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Combining data when data are collected under different study designs, such as family
trios and unrelated case-control samples, gains more power and is cost-effective than
analyzing each data separately. However, a potential concern is population stratification
(PS) among unrelated case-control samples and analyses integrating data should address
this confounding effect. In this paper, we develop a simpler method, haplotype generalized
linear model (HGLM), that tests and estimates haplotype effects on disease risk and allows
for modification against PS for combining data. We proposed to combine information
across aggregations of haplotype weighted-counts estimated from population case-control
data and trio data separately, and to perform subsequent GLM analysis. Furthermore,
we present a framework of analysis of variance based on haplotype weighted-counts for
detecting whether it is appropriate to combine two data sources, as well as the modified
HGLM with clustering methods for addressing PS. We evaluate the statistical properties
in terms of the accuracy, false positive rate (FPR) and empirical power using simulated
data with regard to various disease risks, sample sizes, multi-SNP haplotypes and the
presence of PS. Our simulation results indicate that HGLM performs comparably well
with the likelihood-based haplotype association analysis, particularly when the haplotype
effects are moderate, but may not perform well when dealing with lengthy haplotypes
for small sample sizes. In the presence of PS, the modified HGLM remains valid and
has satisfactory nominal level and small bias. Overall, HGLM appears to be successful in
combining data and is simple to implement in standard statistical software.
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INTRODUCTION
Genetic association analysis has been used widely in searching
for genes contributing to complex diseases, for example, several
large-scale genetic studies collected genome data from both typi-
cally healthy and diseased individuals in genetic association tests
(Hunter et al., 2007; Kibriya et al., 2009). One very common
design is to collect unrelated population data such as case-control
data as the power is larger than with traditional linkage studies
in detecting mild effects (Risch and Merikangas, 1996). However,
one drawback is spurious association resulting from population
stratification (PS). Therefore, careful correction for PS is essential
when analyzing case-control studies. To avoid spurious associ-
ation, family-based design is an alternative method and using
case-parent trios is an appealing strategy (Spielman et al., 1993;
Cardon and Palmer, 2003). In other words, we can observe geno-
types of diseased offspring and those of his/her two parents where
the non-transmitted parental alleles are viewed as a pseudo-
control sample. However, the recruitment of parents is often more
difficult for late onset diseases and more expensive than recruit-
ing unrelated controls. Such difficulty involved in data collection
and/or cost-burden might result in power loss with regard to
detecting associated markers.

A number of methods have been developed for combining
samples consisting of unrelated case-control data and family
data. A notable strength is the increase in power with regard to
identifying associated markers (Glaser and Holmans, 2009) but
the pooling data requires deliberation in statistical analysis. One
strategy was to provide a weighted estimate of disease risks from
separate analyses of population case-control and family trios.
Kazeem and Farrall (2005) estimated the allelic odds ratio (OR)
of disease association separately and provided a weighted loga-
rithm of two separate ORs for inference. Chen and Lin (2008)
proposed a weighted least square estimator for the logarithm of
genotype relative risks in a logistic regression model with geno-
type covariates and constructed a Wald-type test employing joint
information from combined data. From a statistical hypothesis
testing perspective, Joo et al. (2007) presented weighted average
test statistics composed of the transmission disequilibrium test
(TDT) (Spielman et al., 1993) for trio data and trend test for
case-control data. Recently, Stewart and Cerise (2013) proposed
a combination test of a trend test and a Wald test without any
assumptions about the genetic model. The other strategy was a
likelihood-based approach dealing with genotype data combin-
ing trios and unrelated controls. The combined likelihood for
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pooling data is formulated by multiplying the likelihood contri-
butions with regard to family data as well as unrelated controls.
Nagelkerke et al. (2004) constructed a likelihood function of the
genotype risk ratio based on a multiplicative model and uti-
lized a traditional Poisson regression model to estimate the ratio.
However, this requires restrictive model assumptions such as rare
disease assumption and Hardy-Weinberg equilibrium. Epstein
et al. (2005) further utilized the approach conditional on the
parental genotypes to infer the risk ratio from the likelihood func-
tion. They found that the power is similar to that of Nagelkerke
et al.’s approach with less restrictive assumptions; hence, a formal
test for the adequacy of data combining was conducted. However,
these approaches are limited to the analysis of one marker at
a time and no other covariates. For analyzing multiple mark-
ers, a unified likelihood framework was developed to test for the
disease-marker association (Li et al., 2006; Dudbridge, 2008). For
more flexible modeling, Hsu et al. (2009) proposed a pseudo-
likelihood approach that models the probability of genotypes
conditional on the disease phenotype and covariates. Pfeiffer et al.
(2008) proposed a random effect model incorporating genotype
data of family trio and population case-control data. Wang et al.
(2013) proposed a multi-marker VC-based association test using
both family and unrelated data with allowing for the adjustment
of non-genetic contributions to the familial similarity, as well
as multiple covariates. These approaches appear to be far more
attractive because of the flexibility by which covariates are known
or suspected to affect risk incorporated into the analysis. Recently,
some strategies were also developed to account for PS without
homogeneous population assumption (Chung et al., 2010; Mirea
et al., 2012).

Apart from that mentioned previously, some approaches based
on haplotypes, which refer to a set of alleles at different loci
that are present together on the same chromosome, are pro-
posed for combined analysis. For example, Guo et al. (2009)
advocated a combined haplotype relative risk (CHRR) that is an
allele-based association test. They claimed that the CHRR is more
powerful than Epstein et al.’s strategy in the presence of link-
age. Particularly, Dudbridge (2008) developed a likelihood-base
approach for combined data on the basis of haplotype inference.
Also, there is some theoretical evidence that haplotype-based
tests would be more powerful. Because single marker linkage-
disequilibrium (LD) based methods may not capture all of the
available LD information, which is contained in multi-locus hap-
lotypes (Akey et al., 2001; Schaid, 2005). General features related
to combined methods are (1) utilizing various components of
available population and family data, and (2) carrying out anal-
yses using either per SNP at a time or haplotype-based data,
(3) obtaining a single risk estimate from combined data or a
weighted estimate based on distinct estimates from separate anal-
yses, and (4) further testing for PS since validity of disease risk
estimates for most of existing methods depends on PS absent
(Infante-Rivard et al., 2009; Fardo et al., 2011). The first fea-
ture is limited to practical situations such as resources collected
from unrelated case-control and family trio data or unrelated
controls and case-parent trios. One of our goals is to present
strategy on how and when unrelated case-control data and inde-
pendent case-parent trios may be combined. For dealing with

combined data and detecting for the presence of PS efficiently,
we propose a haplotype generalized linear model (HGLM) based
on haplotype weighted-counts from the combined data. Similar
to two-stage approaches (Schaid et al., 2002; Zaykin et al., 2002;
Sham et al., 2004; Purcell et al., 2007), we use estimated haplotype
weighted-counts rather than haplotype probabilities as predic-
tor variables, and then perform haplotype association analyses
in a GLM framework. Except for homozygous and single het-
erozygous subjects, haplotypes are generally not observed but can
be inferred statistically. The entries in predictor variables corre-
sponding to haplotypes are no longer 0, 1, and 2, reflecting the
phase uncertainty. Subject-specific haplotype distributions can
be obtained from the conditional likelihood given the individ-
ual’s genotype and the estimated haplotype frequencies (HFs).
We propose to combine information across aggregations of hap-
lotype weighted-counts estimated from population case-control
data and family trio data separately, and to perform subsequent
GLM analyses. The method we present here is similar to the
method of Zaykin et al. (2002) which consists of a simpler expec-
tation substitution method. As in a single marker situation, there
are no phase ambiguities; HGLM using only population case-
control data would reduced to the method of Zaykin et al. (2002)
in haplotype-based data.

The proposed HGLM has some advantages. First, many avail-
able programs are capable of haplotype reconstruction (e.g.,
SNPHAP or PHASE or FAMHAP software); we have chosen the
FAMHAP program in our implementation. Then it is quite sim-
ple to perform the haplotype analysis with standard statistical
software. In contrast, inference based on the joint likelihood of
both HFs and haplotype disease risks (e.g., Dudbridge, 2008) will
be more complicated although programs available for this task
such as Unphased (Dudbridge, 2008). The second advantage is
the simple aggregations of haplotype weighted-counts from pop-
ulation case-control data and family trio data, and we prove that
the estimates of haplotype effects based on the aggregations of
haplotype data are accurate by our simulation results. In other
words, we use the full information of “pooled sample” rather than
composite likelihoods obtained from the joint likelihood of both
haplotype probabilities and disease models for either data. We
further develop a modified HGLM to deal with the confounding
effect of PS through a clustering technique without complexity.
Here, we propose the implementation of HGLM for combining
two types of data and compare statistical properties with the exist-
ing method in Dudbridge (2008) in terms of bias, false positive
rate (FPR) and power. The performance of the proposed HGLM is
evaluated by a variety of simulation studies such as various haplo-
type disease risks, sample sizes, multiple markers and the presence
of PS. As we shall see later, HGLM performs comparably well to
the method in Dudbridge (2008) with regard to PS.

METHODS
HAPLOTYPE GENERALIZED LINEAR MODEL (HGLM)
Suppose genetic data are collected from n1 case-parents trios and
unrelated case-control samples (n2 cases and n3 controls) that
are sampled from the same population, and each individual is
genotyped at q biallelic SNPs while two alleles are denoted by 1
and 2. For a given triad, Gp = (Gf, Gm) and Go are defined as
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the genotypes of the two parents and of the affected probands,
respectively. Gu denotes the genotypes of unaffected controls and
Ga refers to the genotypes of the affected cases for population
case-control data. For estimating the association of specific hap-
lotypes with disease phenotype, we propose HGLM with the
combined haplotype weighted-count data as covariates which
are estimated from family trios (i.e., Gp and Go) and popu-
lation case-control genotype data (i.e., Gu and Ga) separately.
Suppose the size of groups including trios, population cases, and
controls is n = n1 + n2 + n3. Let yij be the disease phenotype
(1 = affected and 0 = unaffected) of the jth subject for the ith
group (i = 1, . . . , n), where j = 1 and j = 2 represent an affected
proband and a pseudo control for trio data, respectively, and
j = 1 for population case-control data. Following the proposal
in Falk and Rubenstein (1987), we use the affected offspring as a
case individual and construct a single pseudo-control individual
with phased genotypes consisting of the haplotypes not transmit-
ted from the parents to the affected offspring. For n1 trios, the
affected probands (yij = 1) are the cases with transmitted hap-
lotypes and pseudo controls (yij = 0) are with non-transmitted
haplotypes. Therefore, the total number of cases and controls is
N = 2n1 + n2 + n3 for our analysis. The general model setting
for the combined analysis is

logit[P(yij = 1|Hij)] = α + H′
ijβ

yij =
{

1 if i ≤ n1, j = 1 or n1 + 1 ≤ i ≤ n1 + n2, j = 1
0 if i ≤ n1, j = 2 or n1 + n2 + 1 ≤ i ≤ n, j = 1

where α is the intercept as the effect of a baseline haplotype
and β = (β1, β2, . . . , βp)′ represents the p × 1 vector of the log-
arithm of ORs for specific haplotypes. The coding of Hij =
(h1ij, h2ij, . . . , hpij)′ denotes the p × 1 vector of weighted-counts
for haplotypes of the j-th subject for the i-th group, and it con-
tains a pooled set of haplotype weighted-counts obtained from
trios (i.e., i ≤ n1) and population case-control data (i.e., n1 + 1 ≤
i ≤ n). Let p = 2q − 1 be the number of the distinct haplotypes
observed in the combined data by excluding the most common
haplotype h0 as the reference haplotype. The weighted-count can
be defined as the number of haplotype occurrence (i.e., 0, 1, 2)
multiplies by corresponding weight which means the estimated
haplotype probability. For homozygous genotypes at q SNP sites
or at most one heterozygous SNP, the weighted-count would be
either 0 or 2 due to no haplotype ambiguity. However, the weight-
count would range from 0 to 2 if the subject is heterozygous at
more than one SNP. The case and control haplotypes are esti-
mated by applying an expectation-maximization algorithm such
as the Famhap program written by Becker and Knapp (2004).
A wide variety of programs exists for haplotype reconstruction
based on unphased genotype data. One could choose a preferred
program to obtain Hij = (h1ij, h2ij, . . . , hpij)′.

We perform a sequential analysis for fitting HGLM. The
schematic diagram of HGLM for combining data of unrelated
case-control samples and family trios is depicted in Figure 1.
First, the family trios (i.e., Gp and Go) data are analyzed in the
Famhap program to obtain the haplotype explanation files, as well

as for the population case-control data (i.e., Gu and Ga) as a sin-
gle data set. These outputs from Famhap are reorganized as the
haplotype weighted-count data, and these weighted-count data
from population and family studies are combined in HGLM. For
either case/pseudo control of family data or each case/control of
population data, the sum of weighted-counts of all possible hap-
lotypes should equal two. This would lead to obtain unidentifiable
regression coefficients (i.e., disease risks). Hence, the most com-
mon haplotype h0 is removed in the fitted HGLM model allowing
a regression coefficient βk to be interpreted as the log(OR) of
disease for the haplotype hk relative to the haplotype h0, k =
1, . . . , p. Additionally, testing the effect of a specific haplotype
on disease risk, called the haplotype-specific association test, is
performed based on a Wald test or score test, and the confidence
intervals of haplotype-specific ORs can be provided easily.

TESTING AND ACCOUNTING FOR POPULATION STRATIFICATION
It is possible that the heterogeneity of haplotype effects may
present between families and unrelated subjects that might be
introduced if HFs (resulting from different minor allele frequen-
cies) and disease probabilities differ among population case-
control samples (that is PS), and therefore combining two data
sources directly is inappropriate. In other words, if there is PS
among population case-control samples or two data sources come
from different populations, it would result in different means of
haplotype weighted-counts for case-control samples as compared
with family trios. Hence, we propose a multivariate analysis of
variance (MANOVA) model as a tool for detecting the appropri-
ateness of combining data. The MANOVA model is

Hijg = μ + τg + εijg, g = 1, 2

where Hijg = (h1ijg, h2ijg, . . . , hpijg)′ means the weighted count
of the jth subject for the ith group from either family trios (if
g = 1) or population case-control samples (if g = 2), τ g denotes
the p × 1 vector of the effect for each data source (g = 1, 2), and
εijg is the random error term. The hypothesis is given by H0 :
τ 1 = τ2 = 0 vs. H1 : at least one τg �= 0. If the null hypothesis is
rejected, it implies that the means of haplotype weighted-counts
of family trios and population case-control data are significantly
different, and therefore, combining two data sources directly is
inappropriate. Subsequently, we can perform ANOVA for com-
parison of the specific HFs between family trios and population
case-control data. The ANOVA model for the haplotype hk is

hkijg = μ + τkg + εkijg, g = 1, 2

where hkijg represents the weighted count of the jth subject within
the ith group from either family trios (if g = 1) or population
case-control samples (if g = 2) for the haplotype hk, τkg denotes
the effect of each data source (g = 1, 2) for the haplotype hk.
Similarly, if the null hypothesis H0 : τk1 = τk2 = 0 is rejected, it
indicates that the means of weighted-counts for the haplotype
hk obtained from the family trios and population case-control
data are significantly different. It is worth noting that the pro-
posed tests for PS cannot distinguish between the confounding
effect by differences in HFs between family trios and unrelated
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FIGURE 1 | Schematic diagram of HGLM for combining data of unrelated case-control samples and family trios.

case-control samples (i.e., PS) and true heterogeneity of haplo-
type effects. In either case, however, it would not be appropriate
to combine the family data with unrelated case-control samples.
Therefore, the proposed test will be a useful indication of whether
to combine the data or not. The similar opinion has been elicited
by Infante-Rivard et al. (2009).

When there is PS, the estimate of disease risk would be biased
and the FPR would be inflated. HGLM can be modified fur-
ther for addressing PS by calculating haplotype weighted-counts
based on homogeneous subgroups, such that measures of asso-
ciation are not confounded. To account for the bias of PS, we
utilize clustering methods to group the mixed case-control sam-
ples into clusters based on genotype data (i.e., G∗

u and G∗
a ),

and use the Famhap program to obtain estimates of haplotype
weighted-count data from each cluster (i.e., homogeneous sub-
groups) separately. Since family trio data are robust against PS
(Spielman et al., 1993; Cardon and Palmer, 2003), the haplo-
type weighted-count data estimated from mixed trio data are
still valid within expectation. Thus, HGLM can be modified and
implemented by combining haplotype weighted-count data esti-
mated from family trios and clustered case-control samples. The
schematic diagram of the modified HGLM (termed M-HGLM)
for combining data of mixed case-control samples (when PS
presents) and family trios is depicted in Figure 2. For cluster-
ing of case-control samples from admixed populations, we use a
genotype data matrix (the entries are 0, 1, or 2 representing the
number of copies of the derived allele) with one row for each of
n2 cases and n3 unrelated controls, and one column for each of
q bi-allelic loci. We normalize genotype data by column means
and standard deviations. The distance matrix between all pairs of
individuals is constructed based on Euclidean distance of multi-
locus normalized genotype data. The normalized matrix is then
used for clustering method including Ward’s hierarchical cluster-
ing approach and a non-hierarchical clustering method, K-means
algorithm. Ward’s method starts out with n2 + n3 clusters of size 1
and continues until all the individuals are grouped into one clus-
ter. Given a user specified number of subgroups, Ward’s algorithm
is performed to identify clusters where the error sum of squares

of individuals from two joined clusters is minimized. As for K-
means algorithm, the number of clusters (K) may be specified in
advance. In this paper, Ward’s clustering algorithm and K-means
algorithm are implemented with the standard statistical software,
R, using the function hclust() and kmeans(), respectively.

SIMULATIONS
We performed simulations to assess the statistical properties and
power of our proposed combined method HGLM across a range
of degree of haplotype risks, sample sizes, multi-SNP haplotypes
and strength of PS. Furthermore, we compared the power of
HGLM with other approaches, UNPHASED (Dudbridge, 2008)
and SCOUT (Epstein et al., 2005) that can also use both fam-
ily and case-control data. SCOUT is restricted to use combined
data based on a single marker test, while HGLM and UNPHASED
(denoted as Unph) can use combined data on the basis of hap-
lotype inference. We generated marker genotypes at 2 SNPs and
multi-SNP as the genetic data in practice when performing the
combined analysis.

First, haplotype sequence simulations were based on disease
models including mild and moderate risks. A total of 20,000
haplotype sequences consisted of two biallelic markers were sim-
ulated with HFs (HFs) of 1-1, 1-2, 2-1, and 2-2 as 0.5, 0.1,
0.3, and 0.1, respectively. We generated case and control hap-
lotype sequences from the logistic regression model with given
haplotype risks β = (β1, β2, β3)′:

logit[P(yij = 1|Hij] = α + β1I(h1ij = 1 − 2) + β2I(h2ij = 2 − 1)

+ β3I(h3ij = 2 − 2)

where I( · ) denotes the indicator function and the parame-
ters β1, β2, and β3 are the log odds ratios corresponding to
the haplotype-specific risk of the 1-2, 2-1, and 2-2 haplo-
type vs. 1-1 haplotype. We set the values of haplotype odds
ratios β = (

log (1.207), log (1.421), log (1.525)
)′

for a mild effect

model, and β = (
log (1), log (2.067), log (2.067)

)′
for a moderate

effect model, respectively. We also simulated data where none of
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FIGURE 2 | Schematic diagram of M-HGLM for combining data of clustered case-control samples and family trios when PS presents. HC1
ij and HC2

ij denote
the haplotype weighted-count obtained from clusters 1 and 2, respectively, when performing clustering methods on mixed population case-control genotype data.

the haplotypes spanned by the markers have OR > 1 (i.e., all β =
0; denoted as null model) and assessed the FPR of the combined
haplotype-specific association test. The intercept value of α was
chosen to yield the disease rates of different disease models (i.e.,
null, mild, and moderate effect models) approximately at 5–7%.
Next, individuals’ genotypes in case and control groups were gen-
erated by randomly drawing a pair of haplotypes from the case
haplotype sequences and from the control haplotype sequences,
respectively. For family trio data, the disease outcome was further
generated by a conditional logistic regression model (denoted as
CLG) because each family was treated as a matched set:

P(yi1 = 1, yi2 = 0|Hij)

=
exp[β1I(h1i1 = 1 − 2) + β2I(h2i1 = 2 − 1)

+β3I(h3i1 = 2 − 2)]
2∑

j = 1
exp[β1I(h1ij = 1 − 2) + β2I(h2ij = 2 − 1)

+β3I(h3ij = 2 − 2)]
and P(yi1 = 0, yi2 = 1|Hij) = 1 − P(yi1 = 1, yi2 = 0|Hij), given
by the haplotype weighted-count specified according to the same
haplotype frequency and disease rate as population case-control
data, as well as the same disease risk. In other words, we con-
sidered that the population case-control data and family trios
were sampled from the same population (scenarios without PS).
The diplotype data (haplotype pair) for affected children were
generated first, followed by the parents’ corresponding to random
mating assumption. As for multi-SNP haplotype inference, we
followed the simulation settings in Purcell et al. (2007) as shown
in their Table 1 for haplotype-based association studies. A total
of 100,000 haplotype sequences consisted of five biallelic markers

and six haplotypes were simulated. The six HFs of 1-2-1-2-2,
1-1-1-1-1, 1-1-2-1-1, 1-2-2-2-2, 2-2-2-2-1, and 2-2-2-2-2 are
0.264, 0.169, 0.067, 0.050, 0.212, and 0.237, respectively. The ref-
erence haplotype is 1-2-1-2-2, and the values of haplotype odds
ratios for the corresponding to the haplotype-specific risk of the
other five haplotypes vs. the reference haplotype are set as β =(
log (1.467), log (3.811), log (1.528), log (1.309), log (1.501)

)′
.

For all simulations, we set two sample sizes with equal and
different numbers of samples from family trios and population
case-control data (n1 = n2 = n3 = 100, and n1 = 500 and
n2 = n3 = 1000) for the 2-locus mild and moderate effect
models, and the multi-SNP model.

To determine the statistical properties between our proposed
method and test based on separate data, we conducted three
ways of incorporating data for each data set: (1) population case-
control data only, (2) family trios only or, (3) a combination of
population case-control data and family trios. For family trios
only, we adopted the CLG as a compared approach by using the
transmitted and non-transmitted haplotypes matched within a
family. We examined the performance of the proposed method
in terms of bias, mean square error (MSE) and coverage rate of
95% confidence interval (CI) of estimates for haplotype odds
ratio (HOR) over 1000 replicates. Furthermore, the empirical
FPR and power were used to evaluate the performance of our
haplotype-specific association test. Under the null hypothesis of
no haplotype association (i.e., HOR = 1), the fraction of times
that the p-values of haplotype-specific association tests less than
0.05 is the empirical FPR. The power is defined as the proportion
of p-values of haplotype-specific association tests less than 0.05
while the haplotype-specific association exists. We implemented
the simulations and computations using R 2.15.1 programming
language and the code can be obtained from the authors.
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Table 1 | False positive rate under all haplotype odds ratios (HOR) equal to 1.

Null model True

HOR

Population data Family data Combined data

Sample size Haplotype Estimate P-HGLM P-Unph F-HGLM F-Unph F-CLG C-HGLM C-Unph

Power of the overall test 0.055 0.057 0.056 0.055 0.055 0.056 0.053

n1 = 100 1-2 1 FPR 0.044 0.047 0.050 0.049 0.047 0.043 0.036

n2 = n3 = 100 Bias 0.104 0.096 0.075 0.077 0.084 0.036 0.018

MSE 0.311 0.300 0.195 0.201 0.228 0.089 0.062

2-1 1 FPR 0.048 0.054 0.050 0.048 0.051 0.064 0.045

Bias 0.047 0.045 0.028 0.026 0.030 0.019 0.009

MSE 0.081 0.078 0.067 0.065 0.073 0.035 0.025

2-2 1 FPR 0.045 0.043 0.050 0.045 0.043 0.050 0.041

Bias 0.075 0.080 0.077 0.080 0.081 0.035 0.029

MSE 0.224 0.235 0.183 0.184 0.192 0.078 0.057

Power of the overall test 0.045 0.044 0.049 0.048 0.047 0.047 0.035

n1 = 500
n2 = n3 = 1000

1-2 1 FPR 0.043 0.046 0.034 0.035 0.032 0.042 0.037

Bias 0.006 0.006 0.018 0.019 0.019 0.006 0.005

MSE 0.017 0.017 0.025 0.026 0.026 0.010 0.008

2-1 1 FPR 0.050 0.051 0.047 0.047 0.048 0.044 0.036

Bias 0.001 0.001 0.008 0.008 0.008 0.001 0.001

MSE 0.006 0.006 0.011 0.011 0.012 0.004 0.003

2-2 1 FPR 0.050 0.048 0.043 0.043 0.041 0.049 0.035

Bias −0.001 −0.001 0.009 0.009 0.010 −0.002 −0.003

MSE 0.014 0.014 0.026 0.027 0.027 0.009 0.007

The reference haplotype is 1-1.

RESULTS
NULL MODEL: FPR, BIAS, AND MSE
Table 1 shows the FPR, bias and MSE for our proposed HGLM,
CLG, and Unph methods with two sample sizes at n1 = n2 =
n3 = 100, and n1 = 500 and n2 = n3 = 1000. For Unph of
Dudbridge (2008), the FPR can only be determined from the
analysis output as the proportion of 1 lying outside of the 95%
CI for HOR = 1 over 1000 replications. The results indicate that
the FPRs under the null hypothesis (HOR = 1) are generally close
to the nominal level at 0.05 for either two types of data analyzed
separately or combined data for all methods examined. For the
combined data analysis, HGLM yields smaller bias and MSE as
compared to those obtained from separate analyses. In general,
the estimates are comparable for HGLM and Unph for separate
analyses, regardless of sample size. Using only the family data, the
estimates of bias and MSE via HGLM are also comparable to CLG.
We also compared the performance of our combined analysis
with an existing approach based on a single marker analysis. The
estimated genotype relative risk and FPR for each marker of the
SCOUT analysis which is a likelihood-based approach for each
single marker are listed in Table S1 (see Supplementary Material
for details). The SCOUT analysis has satisfactory FPR under the
null model. For a fair comparison of power with the single marker
results, we further performed a global test of whether any of
the haplotypes spanned by the markers are significant through
HGLM, Unph and CLG. The power of the overall test under

the null model is consistent to the single marker results within
expectation.

TWO-SNP MODEL WITH MILD AND MODERATE EFFECTS: POWER,
BIAS AND MSE
Table 2 provides the power for HGLM and Unph under mild
and moderate effect models. Based on the combined data anal-
ysis, the power of the global haplotype test from either HGLM
or Unph increases steadily with sample size, but is slightly lower
than power of SNP 1 from SCOUT (details in Table S1 in
the Supplementary Material). However, the power of the over-
all test via HGLM is comparable to that of SNP 1 adjusted by
Bonferroni correction via SCOUT at small sample size (n1 =
n2 = n3 = 100). It is worth mentioning that the effect of SNP 2
has been missed based on SCOUT, which was expected as a sin-
gle marker analysis might not be reliable for detection of joint
marker effects (i.e., haplotype effects exist). With regard to esti-
mation, the results based on combined data reveal that HGLM
is as accurate and as efficient as compared to Unph (as shown
in Figures 3, 4). For HGLM using combined data, the estima-
tors of HOR have similar MSE as compared to Unph, however,
the values of bias from HGLM are smaller than those from Unph
when the risk is moderate. As noted in previous reports (Schaid,
2004; Xie and Stram, 2005), this is due to variations on likelihood-
based methods for estimating haplotype-specific risks away from
the null hypothesis. The confidence intervals based on combined
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Table 2 | FPR and Power (%) at 5% significance level for (1) 2-locus mild effect model and (2) moderate effect model under varying sample size.

Combined

study

Sample size Haplotype True

HOR

Power (%) Population data Family data Combined data

P-HGLM P-Unph F-HGLM F-Unph F-CLG C-HGLM C-Unph

Mild n1 = 100 Overall 25.6 26.2 27.2 27.1 27.1 50.2 38.6

Effect n2 = n3 = 100 1–2 1.207 Haplotype 6.6 7.1 7.3 7.4 6.7 9.1 9.9

Model 2-1 1.421 Haplotype 27.3 28.1 27.4 27.8 27.6 50.8 41.5

2-2 1.525 Haplotype 18.4 18.1 24.3 23.4 23.1 38.1 32.2

n1 = 500 Overall 100 100 92.1 92.2 92.3 100 100

n2 = n3 = 1000 1-2 1.207 Haplotype 27.7 27.2 22.0 21.6 22.5 42.8 38.2

2-1 1.421 Haplotype 99.4 99.3 90.4 90.2 90.4 99.8 99.8

2-2 1.525 Haplotype 95.3 95.4 79.4 78.4 78.4 99.5 98.9

Moderate n1 = 100 Overall 87.4 87.6 86.4 86.0 87.0 99.3 97.7

Effect n2 = n3 = 100 1-2 1a Haplotype 3.9 3.8 5.3 4.6 4.4 5.2 4.8

Model 2-1 2.067 Haplotype 82.2 83.0 87.8 88.0 88.2 99.2 96.8

2-2 2.067 Haplotype 46.5 47.7 54.7 54.5 53.6 84.1 75.7

n1 = 500 Overall 100 100 100 100 100 100 100

n2 = n3 = 1000 1-2 1a Haplotype 4.1 4.2 5.4 5.5 5.4 5.5 5.6

2-1 2.067 Haplotype 100 100 100 100 100 100 100

2-2 2.067 Haplotype 100 100 99.8 99.8 99.8 100 100

aThe power under true HOR = 1 represents the FPR.

The reference haplotype is 1-1.

data obtained from HGLM have correct coverage probabilities.
For Unph, the slightly large biases contribute to slightly lower
coverage probabilities (details in Table S2 in the Supplementary
Material).

MULTI-SNP MODEL: POWER, BIAS AND MSE
Table 3 provides bias and power for a 5-SNP haplotype-specific
association analysis. The estimates via HGLM are biased upward
as compared to Unph based on a small sample size when a large
number of haplotypes are studied. This is due to the HFs are
incorrectly estimated with small samples. The magnitude of esti-
mation bias would be small and comparably well to Unph based
on a large sample size. Given the current large sample sizes in
genetic studies, HGLM will lead to less bias. Besides, the estimates
from Unph for high-risk haplotypes are biased upward, similar
to the results for 2-SNP model with moderate risks. For multi-
SNP models, the powers of the global haplotype test and the
haplotype-specific association tests from either HGLM or Unph
increases with sample size (Table 3). HGLM performs compara-
bly well to Unph in terms of power. We conclude from the results
that HGLM offers a reliable approach to test for multi-SNP haplo-
typic associations for combining unrelated case-control and trios,
except with small samples for multi-SNP haplotypes.

PERFORMANCE IN THE PRESENCE OF POPULATION
STRATIFICATION
We conducted an additional set of simulations to examine the PS
effect with two sample sizes at n1 = n2 = n3 = 100, and n1 =
500 and n2 = n3 = 1000. Similar to previous studies (Epstein
et al., 2005; Chen and Lin, 2008), the first set of simulations

is that the population cases and controls are sampled from a
mixed population composed of two ancestral populations as
the first population had HFs corresponding to haplotypes (1-
1, 1-2, 2-1, 2-2) at (0.5, 0.1, 0.3, 0.1) and the prevalence of
disease was 7% while the second population had HFs at (0.4,
0.3, 0.15, 0.15) and the prevalence of disease was 18%. We
simulated two populations with different disease and HFs with
constituent proportions (50, 50%), and then randomly sampled
unrelated cases and controls from the admixed population at
large. Nevertheless, the trios are sampled from one population
with HFs at (0.4, 0.3, 0.15, 0.15). The second scenario consid-
ers generating admixed population cases, controls and trios from
the same admixed population as previous setting. There exists
no haplotype-specific association (HOR = 1) under the two sce-
narios. The PS came from heterogeneities within components
of combined data, that is, admixture of population case-control
data and/or trios results in the presence of PS. We assessed the
power of detecting PS by using the ANOVA framework based
on the continuous haplotype weighted-count data. For Unph, a
sample indicator variable was included (confounder option) as a
covariate to test and account for PS, and the power could be cal-
culated from the “offset column” which models a change in HFs
compared to that at the baseline covariate level. Table 4 shows
the power of the tests for checking the appropriateness of com-
bining samples when PS exists. In the first scenario considered,
the proposed test has good power for detecting the inappropri-
ateness of combining two different samples while the powers of
ANOVA and Unph decrease in the second scenario. As expected,
the powers under the proposed ANOVA and Unph depend on
the amounts of discrepancy among HFs. Furthermore, when
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FIGURE 3 | Boxplot of estimate biases (estimate - true HOR) for haplotype odds ratios (HOR) based on mild effect model over 1000 replications. (A–C)

Denotes the HOR = 1.207, 1.421, 1.525 for n1 = n2 = n3 = 100 and (D–F) is HOR = 1.207, 1.421, 1.525 for n1 = 500, n2 = n3 = 1000.

FIGURE 4 | Boxplot of estimate biases (estimate—true HOR) for haplotype odds ratios (HOR) based on moderate effect model over 1000 replications.

(A–C) Denotes the HOR = 1, 2.067, 2.067 for n1 = n2 = n3 = 100 and (D–F) is HOR = 1, 2.067, 2.067 for n1 = 500, n2 = n3 = 1000.

sample size increases, the proposed ANOVA and Unph lead to
larger power. When there is PS, the overall test (i.e., MANOVA)
and haplotype-specific test (i.e., ANOVA) for appropriateness
of combined data perform better than Unph in terms of larger
power.

We then examined the FPRs for the modified HGLM (M-
HGLM) with clustering techniques in the two scenarios with
PS. Tables 5, 6 display the FPRs for HGLM based on only fam-
ily trio data (F-HGLM), and HGLM without modification (C-
HGLM), M-HGLM with Kmeans [M-HGLM (Kmeans)] and
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Table 3 | Power (%) at 5% significance level and bias for the 5-locus model under varying sample size. The reference haplotype is 1-2-1-2-2.

Sample Haplotype True Estimate Population data Family data Combined data

size HOR
P-HGLM P-Unph F-HGLM F-Unph F-CLG C-HGLM C-Unph

n1 = 100 Overall power 98.1 98.0 98.2 98.5 98.3 100 100
n2 = n3 = 100 1-1-1-1-1 1.467 Power 9.5 9.7 8.8 9.9 8.0 14.4 14.0

Bias 0.502 0.384 0.310 0.350 0.488 0.157 0.057
1-1-2-1-1 3.811 Power 97.2 97.7 97.0 97.9 97.5 100 99.5

Bias 0.355 0.215 0.493 0.571 1.311 0.160 −0.904
1-2-2-2-2 1.528 Power 17.7 19.0 20.2 19.4 17.7 33.5 30.4

Bias 0.178 0.149 0.149 0.158 0.252 0.075 −0.031
2-2-2-2-1 1.309 Power 9.8 10.0 11.2 10.3 10.6 16.6 14.7

Bias 0.120 0.096 0.101 0.126 0.176 0.045 −0.003
2-2-2-2-2 1.501 Power 14.3 14.3 12.0 12.4 12.1 22.0 20.5

Bias 0.364 0.311 0.255 0.284 0.418 0.137 0.028

n1 = 500 Overall power 100 100 100 100 100 100 100
n2 = n3 = 1000 1-1-1-1-1 1.467 Power 47.9 49.4 29.8 32.4 30.4 68.9 68.1

Bias 0.052 0.042 0.043 0.060 0.081 0.026 −0.032
1-1-2-1-1 3.811 Power 100 100 100 100 100 100 100

Bias −0.049 −0.067 0.097 0.138 0.457 −0.031 −0.940
1-2-2-2-2 1.528 Power 92.3 93.4 75.3 74.4 74.0 99.4 98.2

Bias 0.005 −0.001 0.029 0.023 0.064 0.003 −0.080
2-2-2-2-1 1.309 Power 64.4 65.5 38.6 38.1 37.6 83.3 78.2

Bias 0.008 0.001 0.014 0.015 0.035 0.002 −0.041
2-2-2-2-2 1.501 Power 71.7 73.8 44.4 44.9 43.6 89.2 86.9

Bias 0.025 0.019 0.043 0.051 0.092 0.016 −0.060

Table 4 | Power of the tests for checking the appropriateness of combining samples in presence of population stratification (PS).

Sample size Haplotype True

HOR

Power (%) PS1 PS2

ANOVA Unph ANOVA Unph

(Confounder) (Confounder)

n1 = 100 overall 0.958a 0.705 0.130a 0.058
n2 = n3 = 100 1-2 1 haplotype 0.865 0.595 0.082 0.057

2-1 1 haplotype 0.842 0.250 0.087 0.051
2-2 1 haplotype 0.325 0.257 0.105 0.043

n1 = 500 overall 1a 1 0.208a 0.086
n2 = n3 = 1000 1-2 1 haplotype 1 1 0.097 0.067

2-1 1 haplotype 1 0.956 0.102 0.072
2-2 1 haplotype 0.932 0.939 0.157 0.059

PS1: Population cases and controls are randomly ascertained from admixed population consisting of two strata with disease prevalence (7, 18%) and HFs for

Haplotype 1-1, 1-2, 2-1, and 2-2 at (0.5, 0.1, 0.3, 0.1) and (0.4, 0.3, 0.15, 0.15), respectively. Trios are sampled from one ancestral population with HFs at (0.4, 0.3,

0.15, 0.15). PS2: Population cases, controls and trios are randomly ascertained from the same admixed population as PS1: aRepresents the power of MANOVA.

Ward approach [M-HGLM (Ward)], and Unphased with con-
founder option [C-Unph (confounder)] based on admixed com-
bined data for two sample sizes at n1 = n2 = n3 = 100, and
n1 = 500 and n2 = n3 = 1000, respectively. The result reveals
that F-HGLM using only family trio data is free of the effect
of PS in terms of the bias and FPR under the two scenarios
as expected. On the contrary, we can see that the FPRs from
C-HGLM are much greater than the nominal level, 0.05, in the
presence of PS. Incorporating clustering techniques with HGLM,
M-HGLM (Kmeans) and M-HGLM (Ward) both perform similar

to C-Unph (confounder) in terms of adequate FPR and small
bias even when sample size is small. The result indicates that
HGLM modified by clustering methods in advance leads to
valid inference in the presence of PS. Moreover, we can see
from Tables 4–6 that M-HGLM can control for PS even when
weak evidence for PS is obtained (e.g., the second set of sim-
ulations). In other words, M-HGLM is recommended to ease
the concern of PS in practice. Furthermore, we also simulated
two populations with different disease and HFs as the pervi-
ous setting with constituent proportions (70, 30%), and sampled
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Table 5 | False positive rates of the modified HGLM (M-HGLM) with clustering methods (Kmeans and Ward) in the presence of population

stratification (n1 = n2 = n3 = 100).

Scenarios Haplotype HOR Estimate F-HGLM C-HGLM M-HGLM M-HGLM C-Unph

(Kmeans) (Ward) (Confounder)

FPR of the overall test 0.062 0.916 0.047 0.047 0.050
PS1 1-2 1 FPR 0.044 0.659 0.041 0.049 0.051

Bias 0.041 −0.352 0.009 0.010 0.012

2-1 1 FPR 0.046 0.270 0.045 0.037 0.045
Bias 0.074 0.394 0.023 0.028 0.024

2-2 1 FPR 0.057 0.243 0.045 0.036 0.041
Bias 0.068 −0.238 0.028 0.023 0.025

FPR of the overall test 0.042 0.913 0.053 0.042 0.067
PS2 1-2 1 FPR 0.039 0.781 0.055 0.042 0.055

Bias 0.031 −0.415 0.004 0.006 0.021

2-1 1 FPR 0.047 0.178 0.049 0.049 0.045
Bias 0.029 0.244 0.008 0.010 0.018

2-2 1 FPR 0.040 0.192 0.050 0.046 0.052
Bias 0.063 −0.225 0.027 0.021 0.041

PS1: Population cases and controls are randomly ascertained from admixed population consisting of two strata with disease prevalence (7%, 18%) and HFs for

Haplotype 1-1, 1-2, 2-1, and 2-2 at (0.5, 0.1, 0.3, 0.1) and (0.4, 0.3, 0.15, 0.15), respectively. Trios are sampled from one ancestral population with HFs at (0.4, 0.3,

0.15, 0.15). PS2: Population cases, controls and trios are randomly ascertained from the same admixed population as PS1.

Table 6 | False positive rates of the modified HGLM (M-HGLM) with clustering methods (Kmeans and Ward) in the presence of population

stratification (n1 = 500 and n2 = n3 = 1000).

Scenarios Haplotype HOR Estimate F-HGLM C-HGLM M-HGLM M-HGLM C-Unph

(Kmeans) (Ward) (Confounder)

FPR of the overall test 0.037 0.590 0.050 0.050 0.057
PS1 1-2 1 FPR 0.054 0.390 0.048 0.037 0.056

Bias 0.009 −0.112 0.001 0.002 0.002

2-1 1 FPR 0.051 0.146 0.055 0.046 0.050
Bias 0.013 0.073 0.001 0.003 0.003

2-2 1 FPR 0.053 0.133 0.043 0.055 0.058
Bias 0.015 −0.069 0.006 0.004 0.004

FPR of the overall test 0.037 0.612 0.035 0.041 0.049
PS2 1-2 1 FPR 0.030 0.457 0.046 0.038 0.048

Bias 0.008 −0.127 0.001 0.002 0.002

2-1 1 FPR 0.044 0.105 0.038 0.048 0.043
Bias 0.006 0.057 <0.001 0.002 0.002

2-2 1 FPR 0.052 0.117 0.052 0.052 0.061
Bias 0.014 −0.067 0.006 0.003 0.004

PS1: Population cases and controls are randomly ascertained from admixed population consisting of two strata with disease prevalence (7%, 18%) and HFs for

Haplotype 1-1, 1-2, 2-1, and 2-2 at (0.5, 0.1, 0.3, 0.1) and (0.4, 0.3, 0.15, 0.15), respectively. Trios are sampled from one ancestral population with HFs at (0.4, 0.3,

0.15, 0.15). PS2: Population cases, controls and trios are randomly ascertained from the same admixed population as PS1.

different numbers of samples for population cases and con-
trols from the two populations. Table S3 displays the FPRs
of different approaches for a large sample size at n1 = 500
and n2 = n3 = 1000 (see Supplementary Material for details).

The result indicates that M-HGLM is a reliable approach in
the presence of PS even when the numbers of samples for
population cases and controls from the two populations are
different.
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DISCUSSION
Nowadays the combination of available data including both trios
and population case-control subjects is facilitated from existing
nationwide registries of families and additional validation dataset
was commonly used in a genetic association study. Most of pre-
vious methods were developed for combined test of association
based on a single marker test. However, an analysis of haplo-
types that combined information from multiple markers could
be more powerful than a single-marker test. For this reason, we
have developed the HGLM approach for combining data from
both family trios and unrelated case-controls to increase power
to detect the haplotype specific association on disease. To exam-
ine the haplotype effect, we adopt the haplotype weighted-counts
as covariates. The strength of haplotype weighted-counts is to
assess the suitability of combined family trios and population
case-control samples naturally by comparing the equality of HFs
for each data source. HGLM is a simpler model after adjust-
ing for haplotype covariates, and easier to estimate and test for
haplotype-specific effects, as well as easily done with conven-
tional software once haplotype weighted-count data are obtained.
Particularly, the modified HGLM by clustering methods on mixed
case-control samples could further take into account of the
bias of PS.

Our simulation results show that HGLM performs nearly as
efficient as the Unphased implementation in estimation and test
of the disease risk from combined data under the null model.
Furthermore, the bias, coverage rate and power of HGLM are
the same as or slightly better than those of the Unph imple-
mentation keeping the sample size fixed, particularly when the
disease risk exists. Unlike previous likelihood-approaches based
on the rare disease assumption, our proposed approach requires
few assumptions. In simulations, we found that HGLM would
be more appropriate than SCOUT to detect association with the
joint-marker effect for a rare disease in a homogeneous pop-
ulation. The proposed HGLM approach would be a suitable
strategy under conditions that most risk loci for complex traits
appear to have small to very small effects or rare genetic effects
that are grouped together on haplotypes. It is worth noting that
the proposed approach is comparable to CLG when using only
family data.

When there is PS in the data, formally examination of PS
may be done through an analysis of variance framework based
on haplotype weighted-counts. This is equivalent to check the
equality of the HFs estimated from population case-control data
and family trios separately; thus, it might serve as an alternative
approach for testing whether samples can be combined safely.
The simulation results imply that the proposed test performs
better than Unphased in the presence of PS. Utilizing continu-
ity of haplotype weighted-counts, the power gain on the basis
of ANOVA testing is substantial. To account for PS, we further
recommend clustering mixed case-control samples in advance,
and to estimate haplotype weighted-count data from homoge-
neous subgroups. Strength of clustering methods is that it makes
use of existing markers that are known to differ in frequencies
between mixed case-control samples, and thereby the modified
HGLM could be robust against PS. As observed in the previ-
ous study (Chung et al., 2010), the performance of clustering

techniques remains robust even when the number of clusters
is specified as more than the true number of subpopulations.
Generally, however, the number of subpopulations is unknown.
For hierarchical clustering methods (e.g., Ward’s method), one
can determine the number of clusters based on a number of
statistics such as R-square, semipartial R-square, and distance
between two clusters. For non-hierarchical clustering methods
(e.g., K-mean algorithm), it is recommended that one can use an
a priori knowledge of the number of clusters from the results of
hierarchical methods or of pervious researches to further refine
the cluster solution. Another consideration is the accuracy of
clustering of subpopulations. In our simulation studies, the cor-
rect clustering rates for Ward clustering and K-mean algorithm
are not high (the clustering error rates of Ward clustering and
K-mean algorithm are nearly 40 and 47%, respectively). Not
surprisingly, it results from that we only used 2 SNPs to infer
population structure. However, the clustering technique does
substantially eliminate the bias arising from PS. As the number
of markers increases, the accuracy of clustering is expected to be
improved.

With current technology it is difficult to determine the phase
of genotype data, this has led to a variety of statistical approaches
inferring the probabilities of the possible haplotypes. One issue
would be the accuracy of the estimation of haplotypes from the
genotype data, especially for the population case-control data.
Although the efficiency of HGLM will depend on which meth-
ods for inferring the haplotype weight, the proposed method has
negligible loss of power compared with that based on known
haplotype (data not shown). Another issue is related to rare hap-
lotypes for haplotype-based association studies. As for extending
to more loci in recent studies, lengthy haplotypes may lead to
rare haplotypes. We suggest either to discard the rare haplo-
types or to combine all rare ones for a further analysis. However,
the interpretation of the regression coefficients might be dif-
ferent according to the elements of a specific reference hap-
lotype. Our methods are developed and evaluated for binary
traits, but they can be easily extended to quantitative traits in
the framework of generalized linear models. Besides, the pro-
posed HGLM method may be extended further for addressing
realistic scenarios such as including genetic-environment inter-
actions and complex pedigrees. For the purpose of involving
genetic-environment interactions in HGLM, great care must be
taken to define the environmental effects for family trios and
to consider the mode of inheritance of haplotype effects. As an
extension to handle complex pedigrees, HGLM can be modified
as a generalized linear mixed model by specifying the covari-
ance structure among the members of a pedigree. Another con-
sideration is to deal with incomplete genotype data, such as
incomplete trios which parental data are usually not available for
late-onset diseases. Currently, strategies for imputing genotype
data are proposed such as a unified framework that enables the
simultaneous use of data from trios and unrelated individuals
(Browning and Browning, 2009). Thus, HGLM can be imple-
mented on the basis of genotype imputation. Additional research
focusing on these aspects would be needed and there remains
much work to be done to meet these complicating issues and
challenges.
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