/mol) to remove unreacted products. The resulting
solution was lyophilized for more than 3 days. To remove unreacted chemicals and
byproducts, lyophilized solid was washed with ethyl alcohol and then filtered through
filter paper (Whatman No. 6). The product was dried under vacuum for 2 days. The yield
was calculated using the following equation:

Yield (%, w/w) = [(weight of TA PEG conjugates + weight of
LGsese conjugates)/weight of LGseseTAPEG conjugates] × 100.

(2)

The final yield of LGseseTAPEG copolymers was higher than 94% by weight.

2.3. Analysis of LGseseTAPEG Copolymer

Synthesis of conjugates and copolymer was confirmed by 1H nuclear magnetic res-
onance (NMR) spectroscopy (500 MHz superconducting Fourier transform-NMR spec-
trometer, Varian Unity Inova; Varian Inc., Santa Clara, CA, USA). For 1H-NMR analysis,
PLGA, PEG, TA-PEG conjugates, PLGA-selenocystamine conjugates and LGseseTAPEG
copolymer were dissolved in DMSO-d6 form. Selenocystamine was dissolved in D2O and
mixed with DMSO-d6 form (D2O/DMSO-d6 form = 1/1, v/v).

The morphology of LGseseTAPEG nanoparticles was observed with a transmission
electron microscope (TEM, H-7600, Hitachi Instruments Ltd., Tokyo, Japan). Aqueous
nanoparticle solution was placed onto carbon film coated copper grid and then this was
dried in room temperature. Nanoparticles were observed at 80 kV.

Particle size of nanoparticles (nanoparticle solution in phosphate-buffered saline (PBS,
0.01 M, pH 7.4): 1 mg/mL) was measured with a Nano-ZS system (Malvern, Worcestershire,
UK). Particle sizes were measured three times independently and expressed as mean ±
standard deviation (S.D.).
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2.4. Preparation of CIP-Incorporated LGseseTAPEG Nanoparticles

CIP-incorporated nanoparticles were fabricated as follows: LGseseTAPEG copolymer
(100 mg) was dissolved in 10 mL of DCM and CIP (10 mg or 20 mg) was dissolved in 1 mL
deionized water. These solutions were mixed and vigorously sonicated with ultrasonicator
(40 W, 1 min, Vibracell VCX 400, Sonics & Materials Inc., Newtown, CT, USA) to make a
water in oil (W/O) emulsion. This solution was poured into 15 mL of aqueous PVA solution
(1%, w/v) and then vigorously homogenized (HG-15A, Daihan Scientific, Seoul, Korea) at
15,000 rpm for 1 min. This was sonicated again with ultrasonicator to make water-in-oil-in
water (W/O/W). This emulsion solution was poured into 50 mL PVA solution (0.5%, w/v)
and then stirred with top-loading stirrer at 1000 rpm (Direct Driven Digital Stirrer, SS-11D,
Young HANA Tech. Co., Seoul, Korea) for 90 min. Following this, this solution was
centrifuged to harvest CIP-incorporated nanoparticles using vacuum high speed centrifuge
at 15,000 rpm (Supra 30K, Hanil Science Industrial Co. Ltd., Seoul, Korea). To remove
surfactant or unincorporated drugs, harvested nanoparticles were distributed in deionized
water once more and then harvested again using a vacuum high-speed centrifuge at 15,000
rpm. These were lyophilized more than 2 days.

To measure CIP contents in the nanoparticles, 10 mg lyophilized solids were dissolved
in 5 mL DCM and, after that, 2 mL of deionized water was added. This was magnetically
stirred for more than 5 h and then 0.5 mL of water phase was used to measure CIP
concentration at 277 nm using UV-VIS spectrophotometer (UV-VIS spectrophotometer
1601, Shimadzu Co. Tokyo, Japan) at 340 nm. Drug contents were calculated as follows:

Drug contents = (drug weight/nanoparticle weight) × 100. Loading efficiency =
(Initial feeding amount of drug weight/remained drug weight in the nanoparticles) × 100.

(3)

2.5. Drug Release from Nanoparticles

CIP release from nanoparticles was measured as follows: nanoparticles (10 mg) were
distributed in 3 mL of phosphate buffered saline (PBS, pH 7.4, 0.01 M) and then put into a
dialysis membrane (MWCO, 8000 g/mol). Following this, this was introduced into 50 mL
Falcon tube with 47 mL of PBS and then stirred at 100 rpm (37 ◦C). Whole media were
exchanged at predetermined time intervals to prevent saturation of drug and then released
drug was measured with a UV-spectrophotometer (UV-1601, Shimadzu Co. Ltd.) at 277
nm. The following expression was used for the calculations:

Total released = [(Cumulative amount of released drug/
total drug weight in the nanoparticles) × 100].

(4)

2.6. Antibacterial Activity of CIP-Incorporated Nanoparticles In Vitro

Stock solutions were prepared and dilutions were made according to the Clinical
Laboratory Standards Institute-CLSI (formerly NCCLS) M7-A6 method (15 National Com-
mittee for Clinical Laboratory Standards 2003). Escherichia coli (E. coli) were provided by
Korea Collection for Type Cultures (KCTC, Jeongeup-si, Korea). Following subcultures
from frozen stock, antimicrobial agents or nanoparticles were added to solutions of mi-
croorganisms at various concentrations. All experiments were performed in triplicate on
separate days. Bacterial growth was determined by reading optical density at 600 nm
(UV-spectrophotometer 1201, Shimadzu Co. Ltd.) after 1 day.

To mimic in vivo bacterial growth under sustained drug release from nanoparticles,
CIP in PBS (0.1 mg CIP/0.5 mL PBS) was introduced into dialysis membrane (MWCO:
8000 g/mol). Nanoparticles in PBS solution (0.1 mg as a CIP concentration in 0.5 mL PBS)
was also introduced into dialysis membrane. Same quantity of empty nanoparticles or
empty nanoparticles with free CIP were also introduced into dialysis membrane to compare.
For control treatment, 0.5 mL PBS in dialysis membrane was used. These were put into
10 mL of E. coli (1 × 106/mL, LB broth). To mimic the in vivo state of drug or nanoparticles,
half (5 mL) of culture media was exchanged with fresh media at every 30 min intervals for
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3 h, 1 h intervals for 6 h and then at 2 h intervals for 15 h. After that, bacterial growth was
determined by reading the optical density at 600 nm.

For treatment of free CIP, CIP-incorporated nanoparticles and free CIP + empty
nanoparticles CIP was adjusted to similar concentration from the calculation of drug
contents. Furthermore, empty nanoparticles for treatment of free CIP + empty nanoparticles
were calculated from the result of drug content and adjusted empty nanoparticles similar
to real polymer weight in the CIP-incorporated nanoparticles.

2.7. Cell Cytotoxcity of LGseseTAPEG Copolymer Nanoparticles In Vitro

L929 mouse fibroblast cells and CCD986sk human skin fibroblast cells obtained from
Korean Cell Line Bank (KCLB, Korean Cell Line Bank Co. Ltd., Seoul, Korea) were used
to test the intrinsic toxicity of LGseseTAPEG copolymer nanoparticles. L929 cells were
cultured under 5% CO2 incubator at 37 ◦C. L929 cells were maintained and sub-cultured
with RPMI1640 (Gibco®, Grand Island, NY, USA) supplemented with 10% heat-inactivated
fetal bovine serum (FBS) (Gibco®, Life Technologies Co.) and 1% penicillin/streptomycin.
CCD986sk cells were maintained in IMDM supplemented with 10% FBS and 1% peni-
cillin/streptomycin.

For cell viability assay, 2 × 104 cells were seeded in 96 well plates and then cultured
overnight in 5% CO2 at 37 ◦C. Nanoparticles composed of LGseseTAPEG copolymer
without CIP (empty nanoparticles) were fabricated as described above. Nanoparticles were
sterilized with a 1.2 µm syringe filter (Sterile Millex®, Merck KGaA, Darmstadt, Germany)
and then diluted with serum-free media. Nanoparticles were applied to cells in 96 well
plates and then incubated in a 5% CO2 incubator for 24 h. After that, media were removed
from the 96 well plates and then replaced with serum-free media containing MTT reagent
(0.5 mg/mL) followed by incubation for 4 h at 37 ◦C. After that, supernatants were removed
and 100 µL of DMSO was added to each wells to dissolved viable cells. The cell viability
was estimated by measurement of the absorbance at 570 nm (Infinite M200 pro microplate
reader, Tecan, Mannedorf, Switzerland).

2.8. Statistical Analysis

Statistical analysis of the results was evaluated with the Student t-test and the p values
lower than 0.01 were considered as a significant value of statistical analysis.

3. Results and Discussion

Urinary tract infections are known to induce oxidative stress and then this state
aggravates the disease symptoms [6,26]. E. coli, a common uropathogen, responds to an
oxidative stress environment according to physiological changes and the level of the anti-
oxidant molecule L-glutathione (GSH) is decreased under the stress conditions [28]. This
feature of UTIs can provide a targeting motive for antibiotic-incorporated nanoparticles.
Quinolone antibiotics such as CIP, which is a typical antibiotic used for UTI, may suppress
human fibroblast cells [29].

3.1. Synthesis of LGseseTAPEG Copolymer

Based on the fact that oxidative stress is increased in UTIs, we have designed a
ROS-sensitive nanoparticulate delivery system of CIP for the treatment of UTI. Since
diselenide linkages respond to ROS and can be broken in an oxidative stress environment,
diselenide linkages were introduced in the copolymer and ROS-sensitive nanoparticles
fabricated [30,31].

PEG was attached to the carboxylic group via carbodiimide chemistry (TA-PEG
conjugates) as shown in Figure 1. Unreacted TA was removed by a dialysis procedure
and TA-PEG conjugates was used for analysis or as copolymer conjugates. As shown in
Figure 1, the ethylene protons of PEG were observed in the 1H-NMR spectrum at about
3.6 ppm while specific peaks of TA were observed at 2.3–2.4 ppm and 3.7–3.9 ppm. Based
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on a comparison of peaks between the ethylene proton of PEG and the 3.8 ppm peak, the
substitution yield of TA in the TA-PEG conjugates was estimated as 0.92 TA/1 PEG.

To synthesize PLGA-selenocystamine conjugates (LGsese), excess selenocystamine
was reacted with PLGA and unreacted chemicals or byproducts were then removed by
dialysis as reported by other researchers [32–34]. Specific peaks of PLGA were observed
at 1.4~1.5 ppm and 4.6~5.4 ppm. Specific peaks of selenocystamine were observed at
1.8~3.0 ppm. PLGA-selenocystamine conjugates were conjugated again with TA-PEG
conjugates to produce LGseseTAPEG copolymer as shown in Figure 1. Specific peaks of
each component such as PEG, TA, PLGA and selenocystamine was observed between
1.4~5.4 ppm, indicating that LGseseTAPEG copolymer was successfully synthesized.
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Figure 2 shows FT-IR spectra of LGseseTAPEG and each component. As shown in
Figure 2, C=O and CH2 stretching bands of TA were observed at about 1720 cm−1 and
2800 cm−1, respectively. These peaks were also observed in TA-PEG. C=O stretching was
also observed at PLGA and LGseseTAPEG copolymer while CH2 stretching was clearly
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obtained at LGseseTAPEG copolymer. These results also showed the successful synthesis of
LGseseTAPEG copolymer. For 1H-NMR analysis, PLGA, PEG, TA-PEG conjugates, PLGA-
selenocystamine conjugates and LGseseTAPEG copolymer were dissolved in DMSO-d6.
Selenocystamine was dissolved in D2O and mixed with DMSO-d6 (D2O/DMSO-d6 = 1/1,
v/v) (data not shown).
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3.2. Preparation and Characterization of CIP-Incorporated Nanoparticles

CIP-incorporated nanoparticles using LGseseTAPEG copolymer were prepared using
the W/O/W/W double emulsion method. CIP contents were measured UV spectropho-
tometry as summarized as Table 1, where the experimental CIP contents in the nanoparticles
were lower than the theoretical value, indicating that some of drug was lost during the
drug-loaded nanoparticles fabrication process because CIP is a water-soluble drug. Fur-
thermore, the loading efficiency was also decreased when the drug weight was increased,
as shown in Table 1. The particle sizes of empty nanoparticles were 153 nm. However, the
size of the nanoparticles became bigger when CIP was incorporated. The higher the CIP
contents in the nanoparticles the bigger the particle sizes were.
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Table 1. Drug contents and particle size of ciprofloxacin-incorporated nanoparticles.

Polymer/Ciprofloxacin
(mg/mg)

Drug Contents (%, w/w) Loading Efficiency
(%, w/w) a

Particle Size (nm) b

Theoretical a Experimental a Average Diameter ± S.D. PDI c

100/0 - - - 153 ± 7.94 0.065
100/10 9.1 6.4 68.4 238 ± 15.6 0.125
100/20 16.7 10.1 56.1 318.4 ± 22.5 0.158

a Drug contents (%, w/w) were calculated as follows: Theoretical (%, w/w) = [Feeding weight of drug/(feeding weight of drug + feeding
weight of polymer)] × 100. Experimental = (Practical drug weight in the nanoparticles/total weight of nanoparticles) × 100. Loading
efficiency = (Feeding weight of drug/ Practical drug weight in the nanoparticles) × 100. b Particle sizes of nanoparticles were measured at
least three times. c Polydispersity index.

Kurutas et al. reported that the activity of markers for oxidative stress such as catalase
and superoxide dismutase (SOD) were decreased while lipid peroxidation levels were
increased [6]. They argued that extracellular liberation of ROS by phagocytic cells can be
considered as one of the major factors to evaluate the severity of symptomatic infections
and tissue damage in UTIs. To investigate the ROS-sensitivity of the nanoparticles, H2O2
was added to an aqueous nanoparticle solution and then incubated at 37 ◦C. After that,
changes of morphology and particle size distribution were studied, as shown in Figure 3.
As seen in Figure 3a, the morphology of nanoparticles was significantly changed and they
disintegrated due to the addition of H2O2 to the nanoparticle aqueous solution although
these changes of morphology were not significant at 2 h incubation. However, the nanopar-
ticles were significantly disintegrated and distorted by addition of H2O2 and incubation
for 24 h at 37 ◦C while nanoparticles in the control treatment (PBS at 24 h) maintained
their spherical morphology as shown in Figure 3a. Furthermore, the size distribution of
nanoparticles was also changed by the addition of H2O2, i.e., nanoparticles maintained
a monomodal distribution pattern until 2 h of incubation even though their sizes were
increased. After 24 h of incubation, the size-distribution of the nanoparticles became
multi-modal patterns and the distribution pattern of the nanoparticles was distorted by the
addition of H2O2 even though nanoparticles in PBS also showed a bimodal distribution
pattern as seen in Figure 3b. These results indicate that LGseseTAPEG nanoparticles effec-
tively respond to the oxidative stress and then their physical properties can be changed
according to the intensity and duration of the oxidative stress. Kim et al., also reported
that polymeric conjugates having diselenide linkages underwent ROS-sensitive changes
in morphology, particle size and drug release behavior [27]. Like their nanoparticles, our
nanoparticles also display ROS-sensitive changes of morphology, particle size distribution
and drug release behavior.

Figure 4 shows the drug release profiles of the LGseseTAPEG nanoparticles. As shown
in Figure 4a, CIP release from nanoparticles continued more than 4 days while free CIP
was rapidly liberated and almost of drug was liberated after 24 h. When the drug content
was increased, the drug release from the nanoparticles slightly decreased even though
the differences of release rate was not significant (Figure 4a). In the case of free CIP, drug
concentration in the media was significantly higher for 12 h and then drug concentration
approached zero 24 h later while CIP-incorporated nanoparticles maintained detectable
drug concentration until 96 h (Figure S1). The presence of H2O2 induced a faster CIP release
from the nanoparticles and, furthermore, higher concentrations of H2O2 resulted higher
drug release rates as shown in Figure 4b. Nanoparticles fabricated with LE copolymer,
which does not have diselenide linkages, did not significantly respond to addition of
H2O2 (Figure S2). At 10 mM H2O2, over 90% (w/w) of the drug was released at 48 h,
indicating that LGseseTAPEG nanoparticles have an oxidative stress-sensitive drug release
behavior. Figures 3 and 4 indicate that LGseseTAPEG nanoparticles have ROS-sensitivity
and potential for ROS-mediated drug delivery.

Jang et al., reported that nanofiber mats fabricated from ROS-sensitive polymers
such as poly(L-lactide) (PLA)-PEG copolymer having diselenide linkages have sensitivity
against H2O2 and then released piperlongumine in a ROS-sensitive manner [31]. They
argued that drug release must be also accelerated by piperlongumine since piperlongumine
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is a ROS-producing agent. They showed that the ROS-sensitive release of piperlongumine
effectively inhibited viability of cancer cells in vitro and in vivo. Fan et al., also reported that
polymeric micelles composed of PLGA-PEG copolymer having diselenide linkages release
berberine in a ROS-specific manner while berberine release in PBS was minimized [32].
Furthermore, it was reported that dexamethasone release from ROS-sensitive nanoparticles
was accelerated in the presence of ROS due to the cleavage of diselenide linkages and this
effectively inhibited the proliferation of activated macrophages [33].
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Figure 4. Drug release behavior of CIP-incorporated LGseseTAPEG nanoparticles. (a) The effect of drug contents and (b)
the addition of H2O2 in the drug release media. To test the effect of H2O2, CIP-incorporated nanoparticles (10.1% (w/w))
was reconstituted into PBS in the presence or absence of H2O2. To assess the effect of H2O2 addition, CIP-incorporated
nanoparticles (drug content: 10.1% (w/w)) were used.

3.3. Antibacterial Activity of CIP-Incorporated Nanoparticles

To study the antibacterial activity of CIP and CIP-incorporated nanoparticles, E. coli,
a typical uropathogen, was incubated with free CIP and CIP-incorporated nanoparticles
as shown in Figure 5. As seen in Figure 5a, CIP and CIP-incorporated nanoparticles dose-
dependently inhibited the growth of bacteria at higher than 0.001 µg CIP/mL while empty
nanoparticles have practically no inhibitory effect until 10 µg polymer/mL against the
growth of E. coli as shown in Figure 5b. Free CIP plus empty nanoparticles showed practi-
cally similar antibacterial activity compared to free CIP. CIP-incorporated nanoparticles
showed lower antibacterial activity compared to free CIP or free CIP + empty nanoparticles.
These results might be due to that CIP-incorporated nanoparticles have sustained release
behavior and then the liberated CIP can directly affect the viability of bacteria. As shown in
Table 2, IC50 values of CIP, CIP-incorporated nanoparticles and CIP + empty nanoparticles
were 0.0084, 0.0188 and 0.0087 µg CIP/mL while the IC50 value of empty nanoparticles
was higher than 10 µg polymer/mL.

Materials 2021, 14, 4125 10 of 15 
 

 

 
Figure 4. Drug release behavior of CIP-incorporated LGseseTAPEG nanoparticles. (a) The effect of drug contents and (b) 
the addition of H2O2 in the drug release media. To test the effect of H2O2, CIP-incorporated nanoparticles (10.1% (w/w)) 
was reconstituted into PBS in the presence or absence of H2O2. To assess the effect of H2O2 addition, CIP-incorporated 
nanoparticles (drug content: 10.1% (w/w)) were used. 

3.3. Antibacterial Activity of CIP-Incorporated Nanoparticles 
To study the antibacterial activity of CIP and CIP-incorporated nanoparticles, E. coli, 

a typical uropathogen, was incubated with free CIP and CIP-incorporated nanoparticles 
as shown in Figure 5. As seen in Figure 5a, CIP and CIP-incorporated nanoparticles dose-
dependently inhibited the growth of bacteria at higher than 0.001 μg CIP/mL while empty 
nanoparticles have practically no inhibitory effect until 10 μg polymer/mL against the 
growth of E. coli as shown in Figure 5b. Free CIP plus empty nanoparticles showed prac-
tically similar antibacterial activity compared to free CIP. CIP-incorporated nanoparticles 
showed lower antibacterial activity compared to free CIP or free CIP + empty nanoparti-
cles. These results might be due to that CIP-incorporated nanoparticles have sustained 
release behavior and then the liberated CIP can directly affect the viability of bacteria. As 
shown in Table 2, IC50 values of CIP, CIP-incorporated nanoparticles and CIP + empty 
nanoparticles were 0.0084, 0.0188 and 0.0087 μg CIP/mL while the IC50 value of empty 
nanoparticles was higher than 10 μg polymer/mL. 

 
Figure 5. Antibacterial activity of CIP-incorporated nanoparticles. (a) Free CIP, CIP-incorporated nanoparticle (CIP-incor-
porated NP) or free CIP+empty nanoparticles (Free CIP + empty NP). For control, PBS was used to treat bacteria. (b) Empty 
nanoparticles. PBS (pH 7.4, 0.01 M) was used for control treatment. To assess the antibacterial activity of CIP-incorporated 
nanoparticles, CIP-incorporated nanoparticles (drug content: 10.1% (w/w)) were used. 

  

Figure 5. Antibacterial activity of CIP-incorporated nanoparticles. (a) Free CIP, CIP-incorporated nanoparticle (CIP-
incorporated NP) or free CIP+empty nanoparticles (Free CIP + empty NP). For control, PBS was used to treat bacteria.
(b) Empty nanoparticles. PBS (pH 7.4, 0.01 M) was used for control treatment. To assess the antibacterial activity of
CIP-incorporated nanoparticles, CIP-incorporated nanoparticles (drug content: 10.1% (w/w)) were used.
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Table 2. IC50 values of ciprofloxacin-incorporated nanoparticles against bacteria.

Drug or NP Treatment a IC50 (µg CIP/mL)

Free CIP 0.008
CIP-incorporated NP 0.019
Free CIP + empty NP 0.009

Empty NP b >10
a NP, nanoparticles. b Empty NP was (µg polymer/mL).

In fact, in vitro studies cannot replace in vivo animal studies because all of the treated
drug or nanoparticles is exposed to bacteria and participate in the inhibitory procedure
of the bacteria. Systemic or local administration of CIP must resulted in rapid clearance
of the drug from the body and then a minimal amount of drug remains in the body for
inhibition of bacteria. However, nanoparticles have extended blood circulation properties
and sustained drug release behavior. Therefore, these properties enable antibiotics to
inhibit bacteria for a longer time [34].

From these points of view, we designed an antibacterial activity test with consideration
of the drug release behavior of nanoparticles. Jeong et al., has reported that bacteria
introduced into a dialysis membrane could be adapted to evaluate in vivo antibacterial
activity [34]. Their method aims to mimic urinary tract infections in vivo. IN this study,
we introduced CIP-incorporated nanoparticles into a dialysis membrane to mimic an
in vivo antibacterial experiment and this system was placed into a bacterial culture. Free
CIP dissolved in PBS and free CIP + empty nanoparticles were also introduced into the
dialysis membrane and then used to compare the results, as shown in Figure 6, where
CIP-incorporated nanoparticles showed significantly lower count of viable bacteria while
empty nanoparticles did not affect the viability of bacteria. Free CIP and Free CIP + empty
nanoparticles showed only a small decrease in bacteria viability compared to control. These
results indicated that the CIP liberated from nanoparticles can affect the growth of bacteria
continuously because nanoparticles have sustained release properties and remain in the
dialysis membrane, and liberated CIP continuously affected the bacteria until the end of
the culture period. On the other hand, CIP was immediately released from the dialysis
membrane and this system was not able to maintain its antibacterial capacity for the whole
period of bacteria culture because half of the media was exchanged with fresh media and
then CIP was exhausted after a certain time. This system can reflect the sustained release
behavior of nanoparticulate drug delivery system. Nanoparticulate-based drug delivery
systems are suitable to inhibit biofilm formation [35–38]. It was reported that core-shell
nanospheres-immobilized onto urinary catheters effectively inhibited E. coli-associated
biofilm formation by up to 80% compared to control [37]. Furthermore, other scientists have
developed a multilayer-coating of bacterial-responsive nanospheres onto urinary catheters
that revealed superior inhibitory effect against biofilm formation [38]. Our investigation
also showed that nanoparticles have superior inhibitory effect against the viability of
bacteria and the ROS-sensitive drug release behavior of nanoparticles can be considered as
a superior candidate for UTI treatment.
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Figure 6. Antibacterial activity of CIP-incorporated nanoparticles. CIP (0.1 mg CIP/0.5 mL PBS) and
nanoparticles in PBS solution (0.1 mg as a CIP concentration in 0.5 mL PBS) was introduced into
dialysis membrane. Same quantity of empty nanoparticles or empty nanoparticles with free CIP in
dialysis membrane were used to compare. For control treatment, 0.5 mL PBS in dialysis membrane
was used. To assess the antibacterial activity of CIP-incorporated nanoparticles, CIP-incorporated
nanoparticles (drug content: 10.1% (w/w)) were used. *, p < 0.01; **, p < 0.01.

3.4. Intrinsic Cytotoxicity of LGseseTAPEG Nanoparticles against L929 Mouse Fibroblast Cells
and CCD986sk Human Skin Fibroblast Cells

To study the intrinsic cytotoxicity of nanoparticles of LGseseTAPEG copolymer, L929
mouse fibroblast cells and CCD986sk human skin fibroblast cells were used. As shown
in Figure 7, the viability of L929 cells and CCD986sk cells remained higher than 90%
until 10 µg polymer/mL. At 50 µg polymer/mL, viability was still higher than 80%,
both for L929 cells and CCD986sk cells. These results indicated that nanoparticles of
LGseseTAPEG copolymer have no acute toxicity against normal fibroblast cells and they
might be compatible with normal cells.
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Figure 7. Cell cytotoxicity of LGseseTAPEG nanoparticles against L929 mouse fibroblast cells and
CCD986sk human skin fibroblast cells. 2 × 104 cells in 96 wells were exposed to nanoparticles of
LGseseTAPEG copolymer for 24 h. Cell viability was evaluated with an MTT assay.
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4. Conclusions

LGseseTAPEG copolymer containing diselenide linkages was synthesized for ROS-
sensitive drug delivery. Synthesis of LGseseTAPEG copolymer was confirmed using 1H-
NMR spectroscopy and FT-IR spectroscopy. CIP-incorporated nanoparticles of LGsese-
TAPEG copolymer were fabricated by a W/O/W/W emulsion method. CIP contents
in the nanoparticles were 6.4% (w/w) and 10.1% (w/w). CIP-incorporated nanoparticles
responded to H2O2 and their morphologies disintegrated during 24 h incubation in the
presence of H2O2. Furthermore, the particle size distribution changed from a monomodal
distribution pattern to a multimodal distribution pattern by addition of H2O2 to aqueous
solutions of nanoparticles. Drug release from the nanoparticles also revealed ROS-sensitive
behavior, i.e., the drug release rate was significantly increased in the presence of H2O2.
These results indicated that physicochemical properties of nanoparticles were changed by
addition of H2O2 and these nanoparticles have ROS-sensitivity. In an antibacterial study
using E. coli, free CIP and free CIP plus empty nanoparticles showed dose-dependent
inhibitory effects against the growth of bacteria while CIP-incorporated nanoparticles
have less antibacterial activity compared to free CIP. These results were due the fact that
CIP-incorporated nanoparticles have sustained release properties. Free CIP and CIP-
incorporated nanoparticles were introduced into a dialysis membrane to mimic the in vivo
situation. In this experiment, CIP-incorporated nanoparticles showed superior antibac-
terial activity while free CIP did not significantly inhibit the growth of bacteria. In a cell
viability assay, nanoparticles of LGseseTAPEG copolymer displayed no acute cytotoxicity
against L929 mouse fibroblast cells or CCD986sk human skin fibroblast cells. We suggest
LGseseTAPEG nanoparticles are a promising candidate for CIP delivery.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14154125/s1, Figure S1: Time course of released CIP concentration in the media. CIP-
incorporated nanoparticles of LGseseTAPEG copolymer were used to analyze drug release study.
Figure S2: CIP release from LE block copolymer nanoparticles. The effect of the addition of H2O2 in
the drug release media. To test the effect of H2O2, CIP-incorporated nanoparticles were reconstituted
into PBS in the presence or absence of H2O2.
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