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Abstract
Kidneys are central in the regulation of multiple physiological functions, such as removal of metabolic wastes and toxins, 
maintenance of electrolyte and fluid balance, and control of pH homeostasis. In addition, kidneys participate in systemic 
gluconeogenesis and in the production or activation of hormones. Acid–base conditions influence all these functions con‑
comitantly. Healthy kidneys properly coordinate a series of physiological responses in the face of acute and chronic acid–base 
disorders. However, injured kidneys have a reduced capacity to adapt to such challenges. Chronic kidney disease patients 
are an example of individuals typically exposed to chronic and progressive metabolic acidosis. Their organisms undergo a 
series of alterations that brake large detrimental changes in the homeostasis of several parameters, but these alterations may 
also operate as further drivers of kidney damage. Acid–base disorders lead not only to changes in mechanisms involved in 
acid–base balance maintenance, but they also affect multiple other mechanisms tightly wired to it. In this review article, we 
explore the basic renal activities involved in the maintenance of acid–base balance and show how they are interconnected to 
cell energy metabolism and other important intracellular activities. These intertwined relationships have been investigated 
for more than a century, but a modern conceptual organization of these events is lacking. We propose that pH homeostasis 
indissociably interacts with central pathways that drive progression of chronic kidney disease, such as inflammation and 
metabolism, independent of etiology.

Introduction

The concentration of  H+ in biological fluids influences a mul‑
titude of biological activities in living beings belonging to 
all life domains. Protons are central to the understanding of 
life because they interact with multiple biological functions 
and structures.  H+ is here a simplified notation of the actual 
chemical structure of the aqueous proton (whether  H13O6

+, 
 H5O2

+, or  H9O4
+, this is a debate beyond the topic of this 

article and covered by others [78, 103]). Proton concentra‑
tion, most often represented in its logarithmic form, pH, deter‑
mines the activity of enzymes, bioavailability of substances, 

protein conformation, electrostatic surface of proteins, and 
their capacity to interact with other proteins. Protons are so 
central to life that we “breathe” through them; the movement 
of protons through the mitochondrial or cell membrane is the 
mechanism by which multiple forms of life produce ATP. 
Regulation of pH is therefore essential for normal human 
physiology and is involved in pathophysiological processes. 
In humans, pH values can be lower than 1 in the gastric acid 
or above 8 in the pancreatic juice. However, blood pH is nor‑
mally around 7.4, which protects organs from noxious conse‑
quences of largely altered proton concentrations. Lungs and 
kidneys are the main organs involved in the maintenance of 
pH homeostasis in humans. They achieve this task by dictat‑
ing the elimination of acids and bases and together with bones 
supporting adequate levels of extracellular buffers. In other 
words, they control the balance of acids and bases. These are 
not recent notions given that the role of kidneys and lungs in 
the maintenance of acid–base balance was already recognized 
by Claude Bernard in the 1859s Leçons Sur Les Propriétés 
Physiologiques Et Les Altérations Pathologiques Des Liquides 
De L’organisme [8]. He identified that both organs transferred 
forms of carbonic acid between fluid compartments, which 
was essential to keep pH at healthy levels.

This article is part of the special issue on Kidney Control of 
Homeostasis in Pflügers Archiv—European Journal of Physiology.
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In this review, we cover in a historical perspective how 
kidneys contribute to acid–base balance and how disturbed 
acid–base conditions affect kidney health. We show that 
some of the most recent findings regarding the influence 
of pH on renal pathophysiology and metabolism relate to 
central topics of investigation from the end of the XIX cen‑
tury and most of the XX century, but with a shift in focus 
towards the pro‑inflammatory arm of the disease, they were 
somehow left in the backseat in the few past decades. It is 
time to bring them back to the center of the debate.

How kidneys support acid–base balance

Our understanding of how kidneys support pH homeostasis 
is pigeonholed through the acid–base school of thought that 
one follows. In one of the schools, bicarbonate is the central 
player in how kidneys protect the organism from acid–base 
disorders. This conceptual framework was derived from the 
Henderson‑Hasselbach equation, which in turn is a product of 
the definition of acids and bases of Brønsted and Lowry. The 
other framework understands that  [H+] is determined by the 
contribution of ions whose charge is unaltered at physiological 
pH, also known as strong ions (i.e., Stewart’s approach [114]). 
Here, we describe how kidneys perform their “acid–base roles” 
through the bicarbonate‑centered framework. While most of 
the content reviewed in this article can be explained under 
the light of the strong ion approach, several of the mecha‑
nisms described here would lack parsimony. With that said, 
kidneys fundamentally protect pH homeostasis via reabsorp‑
tion of bicarbonate and generation of new bicarbonate. These 
processes are briefly summarized in this section. Kidneys 
reabsorb almost the entire amount of filtered bicarbonate, 
with ~ 70–80% of it done in the proximal tubules, ~ 10–15% in 
the thick ascending limb of the loop of Henle, 4–6% in the dis‑
tal convoluted tubule, and the remaining in the collecting duct. 
In every segment, it uses the same mechanism: secretion of  H+.

When  H+ is moved from the intracellular space to the 
luminal space, it reacts with a  HCO3

− molecule and forms 
 H2CO3, and in a reaction catalyzed by carbonic anhydrases, 
forms  CO2 and  H2O.

CO2 enters the cell and with  H2O forms  H+ and  HCO3
−. 

Therefore, the secreted H + is also formed from the same 
reaction, the hydration of  CO2. Altogether, for every  H+ 
secreted, a  HCO3

− is formed inside the cell. This bicarbo‑
nate is reabsorbed through the basolateral membrane and 
goes back into the bloodstream. In the proximal tubules, the 
movement of  H+ is mostly achieved by the sodium hydrogen 
exchanger paralog 3 (NHE3) in the apical membrane, but 
also by  H+ ATPase. Bicarbonate is reabsorbed mostly by the 

HCO
−

3
+ H

+
⇌ H

2
CO

3
⇌ CO

2
+ H

2
O

electrogenic sodium bicarbonate cotransporter 1 (NBCe1), 
but also by the anion exchanger 2 (AE2) in the segment 3 
of the proximal tubule [19] (Fig. 1). Similar mechanisms 
are present all along the nephron, with changes in the pro‑
tein paralogs. As an additional player, proton excretion also 
occurs via  K+/H+ ATPase in type A intercalated cells.

Kidneys also display a bicarbonate‑secreting mech‑
anism in the collecting duct. Pendrin (SLC26A4), a 
 Cl−/HCO3

− exchanger functioning as a bicarbonate secret‑
ing protein, was also identified in type B and in non‑A non‑B 
intercalated cells [108]. The basic mechanism is the same 
here, a proton moves through the basolateral membrane and 
a bicarbonate is secreted to the apical lumen. It has been 
suggested that pendrin is a key factor in the renal defense 
against alkalosis given that isolated cortical collecting 
ducts from alkali‑loaded pendrin null mice cannot properly 
secrete bicarbonate [99]. In addition, these mice are prone 
to develop alkalosis under dietary sodium and potassium 
restriction [92]. The gastrointestinal hormone secretin stimu‑
lates cystic fibrosis transmembrane conductance regulator 
(CFTR) and pendrin activity. They work in concert promot‑
ing bicarbonate secretion in type B intercalated cells in the 
collecting duct [7]. Patients with cystic fibrosis carrying a 
mutation in CFTR show impaired renal excretion of bicar‑
bonate [6]. Authors suggested that secretin would be a bicar‑
bonate‑regulating hormone and would be responsible for the 
elevated bicarbonate excretion after a meal, which is known 
as alkaline tide [7]. In addition, a role for pendrin in salt 
regulation has been proposed, and acid–base changes could 
also be secondary to changes in extracellular volume [122, 
124]. Besides CFTR, pendrin may also function in concert 
with NDCBE1 (SLC4A8), a  Na+/HCO3

−/Cl− transporter. 
Pendrin and NDCBE1 would generate net reabsorption of 
NaCl while limiting bicarbonate secretion [124].

The second fundamental activity is the formation of de 
novo or new bicarbonate, which means the restoration of 
bicarbonate consumed by the addition of fixed acids to the 
organism. This new bicarbonate is formed via two main 
mechanisms, ammoniagenesis and excretion of titratable 
acids. These mechanisms were identified in the first decades 
of the XX century, when Henderson recognized that excre‑
tion of ammonium and phosphates were essential for the 
maintenance of acid–base balance [51, 52]. Other forms of 
urinary acids were already recognized at that time [40], and 
these acids were termed titratable acids (but also received 
other names, such as free acids) [105, 121].

Titratable acid excretion is a simple process which is a 
consequence of a proton secreted binding bases other than 
bicarbonate. Therefore, bicarbonate is formed inside the cell 
without consumption of bicarbonate in the lumen. On the 
other hand, bicarbonate formation through ammoniagenesis 
requires steps that span almost the whole nephron. The for‑
mation of ammonium happens in the proximal tubule via 
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biochemical reactions that start from glutamine. This amino 
acid is metabolized in the mitochondria producing alpha‑
ketoglutarate, which participates in the cytosolic gluconeo‑
genesis. Mitochondrial and cytosolic steps yield together a 
net of two molecules of bicarbonate and ammonia per glu‑
tamine. Ammonia  (NH3) is secreted to the tubular lumen and 
with  H+ forms ammonium  (NH4

+) (Fig. 1). If the nephron 
ended after the proximal tubule, this would be the end of this 
story with positive formation of bicarbonate (new bicarbo‑
nate). However, if ammonium goes back to the bloodstream, 
it will consume bicarbonate in the liver via the urea cycle, 
which will deny new bicarbonate formation. Ammonium 
excretion does not follow the path of many other ions that 
travel through the tubule lumen to the ureter, but most of it 
is reabsorbed in the thick ascending limb and secreted back 
into the thin descending limb of the loop of Henle or in the 
collecting duct, thus partly bypassing the distal convoluted 
tubule. Different hypotheses have been proposed to explain 

why ammonium would take such an unconventional path 
before reaching the urine. As mentioned previously, this 
countercurrent multiplication of ammonium could avoid its 
reabsorption in the cortex [88, 112] (i.e., distal convoluted 
tubule and cortical collecting duct), but it was also suggested 
that  NH4+ would contribute to NKCC2 activity and NaCl 
reabsorption in the thick ascending limb [128, 129]. Regard‑
less of the potential reasons why these mechanisms could 
have been fixed, ammonium crosses the apical membrane 
of the thick ascending limb via NKCC2 substituting potas‑
sium in the process. It leaves the cell through the basolat‑
eral membrane via two mechanisms, NHE4  (NH4

+ instead 
of  H+ exchanged with  Na+) or the coordinated transport of 
 NH3 to the medullary interstitium in parallel with the move‑
ment of  HCO3

− into the cell involving the electroneutral 
 Na+‑bicarbonate cotransporter NBCn1 [16, 87].

In the medullary interstitium, sulfatides facilitate the 
retention of ammonium, which passively diffuses as 

Fig. 1  Bicarbonate reabsorption and formation of new bicarbonate 
via ammoniagenesis in coordination with glutamine metabolism, 
gluconeogenesis, and activity of potassium channels in the proxi‑
mal tubule. Secretion of  H+ via NHE3 or H + ‑ATPase (not shown) 
leads to reabsorption of  HCO3

− via NBCe1 (and AE2 in the seg‑
ment 3). Ammonia and  HCO3

− are formed from the metabolization 
of glutamine in the mitochondria, which provides precursors for glu‑
coneogenesis. Glycerol and lactate are additional substrates of glu‑
coneogenesis, but they have a minor role in response to metabolic 
acidosis in healthy kidneys. The transcription factor NRF2 regulates 
the expression of the main importer of glutamine into proximal tubu‑
lar cells during acidosis, SNAT3. Potassium channels in the basolat‑
eral membrane control membrane potential impacting NBCe1 activity 

and ammoniagenesis. NHE3 (SLC9A3) sodium hydrogen exchanger 
3, NBCe1 (SLC4A4) electrogenic sodium bicarbonate cotransporter 
1, SNAT3 (Slc38a3) sodium‑coupled neutral amino acid transporter 
3, NRF2 (NFE2L2) nuclear factor‑erythroid factor 2‑related factor 
2, TASK2 (KCNK5) TWIK‑related acid‑sensitive K( +) channel 2, 
KIR4.2 (KCNJ15) inward rectifier  K+ channel KIR4.2, AQP7 aqua‑
porin 7, CAII and CAIV carbonic anhydrase 2 and 4, respectively; 
SMCTs represent sodium‑coupled monocarboxylate transporters 1 
and 2 (SLC58 and SLC5A12); MCTs represent different monocar‑
boxylate transporter members, most probably SLC16A1 and SLC16A; 
PDG (GLS) phosphate‑dependent glutaminase, GDH (GLUD1) gluta‑
mate dehydrogenase, PEPCK (PCK1) phosphoenolpyruvate carbox‑
ykinase
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ammonia into the collecting duct via the RhCG and maybe 
also as ammonia or ammonium via RhBG [12, 23, 113]. 
Proton secretion by type A intercalated cells in parallel 
with ammonia transport traps ammonium into the lumen, 
increasing the probability of its excretion in the urine. Only 
after this journey is the production of new bicarbonate con‑
solidated. Despite the observation that excretion of titratable 
acids and ammonia were essential for the maintenance of 
acid–base balance in the first years of the XX century, only 
in 1921 did Nash and Benedict demonstrate that ammonia 
was formed in the kidneys [83]. Subsequent decades saw a 
stream of studies trying to identify the metabolic origins of 
ammonium and how this mechanism was regulated in health 
and disease.

Current views on the pathophysiology 
of metabolic acidosis in kidney disease

In this section, we cover common conditions of renal origin 
that generate metabolic acidosis and its management in the 
clinical setting.

Metabolic acidosis in CKD

In CKD, metabolic acidosis occurs with declining kidney 
function and the subsequent fall of glomerular filtration 
rate (GFR) independent of the underlying kidney disease. 
The consequent loss of nephrons results in two important 
processes: globally reduced excretion of ammonia, but 
increased ammoniagenesis in the remaining nephrons. In 
addition, hemoglobin also functions as a buffer in the blood, 
and CKD is commonly accompanied by anemia, which 
might contribute to metabolic acidosis. Moreover, a series 
of phosphaturic mechanisms preserve titratable acid excre‑
tion in patients with CKD, but in end‑stage kidney disease, 
reduction in its excretion contributes to the occurrence of 
overt metabolic acidosis [81]. Clinically, metabolic acidosis 
presents not only as normal anion gap metabolic acidosis 
but, in some patients, and especially in advanced stages, also 
as anion gap metabolic acidosis. However, a more recent 
theoretical construct includes earlier CKD stages by using 
the term “eubicarbonatemic metabolic acidosis,” which is 
defined by proton accumulation preceding the fall of serum 
bicarbonate levels [44]. Noteworthy, dietary acid load has a 
key role in determining the occurrence of eubicarbonatemic 
or overt metabolic acidosis in individuals with compromised 
kidney function [131].

Kidneys respond to metabolic acidosis by stimulating 
mechanisms that form new bicarbonate. Given that pH has 
highly pleiotropic effects, it is wise to look at the adaptive 
responses to metabolic acidosis and what possible effects 
their chronic activation could cause. Along these lines, 

Nath et al. proposed that accumulation of ammonium in 
the renal interstitium would trigger inflammation via the 
alternative complement pathway [85]. They identified that 
adding  NaHCO3 to the diet reduced ammonium concen‑
tration in the renal vein and attenuated intratubular casts, 
tubular dilation, and interstitial fibrosis. One of the hall‑
marks of chronic kidney disease is the reduction in ammo‑
nium excretion. However, Simpson showed in 10 patients 
with CKD and acidosis that GFR falls proportionally more 
than ammonium excretion, which suggests that ammonium 
generation per nephron may increase in acidotic patients 
with CKD [104]. However, it has been demonstrated that 
ammonium binds sulfatides in the medullary interstitium 
[113]. Therefore, it is not clear how ammonium could trig‑
ger the activation of the complement system, unless intra‑
renal sulfatides are also reduced in CKD. Some key open 
questions need to be addressed in relation to the  NH4+/
alternative complement system hypothesis: (1) Are all 
forms of CKD marked by accumulation of  NH4+ in the 
renal tissue? (2) Is this mechanism relevant both in the 
cortex and in the medulla? (3) Is  NH4+ the actual molecule 
responsible for triggering inflammatory responses in CKD 
with acidosis? (4) What other immune responses beyond 
activation of the alternative complement pathway could 
be triggered by  NH4+?

Kidneys also increase the activity of NHE3 in the proxi‑
mal tubule in response to acidosis, which is assumed to be 
a mechanism supporting ammonium excretion via a  Na+/
NH4+ exchange [32]. At the same time, proton secretion 
in the collecting duct is increased which helps ammonia to 
be converted into ammonium and then be trapped into the 
tubular lumen. The hormones angiotensin II, aldosterone, 
and endothelin‑1 support the increase in these mechanisms 
in the proximal tubule and collecting duct [135]. However, 
their chronic activation by acidosis leads to inflammatory 
processes and fibrosis. Studies in nephrectomized rats and 
patients with CKD support this hypothesis [132–134]. How‑
ever, a recent randomized clinical trial with 45 patients with 
CKD designed to identify potential benefits of alkali therapy 
on the reduction of these hormones did not find a reduction 
in the levels of urinary renin, angiotensinogen, aldosterone, 
or endothelin‑1 [17]. While urinary levels of these hormones 
might not reflect their intrarenal levels, further studies are 
necessary to evaluate the effectiveness of alkali therapy in 
reducing these harmful factors in CKD. In summary, acti‑
vation of the alternative complement pathway by ammo‑
nium (published in 1985) and the toxic effect of hormones 
stimulated by acidosis (as shown in a long list of studies led 
by Donald Wesson and Jan Simoni and supported by many 
colleagues since the 1990s) have been established as the 
modern explanations for the deleterious effects of acidosis 
on CKD. They link the physiological responses of the kid‑
neys against metabolic acidosis to inflammatory processes.
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Renal tubular acidosis

Renal tubular acidosis (RTA) is a condition in which tubular 
secretion of  H+ and reabsorption of  HCO3

− are impaired 
despite relatively normal GFR [110]. It was first described 
in the 1930s in pediatric patients with severe renal calci‑
fication, but only in the next decade would the condition 
be explained [2, 22, 71]. It was termed “renal acidosis,” a 
condition of “tubular insufficiency without glomerular insuf‑
ficiency” [2]. Renal tubular acidosis is clinically character‑
ized by normal anion gap metabolic acidosis with an alkaline 
urinary pH. Particularly in the last decades, deeper insights 
have been gained on genes involved in inherited forms of 
renal tubular acidosis. Dependent on the gene and locali‑
zation of the defect, three different types of renal tubular 
acidosis are defined: (1) proximal RTA, (2) distal RTA, and 
(3) hyperkalemic RTA. By now, more than 25 genes have 
been identified to cause inherited RTA. Interestingly, poly‑
morphisms may also cause some diseases that do not present 
typically as inherited RTA in patients with nephrocalcinosis 
or nephrolithiasis [123]. Moreover, there are still patients 
with inherited RTA where no mutation has been found yet, 
indicating that other genes or further mutations, for example, 
in noncoding regions, may be involved.

Hyperkalemia is commonly accompanied by lower net 
acid excretion and metabolic acidosis [36]. A recent study in 
mice has added some evidence on the role of hyperkalemia 
per se in the pathogenesis of hyperkalemic RTA [48]. Hyper‑
kalemia causes metabolic acidosis by both reducing ammo‑
niagenesis in the proximal tubule and impairing ammonia 
transport in the collecting duct [48]. Interestingly, deletion 
of Kir4.2 (Kcnj15) in mice disturbs the membrane potential 
of the proximal tubule basolateral membrane, which elevates 
intracellular pH and reduces ammoniagenesis, causing prox‑
imal RTA [11]. Regarding acquired forms of RTA, few stud‑
ies have shed light on a specific autoimmune disease called 
Sjögren syndrome [30, 125]. This is a systemic disease that 
can involve the kidney by defective urinary acidification and 
subsequent distal RTA. Published data suggest that autoan‑
tibodies may be involved in the pathogenesis by potentially 
affecting acid‑secreting type A intercalated cells in the 
distal tubule [120]. However, more studies are required to 
identify the respective antigens that may be targeted by the 
autoantibodies.

Metabolic acidosis in kidney transplant recipients

Interestingly, metabolic acidosis occurs in kidney transplant 
recipients (KTRs) at higher eGFR levels when compared 
to patients with CKD [79]. This finding suggests that there 
may be transplant‑specific mechanisms involved, and it 
is further supported by the fact that metabolic acidosis in 
KTRs typically presents with the features of renal tubular 

acidosis (RTA), such as normal anion gap metabolic aci‑
dosis, compared to high anion gap acidosis in patients with 
CKD [79]. Among the transplant‑specific features, calcineu‑
rin inhibitors may be of great importance. Data from animal 
and human studies demonstrated that both cyclosporine and 
tacrolimus may affect tubular function including recent find‑
ings about the role of pendrin in the pathogenesis of distal 
RTA [4, 50, 74, 80, 127]. In addition, other elements, such 
as immunological factor associated with allograft rejection, 
donor‑associated factors (graft from a deceased donor may 
be associated with a higher rate of metabolic acidosis) [18, 
89], and dietary factors (white meat is associated with lower 
risk and dietary acid load is associated with a higher risk of 
graft failure) [100, 140], may also contribute to the develop‑
ment of metabolic acidosis in KTRs. In a recent study, we 
investigated the impact of metabolic acidosis and its therapy 
on molecular changes in renal biopsies of KTRs via RNA 
sequencing and immunofluorescence [59]. Our data demon‑
strated that metabolic acidosis in kidney transplant recipients 
is associated with changes in the renal transcriptome and 
protein expression of genes mostly involved in acid–base 
transport and cell energy metabolism (see section on “Meta‑
bolic acidosis and metabolism”). These changes were partly 
reconstituted by alkali therapy [59].

Impact of alkali therapy on kidney function

Metabolic acidosis is common in patients with CKD, with an 
increasing prevalence in advanced stages of CKD. Starting 
in 2009, with the first open‑label clinical trial, more than 
10 studies have investigated the impact of alkali therapy on 
kidney function and CKD progression as well as proteinuria 
[55]. Although when comparing alkali therapy with placebo 
or no medication, the results were favoring sodium bicar‑
bonate to slow CKD progression, the overall certainty of 
evidence is still low, and further studies are required.

Alkali therapy in transplantation

Similar to CKD, metabolic acidosis is highly prevalent after 
kidney transplantation, with a reported prevalence of 12 to 
58% [137]. Although by now many interventional trials have 
evidenced the beneficial effect of alkali therapy on preserva‑
tion of kidney function in patients with CKD, no prospective 
randomized controlled trial has been published yet on the 
potential impact of alkali supplementation on graft function 
in kidney transplant recipients. However, a few retrospective 
analyses indicate an association of metabolic acidosis and 
graft survival [18, 89]. The first study was an observational 
multicenter analysis of 2318 Korean KTRs with metabolic 
acidosis (defined as  tCO2 level < 22 mmol/l), demonstrating 
an association of metabolic acidosis with graft outcome and 
mortality [89]. A more recent study from France including 
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914 KTRs confirmed these data and reported low bicarbo‑
nate being predictive for allograft loss [18]. Furthermore, 
two observational studies from our center showed a posi‑
tive correlation of serum bicarbonate with eGFR in the first 
year after transplantation and a significant association of 
serum bicarbonate with long‑term graft and patient survival 
[136, 138]. A retrospective study from Japan with non‑KTR 
patients with CKD concluded that venous pH altered the 
association between CKD and progression to kidney replace‑
ment therapy [62]. In other words, patients with low venous 
bicarbonate and acidemia were under higher risk of under‑
going kidney replacement therapy than patients with low 
venous bicarbonate and normal blood pH. It is unknown 
whether the same modulation occurs between serum bicar‑
bonate or  tCO2 and graft failure/loss.

The Preserve Transplant Study is an investigator‑initiated 
prospective randomized placebo‑controlled single‑blinded 
interventional trial investigating the effect of alkali treat‑
ment on graft function of KTRs with metabolic acidosis 
(defined as serum bicarbonate ≤ 22 mmol/l) over 2 years. 
Kidney graft recipients, ≥ 18 years of age, at least 12 months 
after transplantation, with an eGFR between 15 and 89 ml/
min/1.73  m2 and bicarbonate of ≤ 22 mmol/l were rand‑
omized 1:1 to receive placebo or sodium hydrogen carbon‑
ate. The results of the study are expected in 2022 and will 
be essential to clarify whether alkali treatment in KTRs with 
metabolic acidosis may help to prolong long‑term graft sur‑
vival in this population.

Metabolic acidosis and metabolism

Claude Bernard observed that dietary habits from carnivores 
and herbivores would determine the acidity or alkalinity of 
the urine, therefore recognizing that what we eat imposes 
different challenges to the organism from an acid–base 
perspective [8]. The incomplete oxidation of substrates 
was already recognized as a source of acidification of the 
organism in the 1898s Der Diabetes Mellitus, by Bernhard 
Naunyn, who termed this condition as Acidose (acidosis) 
[9]. Since then and for several decades, substantial investi‑
gation on acid–base disorders focused on whole‑organism 
metabolic studies in an attempt to identify how metabolites 
in humans and animal models like rabbits and dogs would 
respond to alkaline and acid challenges. After two decades 
of debate on the source of renal ammonia, glutamine was 
identified by Donald Van Slyke et al. in 1943 as the main 
fuel of ammoniagenesis in response to metabolic acidosis, 
a process further understood in the subsequent decades [84, 
94, 106]. The close relationship between renal gluconeogen‑
esis and ammoniagenesis (and new bicarbonate formation) 
ties cell energy metabolism to acid–base balance even fur‑
ther. Glutamine, lactate, and glycerol are the main substrates 

of renal gluconeogenesis, but glycerol and lactate do not 
participate in the stimulated ammoniagenesis in response to 
low pH (although lactate oxidation also yields one  HCO3

−) 
[95, 115]. During acidosis, there is a shift from the metabo‑
lization of other substrates of gluconeogenesis (e.g., lac‑
tate) towards glutamine [93]. Moreover, substrates of the 
TCA cycle inhibit ammoniagenesis in normal acid–base 
conditions, but have a less inhibitory effect during acido‑
sis, while glycerol has almost no effects on ammoniagen‑
esis [3]. However, patients with CKD with mildly impaired 
kidney function and partially preserved ammonium excre‑
tion showed almost negligible renal extraction of glutamine 
[119]. Another study with patients with CKD receiving oral 
intake of glutamine demonstrated that ammonium excretion 
could not be increased even under abundant availability of 
glutamine [130]. Authors suggested that a reduction in the 
enzymatic activities participating in ammoniagenesis would 
explain the reduced ammonium excretion. Indeed, it was 
later demonstrated that acute injury to the kidneys reduces 
the expression of ammoniagenic enzymes [68] and that both 
in acute kidney injury and chronic kidney disease, there is a 
metabolic rewiring that redirects energy metabolism away 
from gluconeogenesis [39]. In healthy humans and animal 
models, stimulation of ammoniagenesis and gluconeogen‑
esis by acidosis increases renal glucose generation [1, 111]. 
Therefore, pH affects biochemical pathways that will lead 
to differential production and release of metabolites. The 
focus on cell metabolism as a key element to understand 
kidney disease has increased in the past recent years. Inte‑
grative approaches combining molecular and clinical data 
have found that metabolism and inflammation are central 
pathways in various forms of CKD [37, 63, 77]. Interest‑
ingly, when we subjected mice to a crystal nephropathy 
CKD model and treated them with oral bicarbonate, two 
largely restored pathways were again inflammation and 
metabolism [90]. Moreover, as mentioned earlier, we col‑
lected renal biopsies of kidney transplant recipients both 
with and without acidosis and with comparable eGFR and 
performed RNA sequencing. More than half of the altered 
genes between acidotic and non‑acidotic patients were 
enzymes, mostly involved in cell energy metabolism activi‑
ties like beta oxidation, fatty acid synthesis, interconversion 
between L‑methionine and L‑homocysteine, and others [59] 
(Fig. 2). We also obtained a few biopsies of patients with 
acidosis and treated with alkali therapy and showed resto‑
ration of genes involved in bicarbonate transport (NBCe1, 
pendrin, and Kir4.2), beta oxidation (ACADSB), and inter‑
conversion of L‑homocysteine and L‑methionine as well as 
glycine and L‑serine (SHMT1) (Fig. 2).

Metabolic acidosis alters the redox state of mitochon‑
drial nicotinamide adenine dinucleotide (NAD) and causes 
mitochondrial stress in renal proximal tubules, which affects 
lipid metabolism [21, 82]. Bugarski et al. have shown that 

Pflügers Archiv - European Journal of Physiology (2022) 474:919-934924



1 3

oxidation of NAD by acid load injures proximal tubule 
cells and that alkali treatment prevents such changes [21]. 
Low‑grade metabolic acidosis is also a necessary signal for 
mitochondrial remodeling in response to hypoxia. Cortical 
neurons exposed to pH 6.5 showed increased crista number 
and sustained functional efficiency under hypoxic conditions 
while mitochondrial fragmentation and cell death were pre‑
vented [64]. However, exposure of the same cells to more 
alkaline pH (6.8–7.2) or more acidic (pH 6.0) induced mito‑
chondrial fragmentation. Renal cells are exposed to hypoxic 
conditions in chronic kidney disease, and similar mecha‑
nisms may operate. Also in neurons, ASIC1a mediates pH‑
dependent calcium transport into the mitochondria, increas‑
ing respiration and metabolic rate [101]. Accordingly, whole 
kidney mitochondria from rats exposed to 48 h of 0.25 M 
 NH4Cl in the drinking water showed faster calcium uptake 
and higher resting respiration [5]. On the other hand, lipid 

accumulation in opossum kidney cells (OKP) cells, a model 
of renal proximal tubule cells, inhibits ammonium secre‑
tion, a process that is similarly observed in Zucker diabetic 
fatty (ZDF) rats, a model of type 2 diabetes [13, 14]. There‑
fore, acid–base status directly influences proximal tubular 
glutamine metabolism with impact on gluconeogenesis and 
lipid metabolism, while impaired lipid metabolism or gluco‑
neogenesis impacts renal capacity of excreting acids.

Two central questions derive from these observations: (1) 
Does deranged metabolism define trajectories towards faster 
or slower kidney function decline in chronic kidney disease 
(or recovery vs. declining kidney function in an AKI to CKD 
scenario) or does it simply reflect disturbance from other 
causes? Cippà et al. identified early markers associated with 
these trajectories in biopsies of patients submitted to renal 
ischemia and reperfusion because of transplantation [29]. 
They identified that genes associated with mitochondrial 

Fig. 2  Summary of main renal metabolic pathways altered between 
kidney transplant recipients (KTRs) with or without acidosis. Bulk 
RNA sequencing data using RNA from kidney biopsies of KTRs 
identified genes altered between patients with or without acidosis, but 
with comparable eGFR. These genes participate in metabolic activi‑
ties shown in this figure in black. Red lines show molecular pathways 

that had genes restored by alkali therapy. Blue arrows show direct 
biochemical reactions, and blue dashed lines show indirect biochemi‑
cal reactions. Black arrows show movement of molecules. Data origi‑
nally published in [59]. TCA cycle tricarboxylic acid cycle (also citric 
acid cycle or Krebs cycle), P5P pyridoxal‑5′‑phosphate, GSH glu‑
tathione, THF tetrahydrofolate
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function, senescence, and inflammation were among the 
most prevalent genes associated with different trajectories. 
(2) Given the roles of pH in metabolism and mitochondrial 
function described previously here, is pH a key factor influ‑
encing these trajectories, or is it only a sensitive biomarker 
of kidney damage?

Cell energy metabolism beyond the proximal tubule

It is evident from the discussion above that our knowledge 
in renal energy metabolism is highly centered on the proxi‑
mal tubule metabolism. However, other segments are also 
essential for the acid–base balance, and further research is 
necessary to shed light on the role of cell metabolism in the 
whole nephron in health and disease. Intercalated cells are 
an intriguing case for the study of renal cell energy metabo‑
lism. While animal cells are energized by  Na+/K+ ATPase 
activity, there are strong evidences that intercalated cells 
do not express this protein and are rather energized by a 
 H+‑ATPase [25]. Intercalated cells display a sizeable Golgi 
apparatus and are also known as mitochondria‑rich cells, a 
term that comes from the higher proportion of mitochondria 
in comparison to principal cells [28, 60]. Type A intercalated 
cells accumulate mitochondria in the apical cell pole and do 
not present the typical enrichment of mitochondria next to 
the basolateral membrane [28, 61]. Renal epithelial cells in 
the cortex rely mostly on oxidative phosphorylation to gen‑
erate ATP, but type A intercalated cells have a high anaero‑
bic glycolytic capacity, which may produce the driving force 
for  H+ secretion [10, 42, 116]. Urinary acidification capacity 
is mostly preserved in CKD [75, 102], but it is compromised 
in renal tubular acidosis. Whether tubulointerstitial injury 
and distal RTA impose or are associated with differential 
metabolic demands on type A intercalated cells is still an 
open question. Given the potential role of the thick ascend‑
ing limb in urine acidification [33], these studies should also 
cover the loop of Henle.

How would alkali therapy protect renal 
metabolism?

Metabolic acidosis in CKD is a consequence of nephron 
loss and reduced ammoniagenesis. With less functional 
units, kidneys lose capacity for generating new bicarbonate 
and slowly lose the battle against daily metabolic acidifi‑
cation. Given that the remaining functional nephrons must 
deal with multiple tasks other than acid–base balance, we 
hypothesize that kidneys may need to sacrifice efficiency in 
certain functions to keep homeostasis of multiple parameters 
at acceptable levels. There are hints supporting this hypoth‑
esis. NRF2 is a ubiquitously expressed master regulator of 
oxidative stress, with roles in intermediary metabolism and 
mitochondrial function [49, 65]. Mouse deficient for NRF2 

(Nfe2l2) have strongly downregulated expression of SNAT3, 
the main importer of glutamine in the proximal tubule and 
a crucial player in the response to metabolic acidosis and 
ammoniagenesis [72]. To our surprise, acid‑loaded Nfe2l2 
knockout mice showed the same severity of metabolic aci‑
dosis in comparison with wild‑type mice under the same 
conditions. However, after a week under acid‑loaded condi‑
tions, Nfe2l2‑deficient mice show elevated markers of kid‑
ney injury and oxidative stress despite a similar grade of 
acidosis in relation to wild‑type mice [72]. Potentially, with 
cells trying to cover too many tasks at the same time, some 
slowly fall behind. Alleviating acid–base stress could there‑
fore be a way of releasing the pressure on one of the multiple 
tasks that a cell has to handle in pathological conditions. 
Parallel scenarios can be also observed in other contexts. 
For example, metabolomic analysis has shown that acidosis 
induces cellular metabolism reprogramming of solid tumors 
via NRF2 [67]. Authors observed that intermediate metab‑
olites are redirected away from other important metabolic 
processes in solid tumors during acidosis. However, addi‑
tional investigation is necessary to demonstrate that acidosis 
exacerbates metabolic stress in kidney disease.

Early markers of eubicarbonatemic metabolic 
acidosis

Chronic kidney disease leading to eubicarbonatemic acidosis 
is a plausible hypothesis for at least two reasons. First, why 
would kidneys undergoing reduced kidney function suddenly 
fail to control acid–base balance if not in a slow and unde‑
tectable fashion until systemic markers change beyond the 
range of normality? Second, acid–base disorders are primar‑
ily determined by blood gas analysis, which is an exam using 
blood as material for investigation. Blood is not an isolated 
solution in a hermetically confined pipe, but a solution in 
continuous exchange with the interstitial space and then 
with the cells. Where would acidosis start? This depends on 
the source of acidosis. If it occurs via  CO2 intoxication or 
ingestion of acid, we would have an extracellular‑intracel‑
lular cause. But in the case of kidney disease, if fixed acids 
originated from the metabolism are the acidifying factor and 
kidneys are not capable of adjusting to this daily challenge, 
the origin of the acidosis comes from the cells and therefore 
occurs in an intracellular‑extracellular fashion (i.e., from 
the net endogenous acid production). Acids generated in the 
intracellular space would not only meet intracellular buffers 
but would also move to the interstitium meeting the next 
layer of buffers. The effect in the bloodstream could only 
be visible after several layers of protection fail. Therefore, 
the closer we look at the origin of the event, the earlier we 
could detect the derangement (a counter‑argument against 
this potentially reductionist approach would be the loss of 
information because of emergent properties, but it does not 
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seem plausible in this case given that this is just a shift in 
focus within the same level and scale [86]). Urine citrate 
excretion has been proposed as an early marker of acid reten‑
tion [45]. Citrate is a key factor in cell energy metabolism 
participating in the citric acid cycle or Krebs cycle. The 
metabolization of citrate yields a net gain of bicarbonate. 
The principle is that an organism undergoing acid retention 
would reabsorb more citrate, and less citrate would appear in 
the urine. The strategy of measuring urine citrate goes along 
with what is proposed here: that cell energy metabolism is 
essential to understand acid–base disorders and that the 
closer one surveys the origin of the event, the earlier it could 
be detected. The problem is that citrate is not only affected 
by acid–base conditions, but also by multiple other meta‑
bolic requirements of the cell. Further demonstration that 
it could be a useful marker has been published [43]. These 
observations must be expanded, and a panel of metabolites 
representing accurately the acid–base condition of the cell 
might substitute this or other single markers in the future.

Additional mechanisms

A series of additional mechanisms has been proposed and 
most probably plays relevant roles in the outcomes of acute 
kidney injury, acute kidney disease, and chronic kidney dis‑
ease. We briefly explore some of these mechanisms below.

Klotho

Klotho functions as a co‑receptor of fibroblast growth fac‑
tor 23 (FGF23) and mediates phosphate excretion, the main 
titratable acid. Additionally, it has renoprotective effects and 
regulates inflammation [54]. It exists both as a membrane‑
bound or soluble molecule. High pH activates the calcium‑
sensing receptor (CaSR) in the distal convoluted tubule 
which activates a disintegrin named metalloproteinase 10 
(ADAM10) [141]. The disintegrin cleaves membrane‑bound 
klotho, generating soluble α‑klotho. Low pH has opposite 
effects. Patients with CKD showed reduced α‑klotho levels 
early in the disease, and alkali therapy increased excretion 
of α‑klotho in a pilot study with patients with CKD [46]. 
Therefore, it is tempting to speculate that alkali therapy pro‑
tects kidney function also via protection of klotho levels. 
Mice subjected to a crystal nephropathy model and treated 
with alkali therapy show preserved renal α‑klotho levels 
despite severe tubulointerstitial injury [90].

pH sensing

The proper response of the kidneys and lungs to acid–base 
challenges relies on precise pH sensing by the kidneys and 
peripheral and central chemoreceptors. Kidneys express a 

large array of proteins in which  H+ functions as an allosteric 
modulator or a ligand. They are ionic channels, enzymes, 
and G protein‑coupled receptors (GPCRs). Some exam‑
ples are TWIK‑related acid‑sensitive K + channel (TASK) 
[20], acid‑sensing ion channels (ASICs) [24], insulin recep‑
tor–related receptor (IRRR) [34], soluble adenylyl cyclase 
(sAC) [98], ovarian cancer G protein‑coupled receptor 1 
(OGR1/Gpr68), G protein‑coupled receptor 4 (GPR4), and T 
cell death‑associated gene 8 (TDAG8/Gpr65) [57]. Moreo‑
ver, an intracellular pH‑senstive proline‑rich tyrosine kinase 
2 (PYK2) and a bicarbonate/CO2 sensing protein receptor 
protein tyrosine phosphatase (RPTPgamma) have also been 
identified [15, 69]. Disruption of several of these sensing 
mechanisms leads to poor management of acid–base balance 
by the kidneys or to insensitivity of mechanisms regulated by 
acid–base conditions. For example, TASK2 knockout mice 
display a phenotype similar to human proximal renal tubular 
acidosis [126], and OGR1 knockout mice display poor coor‑
dination between urinary acidification and calcium excretion 
[58]. GPR4 deficiency in mice fully blunts acid‑dependent 
proliferation of type A intercalated cells and induction of 
transporters involved in acid–base balance in these cells 
[27]. These animals also show lower excretion of titratable 
acids and lower ammonium excretion in response to acid 
load [117, 118]. However, this might be indirectly caused by 
the respiratory acidosis of central origin observed in these 
animals [27, 66]. The role of pH sensing is also extended to 
kidney injury conditions, as seen in the inhibition of ASIC1a 
with psalmotoxin 1 (PcTx1) in mice, which attenuated injury 
caused by renal ischemia reperfusion [109]. PcTx1 not only 
increases the affinity of ASIC1a by  H+, but also functions 
as an agonist of ASIC1b in neurons [26]. GPR4‑deficient 
mice are also protected from renal ischemia reperfusion 
injury [35]. In summary, pH sensing mechanisms play cen‑
tral roles in acid–base balance in health and in pathological 
processes. However, despite extensive research on either the 
pH‑sensing properties of these proteins or on their role in 
disease, there are only few studies that reported a systematic 
investigation of how both aspects interact. There is plenty of 
room for research in this direction.

Acid–base and immune responses

The interaction between acid–base conditions and immune 
responses has been explored by research in several fields, 
such as oncology, pain and nociception, pulmonology, and 
gastroenterology, but it has been understudied by renal phys‑
iologists and nephrologists [31, 56, 57, 91, 143]. Acid–base 
conditions influence differentiation and motility of immune 
cells and their capacity to release substances [38, 97, 142]. 
Given the increasing attention towards the role of inflam‑
mation in kidney diseases, it is expected that this gap will 
be narrowed in the next few years. In the previous sections, 
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we explored some examples of this interaction, such as 
ammonium as a trigger of the alternative complement 
pathway and acidosis‑stimulated chronic activation of hor‑
mones driving inflammation of the renal tissue. The effect 
of acidosis in the immune cell activity in kidney disease is 
mostly unknown and deserves special attention. Recently, 
we showed that  CD4+ T cells and inflammatory monocyte 
levels were reduced in kidneys of mice subjected to a crys‑
tal nephropthy model and receiving oral bicarbonate [90]. 
However, alkali therapy could also have extrarenal effects 
with relevance to the kidneys. A hypertensive kidney dis‑
ease rat model (Dahl salt‑sensitive) under oral bicarbonate 
intake displayed splenic and renal macrophage polarization 
towards an anti‑inflammatory M2 type suggesting that alka‑
linization impacts pre‑renal differentiation of immune cells 
with impact in the kidneys [96]. Interestingly, administra‑
tion of esomeprazole, a proton pump inhibitor, blunted the 
anti‑inflammatory effect of  NaHCO3 intake in rats. Authors 
proposed a mechanism that gastric acidification is directly 
or indirectly sensed by mesothelial cells of the peritoneum 
which sends an anti‑inflammatory message via cholinergic 
signals to the spleen [96]. This novel mechanism would 
at least partially bypass canonical acid–base sensing sys‑
tems like peripheral and central chemoreceptors. However, 
its actual impact in kidney function has yet to be demon‑
strated. Oral bicarbonate could also influence kidney dis‑
ease through the relationship between intestinal dysbiosis 
and mitochondrial dysfunction in CKD [76]. Concerns with 
ocean acidification have prompted multiple studies aimed at 
identifying whether lower pH could impact the diversity of 
microorganisms in the sea. Hypercapnia affected the intes‑
tinal microbiota of fish and crab [41, 73]. Likewise, there is 
a clear impact of ruminal acidification on the microbiota of 
different species of cattle [53, 70]. Acidic water has been 
shown to affect intestinal microbiota of mice [107, 139], 
but results are contradictory and have not been reproduced 
by others [144]. Moreover, the single study performed in 
humans did not find any impact of acidic water in the intes‑
tinal microbiota of young males [47].

Expanded conceptual framework 
integrating interactions between pH 
homeostasis and progression of chronic 
kidney disease

Most probably, certain effects of pH on kidney function act 
independently of each other. However, independent effectors 
may synergize into further kidney injury, and some others 
may actually be dependent on each other. Here, we propose a 
conceptual framework with multiple known factors involved 
in acid–base‑dependent progression of chronic kidney dis‑
ease and how they would evolve from early to late stages of 
CKD (Fig. 3). In this figure, we also list key open questions 
related to multiple steps of this framework.

Concluding remarks

Extensive research in the XX century characterized how 
metabolic activities of all cells generate the input of the 
acid–base balance and how mainly the kidneys and lungs 
control the output. Dietary habits influence net production 
of acids and bases and are important factors determining the 
daily stress to pH homeostasis. Recent research has identi‑
fied that metabolism and inflammation are central pathways 
to multiple forms of kidney disease, and there is evidence 
that acid–base status is a potent modulator of these path‑
ways. Models proposed in the past couple of decades on 
how acidosis impairs kidney function in chronic kidney dis‑
ease and how alkali therapy protects kidney function did not 
include the role of cell metabolism (and potentially immu‑
nometabolism) as core pieces.  H+ has pleiotropic effects in 
biological systems, and it is believed to affect organisms 
from multiple angles. It is time to revisit relevant knowledge 
acquired since the late XIX century and further elaborate 
a holistic framework that includes this diversity. However, 
certain factors might have a more dominant effect than oth‑
ers, and identifying them may be a powerful tool to manipu‑
late pathways involved in the progression of chronic kidney 
disease. We propose that cell metabolism is at the core of 
the pH‑dependent events associated with the progression of 
chronic kidney disease. If this is the case, a deep understand‑
ing of how pH affects biochemical reactions in a systemic 
fashion may provide a powerful tool to control the progres‑
sion of renal and extrarenal chronic diseases with deranged 
metabolism.
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