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Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host
response to infection. Recently was been found that pyroptosis is a unique form of
proinflammatory programmed death, that is different from apoptosis. A growing number
of studies have investigated pyroptosis and its relationship with sepsis, including the
mechanisms, role, and relevant targets of pyroptosis in sepsis. While moderate pyroptosis
in sepsis can control pathogen infection, excessive pyroptosis can lead to a dysregulated
host immune response and even organ dysfunction. This review provides an overview of
the mechanisms and potential therapeutic targets underlying pyroptosis in sepsis
identified in recent decades, looking forward to the future direction of treatment for sepsis.
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INTRODUCTION

Sepsis is life-threatening organ dysfunction caused by a dysregulated host response to infection (1).
Epidemiological studies reported a sepsis mortality rate up to 20.6% (2, 3); if patients develop septic
shock, the mortality rate could rise to 40%-50% (4). Since there are few effective treatments for
sepsis, it is critical to find new therapeutic targets. In the early stage of sepsis, the host activates an
immune defense reaction that induces the programmed death of immune cells. As a mode of
programmed cell death, pyroptosis participates in the innate immune response, inhibits
intracellular pathogen replications, and activates immune cells to phagocytize and kill pathogens
(5, 6). Once pyroptosis is out of control, inflammatory reactions are activated in adjacent cells and
tissues, which further aggravates the inflammatory injury, leading to a systemic inflammatory
reaction, and eventually causing organ failure or septic shock (7–10). This review primarily focuses
on the progress of potential therapeutic targets for pyroptosis in sepsis.
THE DEVELOPMENT OF PYROPTOSIS

The phenomenon of pyroptosis was first described by Sansonettiin et al. in 1992; they reported that
the death of macrophages infected with Shigella flexneri was caspase-1 dependent rather than the
traditional form of caspase-3 dependent cell death (11). In 1998, Hersh et al. found that caspase-1
played an important role in this specific mode of cell death. The authors reported that S. flexneri
could not induce death in caspase-1-knockout macrophages (12). In 2001, Brennan and Cookson
discovered a similar phenomenon in macrophages infected by Salmonella typhimurium and named
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this form of programmed cell death “Pyroptosis” (7, 13). In 2008,
Fink et al. found that during pyroptosis, DNA became
fragmented and the cell membrane was damaged, which
caused intracellular content release, inducing a serious
inflammatory reaction (14). In 2011, Kayagaki and colleagues
discovered that caspase-11 could induce the death of mouse
macrophages; this process was similar to caspase-1-mediated
pyroptosis and was termed the “non-canonical pyroptosis
pathway” (15). However, it is still unknown how caspases
activate pyroptosis. Many studies reported that gasdermin D
(GSDMD) is the inflammatory caspase substrate. When caspases
were cleaved and activated, they could release intracellular
substances by forming pores on the cell membrane and
eventually induce pyroptosis (16–19). In 2017, Shao’s team
discovered that chemotherapy drugs induced cell death by
cleaving GSDME through caspase-3 to induce pyroptosis (20).
In 2018, it was found that caspase-8 could also cleave GSDMD,
thus inducing pyroptosis during Yersinia infection (21, 22).
PYROPTOSIS VERSUS APOPTOSIS

Although apoptosis and pyroptosis are both types of
programmed cell death, there are differences in mechanisms,
cell morphologies and biological effects. Apoptosis is mediated
by apoptosis-related caspases (e.g., Caspase-3/8/9) and
ultimately ends in non-inflammatory necrosis. During the
process, nuclear condensation, DNA cleavage and apoptotic
bodies can be observed in apoptotic cells. Conversely,
pyroptosis is mediated by inflammatory caspases (e.g., caspase-
1/4/5/11) that induce nuclear condensation and DNA cleavage,
as well as pore formation on the cell membrane, resulting in cell
swelling and rupture, that destroys cell membrane integrity,
causing inflammatory necrosis (23–26).
THE MOLECULAR MECHANISM OF
PYROPTOSIS

Pyroptosis mechanisms generally include the caspase-1-
dependent pathway (canonical pathway) and caspase-1-
independent pathway (non-canonical pathway) that is induced
by human caspase-4/5 or mouse caspase-11 (Figure 1).

In the canonical pyroptosis pathway, intracellular pattern
recognition receptors(PRRs) including Nod-like receptor
(NLR) family pyrin domain containing 3(NLRP3), NLR family
caspase activation and recruitment domain (CARD) containing
4(NLRC4) and NLR family pyrin domain -containing 1B
(NLRP1B) recognize pathogenic stimuli and bind to pro-
caspase-1 through the adaptor protein apoptosis-associated
speck-like protein contain a CARD(ASC) (27–29) to form a
multi-protein complex that can activate caspase-1 protein.
In the non-canonical pyroptosis pathway, intracellular
lipopolysaccharide (LPS), an activator of non-canonical
inflammasomes (30), directly binds and activates caspase-11/4/
5 protein to initiate pyroptosis (15). After inflammatory caspases
Frontiers in Immunology | www.frontiersin.org 2
are activated, pro-interleukin-1b (pro-IL-1b) and pro-IL-18 are
cleaved to active IL-1b and IL-18, which are released
extracellularly to recruit inflammatory cells and enhance the
inflammatory response. The connection between the N-terminal
and C-terminal of GSDMD is rapidly cleaved to remove the
inhibitory effect of the C-terminal on the N-terminal, which then
connects with the phosphatidylinositol(PI) on the cell
membrane, promoting an oligomerization effect and formation
of the “gasdermin channel” (16–18, 31). The formation of
numerous micropores on the cell membrane can destroy the
osmotic balance, leading to cell swelling and membrane
dissolution, followed by the release of cell contents and
exacerbating the inflammatory response (16, 24, 32).
Furthermore, cytosolic LPS stimulation induces caspase-11-
dependent cleavage of the pannexin-1 channel and subsequent
ATP release, which in turn activates the P2X7 receptor to cause
ATP-induced loss of intracellular K+, NLRP3 inflammasome
activation and IL-1b secretion. Therefore, NLRP3 might be a
vital bridge between the canonical and non-canonical pyroptosis
pathways (33–36).

There are new mechanisms of pyroptosis mediated by
caspase-3 and caspase-8 (Figure 2). Caspase-3 was previously
considered as a marker and key molecule of cell apoptosis, but
many studies showed that it was also involved in the process of
pyroptosis. Activated by tumor necrosis factor-a (TNF-a) or
chemotherapy drugs, caspase-3 can specifically cleave and
activate gasdermin E (GSDME), releasing the N-terminal to
bind to the cell membrane, forming the “gasdermin channel”
and inducing cell pyroptosis. In the setting of high GSDME
expression, activated caspase-3 can induce pyroptosis, but low
GSDME expression induces apoptosis (37, 38). Other studies
have shown that caspase-8 is involved in pyroptosis. Sarhan and
colleagues found that pathogenic Yersinia could inhibit
transforming growth factor b-activated kinase 1 (TAK1) via
the effector YopJ, and then activated receptor-interacting
protein kinase 1 (RIPK1) and Caspase-8. Next, caspase-8
cleaves GSDMD and GSDME, forming the “gasdermin
channel” on the cell membrane that mediates pyroptosis and
lead to the inflammatory response (21, 22, 39).
THE RELATIONSHIP BETWEEN
PYROPTOSIS AND SEPSIS

Pyroptosis Participates in Sepsis
Regulation
Sepsis is life-threatening organ dysfunction caused by a
dysregulated host response to infection. It is a global public
health problem because of its high fatality, disability rates, and
high disease burden.

In the process of sepsis, moderate immune-inflammatory
response can effectively defend against pathogens, although
they also cause some damage to the tissue. However excessive
proinflammatory response or immunosuppression can lead to
organ dysfunction or secondary infection (40). Pyroptosis was
originally considered as a pathogenic mechanism that damaged
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host cells, but moderate pyroptosis is actually a host defense
mechanism that is conducive to eliminating intracellular
pathogens. Both caspase-1-mediated canonical pyroptosis and
caspase-4/5/11-mediated non- canonical pyroptosis are involved
in clearing intracellular pathogens; these pathways destroying the
pathogen’s living environment by reducing the cytosolic
compartment, inhibiting the growth and replication of
intracellular pathogens, and speeding up pathogen excretion
(5, 41–45). As a result, the escaped pathogens are recognized
and eliminated by immunocytes. One study showed that
activated GSDMD could also induce bacterial cell membranes
to form the “gasdermin channel”, which can kill Escherichia coli,
Staphylococcus aureus, and Listeria monocytogenes (32). It
follows that moderate pyroptosis plays a protective role in the
early stage of infection, although it may cause some tissue
damage. Conversely, excessive pyroptosis will cause an
Frontiers in Immunology | www.frontiersin.org 3
uncontrolled inflammatory reaction, which greatly accelerates
sepsis occurrence and development that contributes to a poor
prognosis (8, 46–48).

Recent studies into the mechanism of pyroptosis have clarified
the relationship between sepsis and pyroptosis. Duo et al. found
that miR-21, an important positive regulator of pyroptosis and
septic shock, regulated the nuclear factor kappa B(NF-kB)
pathway and NLRP3-mediated pyroptosis through protein A20
(49). The author demonstrated that miR-21 knockdown would
inhibit ASC to recruit inflammatory caspases, thereby inhibiting
caspase-1 activation and GSDMD cleavage, ultimately inhibiting
LPS-induced pyroptosis and septic shock. Another study showed
that caspase-11 activated by LPS could induce pyroptosis and
severe inflammatory response through pannexin-1 and P2X7
signaling, which may be a potential target to treat Gram-
negative bacteria sepsis (33). Song et al. found that sphingosine-
FIGURE 1 | The mechanism of canonical and non-canonical pyroptosis pathway. In the canonical pyroptosis pathway, intracellular pattern recognition receptors
(e.g., NLRP1B, NLRP3, NLRC4, etc.) recognize the stimulus signals of pathogens and bind to pro-caspase-1 through the adaptor protein ASC to form a multi-
protein complex that can activate caspase-1 protein. In the non-canonical pyroptosis pathway, intracellular LPS directly binds and activates caspase-11/4/5 protein
to initiate pyroptosis. After inflammatory caspase activation, pro-IL-1b and pro-IL-18 are cleaved to active IL-1b and IL-18. The portion of GSDMD that connects the
N- and C-terminals is rapidly cleaved to remove the inhibitory effect of the C-terminal on the N-terminal. Then, the N-terminal of GSDMD connects with
phosphatidylinositol(PI) on the cell membrane, resulting in an oligomerization effect and formation of the “gasdermin channel”. Ion movement through this channel
destroys the osmotic balance, leading to cell swelling, membrane dissolution, cell content release, and inflammatory response. Furthermore, cytosolic LPS stimulation
induced caspase-11-dependent cleavage of the pannexin-1 channel followed by ATP release, which in turn activated the P2X7 receptor to cause ATP-induced loss
of intracellular K+, NLRP3 inflammasome activation and IL-1b secretion.
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1-phosphate receptor 2 was a potential therapeutic target for
sepsis since its knockout could reduce caspase-11 activity in
macrophage, inhibit pyroptosis and alleviate sepsis (50). Deng
et al. demonstrated that hepatocyte-released high mobility group
box 1 (HMGB1) played a significant part in the development of
endotoxemia and bacterial sepsis, which could mediate caspase-
11-dependent pyroptosis and sepsis lethality by delivering
extracellular LPS into the cytosol of macrophages and endothelial
cells, where LPS activates caspase-11 (51). It was also shown that
binding of transmembraneprotein 173 (TMEM173) to the inositol-
1, 4, 5-triphosphate type I receptor could control calcium release in
the endoplasmic reticulum of macrophages and monocytes.
Increased cytoplasmic calcium levels could drive GSDMD
cleavage and activation, triggering the release of tissue factors that
are keypromoters ofblood coagulation.Additionally, Inhibiting the
TMEM173 pathway was shown to correct diffuse intravascular
coagulation (DIC), prevent multiple organ failure, and improve the
survival rate of septic animals (52).
Frontiers in Immunology | www.frontiersin.org 4
Pyroptosis Mediates Sepsis-Related
Organ Damage
The molecular mechanisms and potential therapeutic targets of
sepsis-related organ damage have gradually been explored.

A study of sepsis-associated DIC showed that bacterial
endotoxin activated tissue factors of the exogenous coagulation
pathway are stimulated by caspase-11, which activates the
coagulation cascade by triggering “gasdermin channel”
formation and exposure to phosphatidylserine (53). Additionally,
platelet endothelial cell adhesion molecule-1 could protect against
sepsis-associated DIC by inhibiting macrophage pyroptosis; this
pathway also plays an important role in restoring the vascular
permeability barrier following inflammatory stimulation (54).

With regard to sepsis-associated acute kidney injury (AKI),
activation of caspy2, a zebrafish inflammatory caspase
homologous to caspase-4/5/11, could specifically cleave
gasdermin Eb (GSDMEB), releasing its N-terminal and
mediating pyroptosis in mammals. The authors reported that
FIGURE 2 | The mechanism of new pyroptosis pathways. Activated by TNF-a or chemotherapy drugs, Caspase-3 cleavage and activate GSDME, releasing N-
terminal binding to the cell membrane, forming “gasdermin channel” and inducing cell pyroptosis. Additionally, the pathogenic Yersinia could inhibit TAK1 via the
effector YopJ, and then activated RIPK1 as well as Caspase-8, which would cleave GSDMD and GSDME, forming the “gasdermin channel” on the cell membrane,
mediating pyroptosis and leading to the inflammatory response.
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the caspy2-GSDMEb signaling pathway was essential in LPS-
induced fatal renal tubular injury caused by septic shock, and the
specific GSDMEB inhibitor Ac-FEID-CMK could reduce the
incidence of septic AKI and zebrafish mortality (55). These
results highlight potential therapeutic targets of septic AKI.
Notably, caspase-11 gene knockout reduces the expression of
pyroptosis-related proteins of renal tubular epithelial cells
(RTECs), suggesting that caspase-11 targeting or inhibition of
RTECs may become a new therapeutic target for septic AKI (56).

Concerning sepsis-associated acute lung injury (ALI),
endothelial inflammatory caspase may be an important
therapeutic target. Caspase-11 knockout was shown to reduce
endotoxemia-induced neutrophil aggregation, pulmonary
edema, and death (57). In the cecal ligation and puncture
(CLP)-induced ALI model, inhibition of HMGB1 expression
could reduce caspase-11-dependent pyroptosis in lung tissue,
thereby ameliorating lung injury (58). Additionally,
phospholipid scramblase4 (PLSCR4) could transport
phospholipids outside the membrane, thereby blocking the N-
terminal of GSDMD forming the “gasdermin channel”,
inhibiting pyroptosis and alleviating lung injury (59).

Studies of sepsis-related cardiac dysfunction have shown that
CXADR-like membrane protein (CLMP) was involved in
myocardial cell pyroptosis after myocardial infarction in mice,
but knockdown of CLMP expression enhanced myocardial cell
pyroptosis and aggravated myocardial injury (60). In addition,
binding of TMEM173 (also known as stimulator of interferon
gene) with type-I interferons regulatory factor 3 under LPS
stimulation could increase NLRP3 expression, promote
pyroptosis, and aggravate sepsis mediated myocardial injury
(61). Some in vitro and in vivo experiments showed that zinc
finger antisense 1 (ZFAS1), as the long noncoding RNA of miR-
590-3p regulating AMP-activated protein kinase/mammalian
target of rapamycin (AMPK/mTOR) signal transduction under
induction of the transcription factor SP1, could induce
cardiomyocyte pyroptosis and aggravate sepsis-induced cardiac
dysfunction (62). These findings indicate the ZFAS1/miR-590-
3p/AMPK/mTOR regulatory network may provide a new
therapeutic direction for the development of drugs for sepsis-
induced cardiac dysfunction.

Application of the Therapeutic Targets of
Pyroptosis in Sepsis
In addition to the sepsis treatment targets mentioned above,
possible applications of therapeutic targets of pyroptosis have
been highlighted to explore their therapeutic effect and
application prospects in sepsis.

Caspase-Related Inhibitors
Braun et al. (63) and Hotchkiss et al. (64) initially reported that
the broad-spectrum caspase inhibitor Z-VAD-FMK had a
protective effect against pneumococcal meningitis in a New
Zealand white rabbit model and sepsis mouse model,
respectively. Subsequent studies found that Z-VAD-FMK could
significantly reduce IL-1b release in patients with LPS-and S.
aureus-induced sepsis by inhibiting caspase activity (65).
Frontiers in Immunology | www.frontiersin.org 5
Moreover, the broad-spectrum caspase inhibitor VX-166
exhibited strong anti-apoptotic and anti-inflammatory effects
by inhibiting IL-1b and IL-18 release in the CLP rat model
and showed significant therapeutic effects against sepsis (66).

An increasing number of researchers are focusing on specific
caspase inhibitors rather than broad-spectrum caspase inhibitors
because it was difficult to clarify which caspases were
contributing to the observed effects. One study reported that
the caspase-1 inhibitor VX-765 reduced caspase-1 expression in
the brain tissue of the sepsis mouse model and reduce the
production of mature IL-1b, which inhibited pyroptosis and
eventually attenuated the inflammatory response (67). Chen
et al. found that nitrosonisoldipine, a photodegradation
product of the calcium channel inhibitor nisoldipine, was a
selective inhibitor of inflammatory caspases, that could inhibit
noncanonical pyroptosis and protect against pyroptosis (68). In
conclusion, caspases are key molecules of cell pyroptosis that can
be significantly repressed by its specific inhibitors, thereby
hampering pyroptosis and reducing damage caused by
infectious diseases. Although specific caspase inhibitors may be
a potential treatment for sepsis, but they have not yet been used
in clinical practice, and more research is needed to convert
promising experimental results into effective clinical drugs.

Relevant Effective Ingredients of Herbal
Medicines and Other Drugs
Recent studies have explored the effects of some components of
Chinese herbal medicine on pyroptosis in sepsis. Cinnamon was
shown to inhibit the activation of NLRP3, NLRC4, and absent in
melanoma 2 (AIM2) inflammasomes, thereby reducing IL-1b
secretion and improving the survival rate of LPS-induced septic
shock mice (69, 70). Glaucocalyxin A is a bioactive ent-kauranoid
diterpenoid derived from herbal medicine that can alleviate LPS-
induced septic shock and the inflammatory response by inhibiting
NLRP3 inflammasome activation (71). The ginsenoside metabolite
protopanaxatriol can play a therapeutic role in inflammatory
disorders by inhibiting inflammation-mediated activation of the
NLRP3 inflammasome, ASC oligomerization, and IL-1b secretion
(72). Myricetin inhibits NLRP3 inflammasome assembly by
promoting non-reactive oxygen species (ROS)-dependent
NLRP3 ubiquitination and reducing ROS-dependent ASC
ubiquitination; this blocks the interaction between ASC and
NLRP3, inhibits ASC aggregation, and alleviates the sepsis-
induced inflammatory response (73). Additionally, the curcumin
analog AI-44 can promote interaction between peroxidase 1
(PRDX1) and pro-caspase-1 by targeting PRDX1. These events
hamper the binding of pro-caspase-1 to ASC, inhibiting NLRP3
inflammasome activation and alleviating LPS-induced sepsis
injury in mice (74). With further development, it is believed that
Chinese herbal medicine will have broader application prospects
for the clinical treatment of sepsis in the future.

Chen and colleagues found that L-epinephrine promoted
protein kinase A activation by regulating the ADRA2B-
ADCY4-PDE8A-PKA axis, thereby blocking caspase-11-
mediated IL-1b maturation, GSDMD cleavage, and danger-
associated molecular pattern (DAMP) release to restrict
July 2021 | Volume 12 | Article 711939
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inflammasome activation and macrophage pyroptosis (75). Xu
et al. reported that estrogen could alleviate liver injury in septic
rats by alleviating mitochondrial dysfunction caused by oxidative
stress and inhibiting the oxidative stress-mediated pyroptosis
signaling pathway (76). And colleagues found that melatonin
could inactivate NF-kB induction, reduce NLRP3 expression and
alleviate the inflammatory state of sepsis (77). Nagaoka et al.
found that the antibacterial peptide LL-37 was beneficial to
protect the function of multiple organs by inhibiting the
release of macrophage chemotactic factor, promoting the
release of neutrophil extracellular traps, and enhancing
the inflammatory response to improve the survival rate of sepsis
in mice (78). LL-37 may therefore be a useful drug for sepsis
because of its antibacterial and anti-pyroptosis abilities. Wang
et al. found that carbon monoxide could reduce the mortality of
septic rats by inhibiting the cleavage of caspase-1 and caspase-11,
thereby reducing the release of IL-18, IL-1b, and HMGB1 and
limiting intestinal mucosal permeability and mucosal damage
(79). Yang et al. found that prophylactic application of
glutamine could promote liver cell pyroptosis to clear pathogens
in the early stage of sepsis, but inhibited pyroptosis in the
advanced stage of sepsis (80). Wang and colleagues reported
that dihydromyricetin could alleviate sepsis-induced acute lung
injury by inhibiting NLRP3 inflammasome-dependent pyroptosis
in mouse models (81). Hu et al. showed that disulfiram could
inhibit pyroptosis and IL-1b release by preventing the N-terminal
of GSDMD from forming the “gasdermin channel” on the cell
membrane, thus improving the poor prognosis of LPS-induced
sepsis in a mouse model (82).

Collectively, the existing data suggest that it is workable to
intervene in sepsis and improve patient prognosis by inhibiting
cell pyroptosis with drugs or specific compounds. However, there
are currently no clinical treatments for this purpose and basic
and randomized controlled trials are still needed to demonstrate
the efficacy of this approach.
CONCLUSION AND PROSPECT

In summary, pyroptosis is an important immune response that
plays a significant role in sepsis occurrence and development. In
the early stage of sepsis, the organism induces pyroptosis to
inhibit intracellular replication of pathogens and accelerate their
elimination. If the infection is not controlled, a large number of
pathogens will invade the blood and cells to escape identification
and elimination by the immune system; during the process,
pathogen-associated molecular patterns and DAMPs are
Frontiers in Immunology | www.frontiersin.org 6
released to induce massive pyroptosis, which increases IL-18
and IL–1b levels to aggravating the systematic inflammatory
response, eventually leading to organ failure and septic shock. In
clinical practice, it is appropriate to induce and inhibit pyroptosis
in the early and advanced stage of sepsis, respectively. However,
there is still a lack of research on the appropriate timing for
intervening in pyroptosis. In recent years, numerous studies have
investigated potential therapeutic targets and treatments for
sepsis, including broad-spectrum inhibitors, specific caspase
inhibitors, and other compounds. All these interventions have
shown some therapeutic effects on sepsis models, which brings
hope for effective sepsis control. However, research into specific
drugs is still lacking, and their effectiveness, targeting, and safety
still need further investigation. We believe that it is feasible to
regulate sepsis occurrence and development by intervening in
pyroptosis, and subsequent research on its mechanism and the
development of new drugs will open up new avenues to
treat sepsis.
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