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The random mutation and natural selection phenomenon act in a mathematically predictable behavior, which
when understood leads to approaches to reduce and prevent the failure of the use of these selection pressures
when treating infections and cancers. The underlying principle to impair the random mutation and natural
selection phenomenon is to use combination therapy, which forces the population to evolve to multiple selection
pressures simultaneously that invoke the multiplication rule of probabilities simultaneously as well. Recently, it
has been seen that combination therapy for the treatment of malaria has failed to prevent the emergence of
drug-resistant variants. Using this empirical example and the principles of probability theory, the derivation
of the equations describing this treatment failure is carried out. These equations give guidance as to how to
use combination therapy for the treatment of cancers and infectious diseases and prevent the emergence of drug
resistance. Copyright © 2016 John Wiley & Sons, Ltd.
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1. The mathematics of drug treatment failure

In reference [1], ‘The Basic Science and Mathematics of Random Mutation and Natural Selection’,
the governing equation describing the evolution of drug resistance to a single targeted selection
pressure is derived. This equation shows that in order for a lineage in a population to evolve resis-
tance to that targeted selection pressure, it must do so by a cycle of beneficial mutation followed by
amplification of that mutation by repeated replications over generations in order for the probability to
improve that another beneficial mutation will occur on some member of that lineage to improve
fitness. This model of evolution differs from other models from evolutionary biology. This cyclical
process of beneficial mutation and then amplification of beneficial mutation in order to improve
the probability of the next beneficial mutation occurring on one of the variants is different than
the evolutionary process discussed by Haldane in his classic paper The Cost of Natural Selection
[2]. In this paper, Haldane proposes ‘The principle unit process in evolution is the substitution of
one gene for another at the same locus’. Kimura in his paper On The Probability Of Fixation Of
Mutant Genes In A Population [3] uses a different mathematical approach but is conceptually using
the same principle, which Haldane uses. Kimura models the fixation of a gene using a diffusion
equation. This diffusion equation is very familiar to any student of conduction and convection heat
transfer. Like Haldane’s model, Kimura’s model starts with a relative frequency for the gene to be
fixed as 0, and that gene replaces other variants in the population until the relative frequency of that
gene becomes 1.

There are two fundamental differences in Haldane’s and Kimura’s models used to model the
mathematics of the evolutionary process when compared with reference [1]. The first difference is a
physical difference. Natural selection is being modeled by Haldane and Kimura using a conservation
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principle. The increase of one variant in a population comes at the expense of the decrease of another
variant in the population. Flake [4] showed in his analysis of Haldane’s cost-of-selection model wrote
the following.

A quantity that is only dependent on the initial and final state of a system and is invariant to
variations in the detailed motion between states is often associated in the physical sciences with
a potential energy function.

Kimura introduces the same concept when he models fixation of a gene by selection using a diffusion
rate equation. Natural selection does not operate as a conservation phenomenon. The increase in variants
(amplification) in a given lineage does not have to be accompanied by a decrease in the other variants in
a population. However, as Kimura does by dropping the transient term in his diffusion equation, he then
can approximate the steady-state fixation of a gene in a population as a conservation phenomenon.

Weinreich in his publication Darwinian Evolution Can Follow Only Very Few Mutational Paths to
Fitter Proteins [5] demonstrates empirically that natural selection does not operate as a conservation
phenomenon when his lab subjected Escherichia coli to antibiotic selection pressure, which gave rise
to multiple different lineages each following their own evolutionary trajectories in order to adapt to
the antibiotic selection pressure. It is not substitution or fixation that determines the probability of the
next beneficial mutation occurring on a lineage. Natural selection works by increasing the number of
members in a lineage to improve the probability of the next beneficial mutation occurring on one of
its members, but it does not have to occur at the expense of other variants disappearing.

A simple analogy can be used to compare Haldane’s and Kimura’s approach with the model presented
in reference [1]. The analogy for Haldane’s and Kimura’s model consists of taking a deck of cards.
Shuffle the deck and then randomly take 26 cards out of the deck. Those 26 cards are now out of the
population. In the remaining 26 cards, double each of them and return the copies back to the deck. So
if the Ace of Hearts was still in the deck, you now have two Aces of Hearts. If the Ace of Spades
was selected out, you have no Ace of Spades in the population. Shuffle the deck and then again
randomly remove 26 cards. Then duplicate the remaining 26 cards in the deck and return the doubled
cards to the deck. If no Aces of Hearts were selected out, you would now have four Aces of Hearts in
the deck. If there were two Kings of Clubs but one was selected out, you would still have two Kings
of Clubs in the deck and so on. Repeating this process over and over of shuffling the deck and then
removing half the deck would leave you with 52 copies of just a single card repeated. The process started
with the relative frequency of each card was 1/52, and at the end of the process, the relative frequency of
the remaining card value is 52/52=1 (that is, the remaining card value has been ‘fixed’ or ‘substituted’ in
the deck). This approach to the mathematics does yield a conservation model where the conserved value
is the total population size; however, to correctly describe the random mutation and natural selection
phenomenon requires a non-conservative model.

The non-conservative analogous card deck model consists of a standard 52-card deck. Selection is
applied, and any of the variants killed or impaired from reproducing are removed from the deck. The
remaining cards in the deck need to double over and over for many generations in order for there to
be sufficient numbers and for there to be a reasonable probability that the next beneficial mutation in
an evolutionary process occurs on one of its members. Substitution or fixation is not required for the
evolutionary process to proceed. The only requirement is that a particular variant replicates sufficiently
for the probabilities of another beneficial mutation occurring on one of its members.

The other difference in evolutionary biological mathematical models like Haldane’s cost-of-selection
and Kimura’s fixation of gene models, when compared with non-conservation models, is that they do
not take into account the multiplication rule of probabilities. Random mutation and natural selection
is a stochastic process where replication is the random experiment and there are two possible outcomes.
One possible outcome is that a mutation occurs at a particular site and the other possible outcome is the
mutation that does not occur at the particular site. As long as mutations are random independent events,
the joint probability of two or more beneficial mutations occurring in a lineage will be governed by the
multiplication rule of probabilities. Neither Haldane’s model nor Kimura’s model takes this important
mathematical fact into account in their models. It is the multiplication rule of probabilities that is the
main governing mathematical principle, which determines whether an evolutionary process has a
reasonable probability of occurring.

It is not very newsworthy these days when someone wins a lottery. Occasionally, though, one will see
a news report about someone winning two lotteries. The fact that sometimes someone wins two lotteries
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attracts attention. When treating infections and cancers, the selection pressures; that is, antibiotics,
chemotherapy used to treat these diseases, often time fails because of the random mutation and natural
selection phenomenon. Rare beneficial mutations give resistance to these selection pressures. In Ref. [1],
the mathematics was derived showing how a lineage in a population can accumulate beneficial
mutations to adapt to a single selection pressure targeting a single genetic locus. However, when the
lineage is subjected to only a single targeted selection pressure at a time, these beneficial mutations do
not have to occur simultaneously in a single replication in order to improve fitness. No member of the
population must ‘win’ two lotteries simultaneously. These beneficial mutations accumulate in a cycle of
beneficial mutation followed by amplification (increase in the number of members) of the beneficial
mutation before the probabilities of the next beneficial mutation in the evolutionary sequence have a
reasonable probability of occurring on one of those members. In other words, the multiplication rule of
probabilities imposed by a sequence of binomial probability conditions is improved by natural selection
by increasing the number of members who would benefit from a particular mutation in a cycle of beneficial
mutation followed by amplification of that member who obtains the next beneficial mutation.

In the case where selection conditions target more than a single genetic locus simultaneously, this
cycle of beneficial mutation followed by amplification of the beneficial mutation is disrupted. Even if
some member of the population obtains a beneficial mutation for one drug, the other drug(s) impairs
its ability to amplify and improve its probability to obtain the next beneficial mutation in an evolutionary
sequence. However, under specific circumstances, populations can evolve to selection conditions
targeting multiple genetic loci simultaneously. The mathematics, which governs these conditions, is
derived here.

The derivation of the equations, which describe the evolution of drug resistance in the context of
combination therapy, will be carried out using an empirical example. This example describes the
emergence of drug-resistant malaria in the context of two-drug therapy. While this example is of partic-
ular importance to the use of selection pressures in the practice of treatment of malaria, the principle is
more general and can be applied to the evolution of drug-resistant variants in the treatment of infectious
diseases, herbicide resistant weeds, pesticide resistant insects, and failure of cancer treatments in the
context of multiple simultaneous selection pressures.

The mathematical principles used to derive the equations of random mutation and natural selection are
obtained from the text, Advanced Engineering Mathematics [6] by Erwin Kreyszig.

We start the derivation of the equations in the next section with the empirical example Ref. [7] of
failure of the use of combination therapy to prevent the emergence of drug-resistant variants in the
treatment of malaria.

1.1. An empirical example of drug treatment failure when using combination selection pressures

The empirical example that we will use to frame the derivation of the equations, which describe treat-
ment failure when using combination therapy, was published in Malaria Journal and is titled Failure
of artesunate–mefloquine combination therapy for uncomplicated Plasmodium falciparum malaria in
southern Cambodia [7] and was written by William O Rogers, Rithy Sem, Thong Tero, Pheaktra Chim,
Pharath Lim, Sinuon Muth, Duong Socheat, Frédéric Ariey, and Chansuda Wongsrichanalai. Included
here is the abstract:

1.2. Abstract (background and conclusion) failure of artesunate–mefloquine combination therapy for
uncomplicated Plasmodium falciparum malaria in southern Cambodia

1.2.1. Background. Resistance to anti-malarial drugs hampers control efforts and increases the risk of
morbidity and mortality from malaria. The efficacy of standard therapies for uncomplicated
P. falciparum and Plasmodium vivax malaria was assessed in Chumkiri, Kampot Province, Cambodia.

1.2.2. Conclusion. The results suggest that artesunate–mefloquine combination therapy is beginning to
fail in southern Cambodia and that resistance is not confined to the provinces at the Thai-Cambodian
border. It is unclear whether the treatment failures are due solely to mefloquine resistance or to
artesunate resistance as well. The findings of delayed clearance times and elevated artesunate IC50
suggest that artesunate resistance may be emerging on a background of mefloquine resistance.

What this empirical example demonstrates is that despite the use of combination therapy, drug-
resistant variants are emerging. The use of two drug simultaneous combination therapy is forcing the
population of malaria parasites to take a more complex evolutionary trajectory than the simpler
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evolutionary trajectories when the drugs are used sequentially. It is possible that variants already exist in
some of these populations that are already resistant to one drug or another. After all, for example,
mefloquine has been available since the 1970s, and resistance of malaria to this drug was already
appearing in the 1980s [8] and not only has this drug been used for single drug therapy for the treatment
of malaria but also has been used for many years as prophylaxis for malaria. This effectively would
convert the combination therapy into sequential therapy where the remaining effective drug would only
require the population to evolve to that single drug (a process describe in Ref. [1]). Then the process of
beneficial mutation followed by amplification of the beneficial mutation cycle evolution of drug
resistance could be followed by the population without the second drug disrupting the amplification
process. For the sake of this discussion, we will assume that no drug-resistant variants exist in any of
the subjects and explain mathematically how drug resistance can evolve de novo to two drugs
simultaneously in a population.

Let us assume that drug resistance for the mefloquine requires mutations A1, B1, and C1 while drug
resistance for the artesunate requires mutations A2, B2, and C2. The numerical modifiers indicate the
particular drug, and the letters A, B, and C indicate the sequence in which the mutations must occur
in order to have improved fitness for that particular drug. Then, any population of malaria, which has
no resistance to either drug, must take a more complex evolutionary trajectory when the drugs are used
simultaneously and then if the drugs were used singly and in sequence. The evolutionary trajectory for
mefloquine would require a lineage to satisfy the joint probability condition P(A1)P(B1)P(C1) in order
to adapt to this particular drug. The evolutionary trajectory for a lineage to adapt to the artesunate would
require that lineage satisfies the probability condition P(A2)P(B2)P(C2) in order for that lineage to adapt
to the other particular drug.

In order to evolve resistance to both drugs simultaneously, a lineage must satisfy the following
probability condition, P(A1)P(A2)P(B1)P(B2)P(C1)P(C2). Consider how the population may obtain
a member with both the ‘A1’ mutation and ‘A2’ mutation simultaneously in order to produce a more
fit member in the population. There are two random trials in this stochastic process as described in
reference [1]. Those trials are the replication where a mutation occurs at a particular site or not, and
the mutation itself is a random trial where of all the multiple possible mutations for this trial, only certain
outcomes, are beneficial mutations. We describe the mathematics in the following section.

1.3. The mathematics of the empirical example of evolution of drug resistance with two targeted
selection pressures

To obtain a better sense of the probability problem that we are addressing here, we can illustrate this with
a Venn diagram (Figure 1). Subset A1 represents the members that obtained the A1 mutation in the
single generation replication of the population. Subset A2 represents the members that obtained the
A2 mutation in the same single generation of replication of the population. A1∩A2 is the set of members
that obtained both the A1 and the A2 mutations in that generation.

To derive the mathematical behavior of the empirical example of the mutation and selection
phenomenon, we first define some terms.

n – is the total population size

nA1 – is the sub-population size with mutation A1

Figure 1. Sample space for the replication of the population size ‘n’ in a single generation with subset A1 (those
members who obtain mutation A1), subset A2 (those members who obtain mutation A2), and the intersection of

the two subsets A1∩A2 (those members who obtain both mutations A1 and A2).
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nA2 – is the sub-population size with mutation A2

nA12 – is the sub-population size with both mutation A1 and A2

μ – the probability (frequency) that an error in replication will occur at a particular site in a single
member in one replication

P(BeneficialA1) – the probability that of all the possible mutations that can occur at the particular site that
it will be the beneficial mutation A1

P(BeneficialA2) – the probability that of all the possible mutations that can occur at the particular site that
it will be the beneficial mutation A2

P(BeneficialA3) – the probability that of all the possible mutations that can occur at the particular site that
it will be the beneficial mutation A3

P(A1) is the probability that beneficial mutation A1 will occur at a particular site, subscript ‘s’ denotes in
a single trial, subscript ‘v’ denotes a variable number of trials and subscript ‘c’ denotes the complement
of P(A1).

P(A2) is the probability that beneficial mutation A2 will occur at a particular site, subscript ‘s’ denotes in
a single trial, subscript ‘v’ denotes a variable number of trials and subscript ‘c’ denotes the complement
of P(A2).

P(A3) is the probability that beneficial mutation A3 will occur at a particular site, subscript ‘s’ denotes in
a single trial, subscript ‘v’ denotes a variable number of trials and subscript ‘c’ denotes the complement
of P(A3).

With these terms defined, we can determine the probability that mutation A2 will occur on some
member of the population that already has mutation A1 in a single replication.

We start the computation with a population size ‘n’ of malaria parasites that replicates. Some of those
members on replication will obtain mutation A1. Recognizing that the replication trial obeys the
mathematics of the binomial probability distribution, using from reference [6], the definition of the mean
for the binomial distribution is as follows:

nA1 ¼ n*P BeneficialA1ð Þμ (1)

where P(BeneficialA1) has a value between 0 and 1 and represents of all the mutations that could occur at
a particular site that it is the beneficial mutation. The value nA1 gives an estimate of the number of
members in the population n will get mutation A1. We could easily compute the variance (and standard
deviation) for this distribution and adjust the value of nA1 up or down to see how it affects the probabil-
ities, but for this study, we will use the mean value. We know that from probability theory, the variance
of a binomial distribution is as follows: σ2 =npq ref. [6], where n is the number of trials (replications for
our case), p=P(A1)s, q=P(A1)c,s. Then the variance becomes σ2 =n*P(A1)s *P(A1)c,s. But P(A1)c,s is
very close to 1 for our example, and therefore, σ2 =n*P(A1)s =n*P(BeneficialA1)μ, the mean value for
our example. Even if we chose a population size that deviated from the mean value of the distribution by
three standard deviations, our value for nA1 would only vary by±3(n*P(BeneficialA1)μ)½. For a
population size of n=e12 and P(BeneficialA1) μ=e�6, the standard deviation would be proportional
to e3, less than a 1% error in our estimated sub-population size.

Then with this population n, the probability that at least one of those members who obtained mutation
A1 is given in reference [1] Equation (14) and for this case appears as follows:

P Xð Þ ¼ 1 – 1 – P Beneficialð Þμð Þn*nG
� �

¼ P A1ð Þv ¼ 1 – 1 – P BeneficialA1ð Þμð Þnð Þ; where
X ¼> A1; P Beneficialð Þ ¼> P BeneficialA1ð Þ; n ¼ n; nG ¼> 1 generation

(2)

Equation (2) is the probability that at least one member in the population obtained mutation A1 in the
entire population in a single generation.

A plot of the values for Equation (2) that follows for various values of P(BeneficialA1)μ as a function of
P(A1)v and n is shown in Figure 2.
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Now, we need to compute the probability that at least a single member of that sub-population nA1 will
also have mutation A2. We can again apply Equation (2) using Equation (1) to give us the size of the
sub-population, which would benefit from mutation A2, and we obtain

P Xð Þ ¼ 1 – 1 – P Beneficialð Þμð Þn*nG
� �

¼ P A2ð Þv ¼ 1 – 1 – P BeneficialA2ð Þμð ÞnA1ð Þ; where
X ¼> A2; P Beneficialð Þ ¼> P BeneficialA2ð Þ; n ¼> nA1; nG ¼> 1 generation

(3)

Then the joint probability that an A2 mutation will also occur on some member that had an A1 mutation
is given by the multiplication rule and yields:

P A1ð ÞvP A2ð Þv ¼ 1 – 1 – P BeneficialA1ð Þμð Þnð Þ 1 – 1 – P BeneficialA2ð Þμð ÞnA1ð Þ (4)

The value for nA1 is given by Equation (1). If we let P(BeneficialA2)μ=P(BeneficialA1)μ=P
(Beneficial)μ, Equation (4) becomes:

P A1ð ÞvP A2ð Þv ¼ 1 – 1 – P Beneficialð Þμð Þnð Þ 1 – 1 – P Beneficialð Þμð ÞnA1ð Þ (5)

A graph of Equation (5) for various values of P(Beneficial)μ is shown in Figure 3.

1.4. The mathematics of the empirical example of evolution of drug resistance with three targeted
selection pressures

Consider the condition where three targeted selection pressures are used where selection pressure ‘1’
requires mutations A1, B1, and C1, selection pressure ‘2’ requires mutations A2, B2, and C2, and
selection pressure ‘3’ requires mutations A3, B3, and C3 in order to adapt to these conditions and
mutations A1, A2 and A3 must occur simultaneously in order to improve fitness to replicate.

Figure 2. P(A1) for various values of P(BeneficialA1)μ as a function of n. The color of the lines gives the value
of P(BeneficialA1) *μ.

Figure 3. P(A1)P(A2) for various values of P(Beneficial)μ as a function of n. The color of the lines gives the
value of P(Beneficial) *μ.
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The Venn diagram for this problem appears as shown in Figure 4:

Assume that the first selection pressure requires mutations A1, B1, and C1, the second selection
pressure requires mutations A2, B2, and C2, and the third selection pressure requires mutations A3,
B3, and C3 in order for a member to adapt to these selection conditions, and it requires that mutations
A1, A2, and A3 occur simultaneously in order to improve fitness to replicate. That condition
corresponds to (A1∩A2)∩A3. The probability in the region given by (A1∩A2) has already been
computed and given by Equation (5). In order to compute the joint probability (intersection) of the
(A1∩A2) region, we need to know the number of trials (replications) occurring on members with both
the A1 and A2 mutations.

In order to compute the probability that at least a single mutation A3 will occur on some member of
the sub-population with both mutations A1 and A2, we need to estimate the size of that sub-population.
We can again use Equation (1), the mean value of the binomial distribution to estimate the size of the
sub-population with both mutations A1 and A2.

nA12 ¼ n*P beneficialA1ð Þμ*P beneficialA2ð Þμ ¼ nA1*P beneficialA2ð Þμ (6)

With the value of nA12, we can compute the probability that at least a single A3 mutation will
occur on a member of that sub-population, which has both mutations A1 and A2. Using Equation (3),
we obtain

P Xð Þ ¼ 1 – 1 – P beneficialð Þμð Þn*nG
� �

¼ P A3ð Þv ¼ 1 – 1 – P BeneficialA3ð Þμð ÞnA12ð Þ; where
X ¼> A3; P beneficialð Þ ¼> P BeneficialA3ð Þ; n ¼> nA12; nG ¼> 1 generation

(7)

Then the joint probability that an A3 mutation will also occur on some member that had an A1 and A2
mutations is given by the multiplication rule and yields

P A1ð ÞvP A2ð ÞvP A3ð Þv ¼ 1 – 1 – P BeneficialA1ð Þμð Þnð Þ 1 – 1 – P BeneficialA2ð Þμð ÞnA1ð Þ 1 – 1 – P BeneficialA3ð Þμð ÞnA12ð Þ
(8)

The value for nA12 is given by Equation (6).
If we let P(BeneficialA1)μ=P(BeneficialA2)μ=P(BeneficialA3)μ=P(Beneficial)μ, Equation (8)

becomes

P A1ð ÞvP A2ð ÞvP A3ð Þv ¼ 1 – 1 – P Beneficialð Þμð Þnð Þ 1 – 1 – P Beneficialð Þμð ÞnA1ð Þ 1 – 1 – P Beneficialð Þμð ÞnA12ð Þ
(9)

Figure 4. Sample space for the three selection pressures subset A1, subset A2, subset A3, and the intersection of
the three subsets A1∩A2∩A3 shaded.
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A graph of Equation (9) for various values of P(Beneficial)μ is shown in Figure 5.

1.5. Discussion of the mathematics of mutation and selection for multiple simultaneous selection pressures

A pattern emerges when doing the mathematics of random mutation and natural selection for multiple
selection conditions. The first selection condition imposes a mean value for the number of beneficial
mutations given by the mean value for a binomial distribution for the entire population. The second
selection pressure, however, must have its beneficial mutation occur on a member with the first
beneficial mutation. This subset of the population is much smaller than the entire population and is
the mean value of the binomial distribution of that subset. When a third selection pressure is imposed
simultaneously on the population, this beneficial mutation must occur on a sub-population, which
already has mutations for the first two selection conditions, which is the mean value of the binomial
distribution of that even smaller subset. The sub-population size for multiple beneficial mutations is
the mean value of the binomial distribution for the subset of the population with the other beneficial
mutations. This mathematical relationship is expressed as follows:

ns ¼ n�∏
s

i�1
P BeneficialAið Þμ (10)

Where ns is the sub-population size for the sth selection pressure. The probabilities for these subsets of
the population also show a pattern and are given by the following:

∏
s

i�1
P Aið Þ ¼ 1� 1� P BeneficialAlð Þμð Þnð Þ∏

s

i�2
1� 1� P BeneficialAið Þμð ÞnAið Þ (11)

Equations (10) and (11) give the sub-population sizes and probabilities for the first set of mutations
(Ai) required to improve fitness for a set of simultaneous selection pressures. The equation for the second
set of mutations (the Bi mutations) is analogous to Equations (10) and (11) except Bi would substitute for
Ai. In addition, the initial population ‘n’ is determined by the amount the lineage with the Ai mutations
can amplify. The progenitor for the population with the Ai mutations that would benefit from the Bi

mutations must first amplify sufficiently so that there are a huge number of members that the nested
binary probability process could occur again. A cycle of beneficial mutations followed by amplification
of the beneficial mutations must occur by natural selection for there to be a reasonable probability that
the next set of beneficial mutations occurs at the correct sites in the genome.

Equations (10) and (11) give rise to specific requirements for an evolutionary process by random
mutation and natural selection where multiple simultaneous beneficial mutations are needed to im-
prove fitness to have a reasonable probability of occurring. nA1 must be a very large number. This,
in turn, requires that the population size n must be a huge number. Equation (1) gives that
nA1=n*P(BeneficialA1)μ or n=nA1/P(BeneficialA1)μ. We can apply Equation (5) and the graph of Equa-
tion (5) in order to estimate the probability that a double beneficial mutation will occur in our empirical
example, Ref. [7]. In Ref. [7], the authors studied subjects with parasitaemia between 1000 and

Figure 5. P(A1)P(A2)P(A3) for various values of P(Beneficial)μ as a function of n. The color of the lines gives
the value of P(Beneficial) *μ.
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100,000 parasites/mm3. In Ref. [8], we can obtain an estimate of the total parasite load based on the level
of parasitaemia. In areas of endemicity, it is not uncommon for an infected person to be carrying more
than 1×109 parasites (a child with an unremarkable parasite density of 1000μL�1 in the blood would
have approximately this number), and such infections would be likely to contain at least one parasite with
a point mutation at almost any nucleotide position (ignoring strongly deleterious mutations that might
prevent development or replication). In Ref. [8], we also obtain a value for the mutation rate:

Mutation in malaria parasites occurs at a fairly typical rate for a eukaryote (a point mutation rate of
approximately 1×10�9 per nucleotide site per mitotic division), so new mutants are produced all
the time in natural populations.

One study even provides evidence suggesting that some P. falciparum clones could have a higher muta-
tion rate (potentially an adaptive ‘mutator’ phenotype). Thus, the total parasite load ‘n’ for the subjects
from [7] could range between e10 to e12. Multiplying these values by e�9, the mutation rate, we obtain
a value for nA1 between e1 and e3. If we use these values to estimate the probability that a double ben-
eficial mutation will occur on at least one member of the sub-population is clearly very low for the lower
estimate but for the higher estimate, the probability is greater than 0.5. In addition, this shows that the
probability of a double beneficial mutation occurring is very sensitive to the value of the mutation rate
used. The mutation rate affects the sub-population size on which the double beneficial mutation would
occur as well as the particular probability curve used to estimate the probability. References [9], [10],
and [11] suggest that the mutation rates increase for the malaria parasite when under selection pressure.
If the mutation rate of e�8 is used instead of e�9, the value for nA1 is then between e2 and e5. Using
the lower estimate of the e–8 curve, the probability of a double beneficial mutation occurring is about
0.1. Using the upper estimate for the sub-population size shows that the probability is essentially 1 that a
double beneficial mutation will occur. And if you have millions of people suffering from malaria, even a
low frequency (probability) that a double beneficial mutation occurring becomes a real possibility of
occurring in one or more of the people suffering from malaria. Once that double beneficial mutation
A1 and A2 occurs, if that variant can amplify, then the process can repeat itself for the B1 and B2
mutations, which when these mutations occur and can, in turn, amplify leading to the C1 and C2
mutations occurring. Again, we see a cycle of multiple beneficial mutations occurring simultaneously
followed by an amplification phase in order to improve the probability of more multiple simultaneous
beneficial mutations occurring. Another consideration is the total population size used in the calculation.
From [7], we obtained a total parasite load, ‘n’, of e10 to e12. However, in [12], these researchers report
parasitaemia at much higher rates. In this study, they consider cases of hyperparasitaemia between 4–75%
of red blood cells infected. In a figure from this study, they show a single red blood cell from a blood
smear with as many as 10 parasites in a single cell. In this case, the total population of parasites will be
at least one to two orders of magnitude higher than those in [7]. Under these circumstances, it is very
likely that double beneficial mutations will occur and if these variants with double beneficial mutations
can amplify, then drug resistance to two drugs will occur by an accumulation of double beneficial muta-
tions by a cycle of double beneficial mutations and amplification of the double beneficial mutations.

What the previous calculation shows is that durable treatment for malaria will most likely require
three-drug therapy because of the huge populations of parasites and the large number of people subject
to malaria infections. The same concept can be applied to the treatment of any replicator causing disease.
The clinical physician can estimate the size of the population of replicators (bacteria, virus, parasite, and
cancer cell). Then the clinician can examine Figures 2, 3, or 5 and determine the probability that resistant
variants exist in the population for 1, 2, or 3 selection pressures.

As a specific example of how to use the previous calculation for the field of oncology, radiological
studies can be carried out to estimate the size of a tumor. A pathologist can do histological studies of
the tumor and determine the number of cancer cells per volume and from the total size of the tumor
and the number of cancer cells per volume, the total number of cells can be computed. This total number
of cells would give guidance in the number of targeted selection pressures necessary in order to have a
reasonable probability of driving the cancer to extinction.

2. Conclusions

In Ref. [1], it was shown that the random mutation and natural selection phenomenon when acting with a
single selection pressure operating on a single genetic locus work by a sequential cycle of beneficial
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mutation and amplification of that beneficial mutation in order to overcome the multiplication rule of
probabilities for joint beneficial mutations to occur on a lineage. The evolutionary trajectory for this case
consists of a sequence of single binomial probability problems. When multiple selection pressures are
applied to a population simultaneously, the beneficial mutation and amplification of that beneficial
mutation cycle are disrupted. However, under specific mathematical conditions, very large populations
can still evolve to multiple selection conditions simultaneously. These populations evolve to these
selection pressures by getting multiple beneficial mutations simultaneously. In the case of multiple
simultaneous selection pressures, the mathematics consists of nested binomial probability problems
where each set of nested binomial problems is separated by an amplification step.

The emergence of drug-resistant malaria has many potential causative factors. Some of these factors
include patient compliance, patient immune status, and a variety of other factors. But if we ignore these
factors and consider how large of an infecting population is required to give a reasonable probability of a
double beneficial mutation occurring on a single replication, existing data already reveal that the
probability of a double beneficial mutation to two simultaneous selection pressures is in the realistic
range. For long-term suppression of emergence of drug-resistant variants in the treatment of malaria,
it is most likely going to require three-drug therapy. The probability calculation for the three-drug
‘cocktail’ is carried out in the same manner as the two drug therapy. One would have three selection
conditions imposing a much more complex evolutionary pathway when used simultaneously rather than
three simpler evolutionary pathways if the drugs were used sequentially. The multiplication rule of
probabilities would require the satisfaction of the probability P(A1)P(A2)P(A3) in order to improve fit-
ness for that variant. This also is the mathematics that governs the success of HIV treatment.

It is quite likely that any epidemic caused by replicators that can achieve huge populations in every
infected individual will likely require three-drug combination therapy to control the epidemic and impair
emergence of resistance. Resistance is already appearing to anti-influenza medications [13], and if a
worldwide epidemic of influenza occurs similar to the episode of the early 1920s, which is resistant to
existing drugs and effective immunization is not available, the medical system will not be prepared to
deal with such an occurrence.
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