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Abstract

Glioblastoma, one of the most fatal brain tumors, is associated with a dismal prognosis and 

an extremely short overall survival. We previously reported that the overexpressed transient 

receptor potential channel TRPM7 is an essential glioblastoma regulator. Accumulating evidence 

suggests that long noncoding RNAs (lncRNAs) play an important role in glioma’s initiation 

and progression. However, the function of lncRNA, HOX transcript antisense intergenic RNA 

(HOTAIR) mediated by TRPM7 in glioma remains unclear. In this study, HOTAIR expression was 

found to be positively regulated by TRPM7, significantly upregulated in glioma tissues, and is 

a poor prognosis factor for glioma patients. Moreover, reduced HOTAIR expression impeded 

the proliferation and invasion of glioma cells. Mechanistically, HOTAIR directly interacted 

with miR-301a-3p, and downregulation of miR-301a-3p efficiently reversed FOSL1 suppression 

induced by siRNA HOTAIR, which implied that HOTAIR positively regulated FOSL1 level 

through sponging miR-301a-3p and played an oncogenic role in glioma progression. In contrast to 

HOTAIR’s role, miR-301a-3p alone served as a tumor suppressor to decrease glioma cell viability 

and migration/invasion. In agreement with HOTAIR’s role, FOSL1 functioned as a tumorigenic 

gene in glioma pathogenesis, which was highly expressed in glioma tissues, and was shown to be 

an unfavorable prognostic factor for glioma patients. Mechanically, FOSL1 inhibition by siRNA 

FOSL1 efficiently rescued the oncogenic-like phenotypes caused by the miR-301a-3p inhibitor in 

glioma pathogenesis.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Corresponding author at: Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, HG325, 720 
Westview Drive SW, Atlanta, GA 30310, United States of America. mliu@msm.edu (M. Liu).
Authors’ contributions
SG and ML designed the study protocol. SG, PK, EL, and AAG performed experiments based on glioma cell cultures and evaluated 
the data with the help of ML. SG and ML performed the biostatistical evaluation of the data. ML wrote the manuscript with 
contributions and final approval by all authors. SG and AAG contributed to the critical reading and revision of the manuscript.

Declaration of Competing Interest
The authors declare no potential conflicts of interest.

HHS Public Access
Author manuscript
Cell Signal. Author manuscript; available in PMC 2022 June 01.

Published in final edited form as:
Cell Signal. 2022 June ; 94: 110306. doi:10.1016/j.cellsig.2022.110306.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/


Keywords

TRPM7; HOTAIR; miR-301a-3p; FOSL1; Glioma

1. Introduction

Glioblastoma (GBM, World Health Organization grade IV glioma) remains highly lethal due 

to a lack of effective therapy and its inevitable recurrence [1,2]. Despite current aggressive 

first-line therapies such as maximal surgical resection, concurrent radiotherapy, adjuvant 

chemotherapy with temozolomide (TMZ), as well as immunotherapy, GBM recurrence is 

inevitable after extending survival to a median of only 14.6 months [1,3,4]. The poor 

prognosis and recurrence emphasize a necessity to understand the molecular characteristics 

of GBM and develop effective targeted molecular therapies.

The studies on protein-coding genes have identified commonly changed signaling pathways 

in GBM, including IDH, EGFR, TERT, ATRX loss, TP53 mutation, and CDKN2A/2B [5,6]. 

However, the targeted therapies for GBM focusing on the above pathways have not been 

effective, and results have been continuously disappointing. Recent studies showed that 

the human genome encompasses many long non-coding transcripts, long non-coding RNAs 

(lncRNAs), which may be more common than protein-coding genes [7]. These lncRNAs 

contain long non-encoding RNA transcripts >200 nucleotides in length, many of which 

show cell type-specific expression [8]. They are localized either in the nucleus or cytoplasm 

and play many different roles in the cancer cells, in part through chromatin remodeling, 

regulation of transcription/posttranscription, mRNA stability, mRNA translation, and post-

translational modification [8,9]. In glioblastoma, non-coding RNAs, including lncRNAs, 

regulate numerous oncogenic phenotypes such as glioma cell proliferation, invasiveness, and 

glioblastoma stem cells (GSC)’ stemness [8,9].

TRPM7, a member of the transient receptor potential channel TRP superfamily, is 

a cation channel permeable to divalent cations Mg2+, Ca2+, and Zn2+ fused to a C-

terminal serine/threonine protein kinase domain [10–15]. TRPM7 is indispensable for cell 

growth, proliferation, apoptosis, senesce, migration, and immune cell function. Increased 

TRPM7 expression and/or activity has been correlated with malignant growth and cancer 

progression in various cancers [16–18]. Work that was done previously in our group 

demonstrated that altered TRPM7 expression and activity is not only required for glioma 

cell proliferation and migration/invasion [19,20] but also drives GSC plasticity through 

Notch and STAT3 activities [21,22]. In addition, previously, our in-depth data analysis 

from miRNA microarray data revealed that a panel of miRNAs is significantly changed in 

response to TRPM7 silencing [20]. Moreover, we reported that TRPM7 negatively regulates 

miR-28–5p to promote proliferation and invasion of glioma cells through upregulating target 

Rap1b gene [20]. As lncRNAs generally network with miRNAs via the “sponge effect,” 

by which lncRNAs may sequester miRNAs and compete with miRNA to consequently 

inhibit the miRNA’s inhibitory ability on target gene expression [23]; this prompted us 

to examine the possible altered lncRNA profiles caused by TRPM7 deletion. Our data 

analysis from lncRNA array data revealed a list of 10 downregulated and 7 upregulated 

Guo et al. Page 2

Cell Signal. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lncRNAs whose transcripts are statistically significant changed by TRPM7 knockout in 

A172 glioma cells, while lncRNA HOX transcript antisense intergenic RNA (HOTAIR) was 

most positively affected by TRPM7 depletion. HOTAIR is a well-studied lncRNA that plays 

a pro-oncogenic role in several human cancers. In gliomas, HOTAIR mainly contributes to 

tumorigenesis by the inhibition of apoptosis [24], promotion of growth and invasion, and 

enhancement of angiogenesis [25]. It may also play a role in drug delivery in glioma by 

affecting the blood-tumor barrier (BTB) permeability [26]. The aim of the present study 

is to investigate the functional roles of HOTAIR, and the mechanisms by which HOTAIR 

networks with miRNA(s) to promote glioma tumorigenesis.

2. Materials and methods

2.1. Antibody and reagents

The following primary antibodies were used in this study. Anti-TRPM7 was purchased 

from Abcam (Cambridge, MA, cat. no. ab232455). A mouse monoclonal antibody that 

detects protein argonaute-2 (Ago2, cat. no. 04–642-I) and mouse anti-β-actin (cat. no. 

A3854) were purchased from Sigma-Aldrich (St. Louis, MO). Mouse monoclonal FOSL1 

antibody was purchased from Santa Cruz Biotechnology (Dallas, TX, cat. no. sc-28,310). 

All secondary antibodies used for Western blot were purchased from Calbiochem (La Jolla, 

CA). TurboFectin was purchased from OriGene (Rockville, MD, cat. no. TF81001).

2.2. Plasmid, siRNA, and miRNAs

Control scrambled siRNA (cat. no. D-001810–01-05) and ON-TARGETplus SMARTpool 

siRNA targeting HOTAIR (cat.no. R-187951–00-0005) were purchased from Dharmacon 

(Lafayette, CO). Control scrambled siRNA and siRNA targeting FOSL1 (siRNA ID # 

s15585), hsa-miR-301a-3p mimic (Product ID: MC10978), hsa-miR-301a-3p inhibitor 

(Product ID: MH10978), and negative control (cat. no. 4464076) were purchased from 

Thermo Fisher Scientific (Waltham, MA). The scrambled siRNAs, with no homology to 

any known sequence, were used as controls. The TRPM7 KN2.0 human gene knockout via 

CRISPR was done using a non-homology mediated kit that was purchased from OriGene 

(Rockville, MD, cat. no. KN418043).

2.3. Cell culture

Human glioblastoma cell lines, A172 (RRID: CVCL_0131), U87MG (HTB-14), a 

glioblastoma of unknown origin (RRID: CVCL_0022), HTB-12, HTB-15, HTB-16, 

HTB-138, CRL-2611, M059K, and M059J were obtained from American Type Culture 

Collection (ATCC, Manassas, VA, USA). T98G and LN18 glioma cell lines were obtained 

from Dr. Erwin van Meir’s laboratory at the University of Alabama at Birmingham 

(UAB). All cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Life 

Technologies, Waltham, MA) plus 10% fetal bovine serum (FBS), 50 units/ml penicillin, 

and 50 μg/ml streptomycin at 37 °C. CRL-3417 was purchased from ATCC and cultured in 

neurocult basal medium with 20 ng/ml epidermal growth factor (EGF), 20 ng/ml fibroblast 

growth factor (β-FGF), and 2 μg/ml heparin sulfate. Patient derived xenoline (PDX)-tumor 

tissue cubes stored at liquid nitrogen were provided by Dr. Yancey G. Gillespie at UAB. 

PDX lines (PDX-L14 and PDX-L11) were generated by implanting PDX-tumor tissue cubes 
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subcutaneously into the flanks of male or female 6–8 weeks old nude mice under anesthesia 

(ketamine/Xylazin 90/6 mg/kg BW). Briefly, cryopreserved tumor tissues were thawed at 

37 °C and washed with phosphate-buffered saline (PBS) before subcutaneous implantation. 

To prepare a single-cell suspension of viable tumor cells, the xenograft tumor tissues were 

harvested and minced with scalpel blades followed by passes through cell strainers. The 

cells were then grown in DMEM/F-12 media plus 10% FBS, 50 units/ml penicillin, and 50 

μg/ml streptomycin for future use. All experiments were performed with mycoplasma-free 

cells. PDX-L14 cells with proneural subtype have wild-type genes including EGFR, PTEN, 

CDKN2A, NF-κB, CDK4/MDM2, and amplified gene of CSNK2A, deleted TP53, and 

expression of CD133. PDX-L11 cells with classical subtype have wild-type genes including 

EGFR, PTEN, NF-κB, CDK4, and TP53, amplified MDM2, deletion of CDKN2A, gain of 

CSNK2A, and expression of CD133.

We used the TRPM7 KN2.0 human gene knockout kit via CRISPR, a non-homology 

mediated kit from OriGene to knockout all the splicing variants of the TRPM7 gene 

according to the manufacturer’s instruction. Briefly, A172 cells were seeded at 3 × 105 

in a 6-well plate to obtain 50–70% confluence, and 1 μg of TRPM7 gRNA and 1 μg of 

the Donor DNA were transfected into A172 cells using TurboFectin. 48 h post-transfection, 

the cells were split 1:10 and grown for an additional 3 days followed by continuous split 

for 4 times. Then, the cells at passage 5 (P5) were grown directly in the growth medium 

containing 1 μg/ml of puromycin. Two single-cell clones (A172 KO1 and A172 KO2) were 

generated after puromycin selection.

2.4. Transfection of siRNA and miRNA

When glioma cells grew to reach about 50–75% confluency, the appropriate amount of 

specific siRNAs or miRNAs, along with corresponding controls with a final concentration 

of 50 nM, were transfected using Lipofectamine RNAiMAX reagent in serum-free 

OptiMEM-1 medium (Invitrogen, Carlsbad, CA) according to manufacturer’s instruction. 48 

or 72 h post-transfection, target knockdowns or increases were assessed by quantitative real-

time RT-PCR (qRT-PCR) analysis, stem-loop pulsed RT-PCR, or Western blot, accordingly. 

All studies were done in triplicates.

2.5. Proliferation and cell viability assay

All glioma cells were seeded at 2.5 × 104 cells in 100 μl of medium per well into 

96-well plates and transfected with specific siRNA, miRNA, or controls accordingly 

using Lipofectamine RNAiMAX reagents for the indicated times. 10 μl of 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent (Sigma-Aldrich, the 

ratio of MTT reagent to medium is 1:10) was added into each well and incubated in the dark 

at 37 °C for 2 to 4 h. Absorbance at 570 nm was measured using 690 nm as the reference 

using the CytoFluorTM 2300 plate reader.

2.6. Clonogenic assay

After transfection, cells (1000/well) were seeded into 6-well plates and cultured for an 

additional two weeks. Cells were fixed with 4% paraformaldehyde and stained with 0.5% 
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crystal violet. Colonies of more than 50 cells were counted to determine survival and the 

number of colonies obtained from three replicates was averaged for each treatment.

2.7. Cell migration and invasion assay

The migration and invasion potential were assessed as we previously described [20,22]. 

Briefly, cell culture chambers with 8 μm pore size polycarbonate membrane filters (Corning, 

USA) were used for cell invasion assays with the filters pre-coated with Matrigel (50 μl, 

1.25 mg/ml). Each of the glioma cell lines/PDXs line was transfected with or without siRNA 

or miRNA for 48 h, harvested, and seeded with 1% FBS medium in upper chambers that 

were soaked in bottom chambers filled with 500 μl whole medium (DMEM and 10% FBS). 

After another 24 h of incubation at 37 °C, Matrigel and cells on the upper surface of 

the filter were wiped off thoroughly with Q-tips. Cells attached on the lower surface of 

the membrane filters were fixed with 4% paraformaldehyde/PBS for 10 min and stained 

with 0.5% crystal violet/methanol for 10 min. The cells were then counted under light 

microscopy with 10× magnification in 3–4 random fields. Cell numbers under different 

treatments were normalized to appropriate controls. Assays were done in triplicate samples 

and performed in three independent experiments.

2.8. qRT-PCR

Total RNA isolation, cDNA synthesis, and PCR amplification were performed as we 

previously described [20]. Total RNA was isolated from cells using a miRNeasy Kit 

(Qiagen, Valencia, CA) and quantified using the Nanodrop N-1000 by Agilent Biosystems 

(Santa Clara, CA). Purified total RNA (0.75 μg) was reverse transcribed using the 

iScript cDNA Synthesis Kit (Bio-Rad Laboratories, Inc., Hercules, CA) according to 

manufacturer’s protocol. Reverse transcription was performed by using random hexamers at 

25 °C for 5 min, 42 °C for 30 min, and 85 °C for 5 min. After diluting ten times, the cDNA 

was then amplified using iQ SYBR Green Supermix (Bio-Rad Laboratories, Inc.) according 

to manufacturer’s protocol under the following conditions: activation of the Taq DNA 

polymerase at 95 °C for 3 min, 40 cycles at 95 °C for 10 s (denaturation), and 61 °C for 

45 s (combined annealing and extension). The quantitative gene analysis utilized the CFX 

Connect Real-Time PCR Detection System. Each condition was conducted in biological 

triplicates, and each biological replicate was amplified in technical triplicates. Relative 

expression for each gene was evaluated using the 2−ΔΔCt Livak method, and GAPDH was 

used as the reference gene (20).

2.9. Stem-loop pulsed RT-PCR

The miRNA detection was performed using stem-loop pulsed RT-PCR with some 

modifications as described before [27]. The RT primer for miR-301a-3p reverse 

transcription, forward and reverse primers for RT product amplification were designed 

based on miR-301a-3p’s sequence: 5’-CAGUGCAAUAGUAUUGUCAAAGC-3′ (http://

www.mirbase.org/). For each reaction, the “no RNA” master mix comprised of 10 mM 

dNTP, 5 μM RT primer (see Table 1), and appropriate water, was heated at 65 °C for 5 min 

and incubated on ice for 2 min. Then, the “no RNA” master mix was combined with the 

RT master mix containing first-strand buffer, 0.1 M DTT, 4 units RNaseOUT, and 50 units 

of Super-Script III-RT. Then, the pulsed RT was performed under the following conditions: 
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load thermal cycler and incubate for 30 min at 16 °C, pulsed RT of 60 cycles at 30 °C for 

30 s, 42 °C for 30 s, and 50 °C for 1 s and incubate at 85 °C for 5 min to inactivate the 

reverse transcriptase. Finally, the RT product was amplified using iQ SYBR Green Supermix 

(Bio-Rad) as described above, and U6 was used as the reference gene.

2.10. Western blotting

Cells were lysed with lysis buffer of M-PER™ Mammalian Protein Extraction Reagent 

(Thermo Fisher Scientific cat. no. 78501) supplemented with Halt™ Protease and 

Phosphatase Inhibitor Single-Use Cocktail (100×) (Thermo Fisher Scientific cat. no. 78442). 

SDS/PAGE separated samples, and separated proteins were transferred to nitro-cellulose 

membranes and identified by immunoblotting. Primary antibodies were obtained from 

commercial sources and were diluted to the ratio of 1:500 or 1:1000 according to 

manufacturer’s instruction. Blots were developed with Supersignal Pico or Femto substrate 

(Pierce). Densitometric analysis of the bands was performed with the ImageQuant program 

(Bio-Rad).

2.11. RT2 lncRNA PCR arrays

Total RNA, from A172 or A172 KO glioma cells, were extracted and subjected to Human 

Cancer Pathway Finder, RT2 LncRNA PCR Array (Qiagen, cat. no. LAHS-002ZD). The 

difference at mRNA transcript levels between A172 cells and A172 KO was analyzed using 

an online software https:/dataanalysis2.qiagen.com/lncRNA. Fold changes and p values were 

calculated using Student’s t-test. A p-value <0.05 with a fold change greater than 2 was 

considered to be a significant dysregulation.

2.12. Reporter constructs and luciferase reporter assays

DNA was extracted from HTB-138 cells using the Blood & Cell Culture DNA Mini Kit 

(Qiagen) according to manufacturer’s instruction. Full-length 3’UTR of FOSL1 gene was 

amplified from HTB-138 DNA and cloned into pGL3-Promoter vector (Promega, cat. no. 

E1761) between MluI [New England Biolabs Inc. (NEB), Ipswitch, MA, NEB, cat. no. 

R0198L] and BglII (NEB, cat. no. R0144L) sites. Primers for amplification are listed in 

Table 1. For mutated construct, mutant FOSL1 or mut-FOSL1, miR-301a-3p binding sites 

was mutated using Q5 site-directed mutagenesis kit (NEB, cat. no. E0554S). For the reporter 

assays, 5 × 104 cells were seeded in a 24-well plate and co-transfected with wild type 

(Wt-FOSL1) or mut-FOSL1 into U87MG and PDX-L14 cells together with miR-301a-3p 

or control. Firefly and Renilla luciferase activities were measured 24 h post-transfection 

using a Dual-Luciferase Reporter Assay system (Promega, cat. no. E1910). The firefly 

luminescence was normalized to Renilla luminescence as an internal control for transfection 

efficiency. Experiments were performed three times.

2.13. RNA immunoprecipitation (RIP) assay

The Magna RNA-Binding Protein Immunoprecipitation Kit (Sigma Aldrich Inc., cat. No 17–

700) was used for RIP experiments. The RIP assay was used to explore the binding activity 

between endogenous HOTAIR and miR-301a-3p in glioma cells according to manufacturer’s 

instructions. Briefly, U87MG and PDX-L14 cells transfected with miR-301a-3p, and control 
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were collected and lysed in RIP lysis buffer, 100 μl of cell lysate was incubated with a 

human anti-Ago2 antibody or negative control. The samples were incubated with proteinase 

K with shaking to digest protein and then the precipitation of RNA was obtained. Purified 

RNA was analyzed to qRT-PCR for HOTAIR expression.

2.14. Bioinformatics analysis

Kaplan-Meier analysis of overall survival (OS) rate according to the HOTAIR was obtained 

from The Cancer Genome Atlas (TCGA) survival data to the lncRNA expression levels in 

OncoLnc (http://www.oncolnc.org). The dataset contained information on 152 glioblastoma 

patients, classified based on WHO classification as GBM (WHO grade IV glioma). The 

potential miR-301a-3p binding sites in HOTAIR and FOSL1 were predicted through 

the bioinformatics database (LncBase Predicted v.2) and public prediction algorithms 

(miRbase.org and Starbase v2.0), respectively. The TCGA database, which contained 

information on 454 glioblastoma patients, classified based on WHO classification as GBM 

was used to analyze for FOSL1 mRNA expression and its co-expression with the lncRNA 

HOTAIR (http://www.betastasis.com/glioma/tcga_gbm/). Kaplan-Meier analysis of OS rate 

for GBM patients according to the FOSL1 was determined by the Human Protein Atlas 

(https://www.proteinatlas.org).

2.15. Statistical analysis

The results obtained in this work were expressed as mean ± S.D. of at least 3 independent 

experiments done in triplicate. Paired Student t-test or one-way ANOVA tests were 

performed for data analysis, and a significant difference was defined as p < 0.05.

3. Results

3.1. TRPM7 functions as a positive regulator of lncRNA HOTAIR

We recently observed that TRPM7 upregulation positively correlates with glioma 

tumorigenesis, doing so by promoting tumor cell proliferation and invasion via regulation 

of small non-coding RNAs (sncRNAs) [20]. The contribution of TRPM7-mediated sncRNA 

to glioma prompted us to determine the possible role of lncRNAs mediated by TRPM7 in 

glioma cell proliferation and invasion. Since emerging studies have shown that lncRNAs 

function to regulate cellular proliferation and differentiation, as well as tumor development 

[8], therefore, we investigated whether TRPM7 regulates lncRNAs and cross-talks with 

sncRNAs to lead to glioma progression. To this end, we used TRPM7 KN2.0 human gene 

knockout via CRISPR, a non-homology mediated technology from OriGene to knockout 

all the splicing variants of the TRPM7 gene. Two single-cell clones (A172 KO1 and A172 

KO2) were generated after puromycin selection and further developed into two stable cell 

lines. Fig. 1A confirmed the knockout effect by GFP positive cells (Fig. 1A, upper panel), 

reduced TRPM7 mRNA expression (Fig. 1A middle panel), and reduced TRPM7 protein 

expression (Fig. 1A lower panel). A172 KO1 was the more efficient one of the two and was 

selected for further experiments and named A172 KO thereafter. Next, total RNA from A172 

KO and parental A172 glioma cells were extracted and then subjected to Human Cancer 

Pathway Finder, RT2 lncRNA PCR Array. Data analysis from RT2 data resulted in a list of 

10 downregulated and 7 upregulated lncRNAs whose transcripts are statistically significant 
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with fold changes greater than 2.0 by TRPM7 knockout (Fig. 1, B–D). The IncRNAs with a 

fold change greater than 2.0 are listed in Fig. 1B, while the scatter plot is shown in Fig. 1C 

and heat map in Fig. 1D.

3.2. Knockdown of HOTAIR inhibits glioma cell proliferation and migration/invasion

Among the lncRNAs regulated by TRPM7, we found that HOTAIR was most strongly 

affected in response to TRPM7 knockout, which was decreased 6.71 times compared to 

control (Fig. 1B). The finding that TRPM7 regulates HOTAIR was also supported by two 

previous works that TRPM7 modulates transcription factor NF-κB activation in macrophage 

[28] and that NF-κB directly transcriptionally regulates HOTAOR in ovarian cancer [29] 

(see Fig. 6). The TCGA database, which contained information on 454 glioblastoma 

patients, was first analyzed for the clinical significance of HOTAIR expression. HOTAIR 

expression levels in GBM patients were significantly higher than those in normal individuals 

as detected by Affymetrix HT HG U133A (Fig. 2A left panel). Furthermore, HOTAIR 

expression levels in mesenchymal and neural molecular subtypes in glioma tissue were 

higher than those in the normal brain (p < 0.05; Fig. 2A, right panel). Although a similar 

tendency was displayed in the classical and proneural subtype, they did not reach a 

significant difference (Fig. 2A, right panel). To evaluate the prognostic value of HOTAIR in 

GBM patients, we linked TCGA survival data to the lncRNA expression levels in OncoLnc 

(http://www.oncolnc.org). The dataset contained information of 152 glioblastoma patients, 

classified based on WHO classification as GBM. When all GBM patients were analyzed in a 

pooled setting, and the median value was selected as the cut-off point, the 10-year OS rate, 

as revealed by the Kaplan-Meier survival curve (Fig. 2B), was significantly higher in those 

with low HOTAIR levels (blue curve) compared to those with high expression (red curve) (p 

= 0.0401, log-rank test).

To examine whether HOTAIR expression could affect the biological activity of glioma cells, 

siRNA targeting the coding region of HOTAIR (siHOTAIR) was tested for their knockdown 

efficiency in A172 and U87MG glioma cells as well as in PDX-L14, which represent 

different molecular subtypes of glioma cells. Briefly, A172 and U87MG both have wild-type 

TP53, PTEN mutations, and p14ARF/p16 deletion. U87MG cells express high levels of 

VEGF as compared to A172 express high levels of bFGF [22]. Compared to glioma cell 

lines, PDX more closely mimic the biological and physiological characteristics of in vivo 
real cells and tissues. PDX-L14 cells with proneural subtype have wild-type genes including 

EGFR, PTEN, CDKN2A, NF-κB, CDK4/MDM2, and amplified gene of CSNK2A, deleted 

TP53, and expression of CD133. The siHOTAIR was very efficient in reducing HOTAIR 

expression in each glioma cell line (Fig. 2C) by HOTAIR expression reduction at 49.0, 61.0, 

and 52.0% in A172, U87MG, and PDX-L14 cells, respectively. MTT assay demonstrated 

that downregulated expression of HOTAIR attenuated the proliferation of A172, U87MG, 

and PDX-L14 cells (Fig. 2D). In detail, the cell growth viability was reduced from 43.9 to 

35.4% with the maximum at 24 h in A172 cell, 46.2 to 28.5% with the maximum at 72 h 

in U87MG cells, and 45.8 to 25.2% with the maximum at 48 h. The colony formation assay 

also showed that downregulated HOTAIR expression inhibited the long-term proliferation 

of U87MG and PDX-L14 glioma cells. The colony numbers were reduced by 57.4 and 

51.3% in U87MG and PDX-L14 cells, respectively. However, no colonies were formed by 
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A172 cells (Fig. 2E). The invasion of A172, U87MG, and PDX-L14 cells was significantly 

reduced following downregulation of HOTAIR expression as shown by transwell assay (Fig. 

2F). The number of invasive cells that crossed the Matrigel transwell was dramatically 

reduced by 70.0, 60.0, and 79.0% in A172, U87MG, and PDX-L14 cells, respectively. These 

data showed that knockdown of HOTAIR could impede glioma cell growth, invasion, and 

metastasis.

3.3. HOTAIR acts as a competing endogenous RNA (ceRNA) by sponging miR-301a-3p 
and indirectly regulates FOSL1 expression

3.3.1. HOTAIR negatively regulates miR-301a-3p, which inhibits glioma cell 
growth and invasion—Our previous published in-depth data analysis from miRNA 

microarray data revealed that miR-301a-3p was significantly upregulated by TRPM7 

knockdown [Fig. 2A in Frontiers in Oncology, 2019, 9:1413 [20]], while the lncRNA data in 

Fig. 1 showed that HOTAIR is positively regulated by TRPM7, therefore, we hypothesized 

that cytoplasmic lncRNA HOTAIR may directly bind to sncRNA, miR-301a-3p, and 

function as ceRNAs or sponges. To test our hypothesis, we first examined the relationship 

between HOTAIR and miR-301a-3p. Through the bioinformatics database (LncBase 

Predicted v.2), we predicted the potential miR-301a-3p binding sites in HOTAIR, which 

was among the numerous targets of miR-301a-3p (Fig. 3A). Next, by quantification of both 

miR-301a-3p expression using stem-loop pulsed reverse transcription PCR, and HOTAIR at 

endogenous levels by qRT-PCR in 14 glioma cell lines, followed by Pearson’s correlation 

analysis, we found a significant negative correlation between HOTAIR and miR-301a-3p 

in glioma cells (r = −0.6496, p = 0.0009, Fig. 3B). To further verify the direct binding 

between HOTAIR and miR-301a-3p, an anti-Ago2 RIP assay was performed in U87MG 

and PDX-L14 cells that were overexpressing miR-301a-3p by transiently transfected 

with miR-301a-3p mimic. Compared to the control group, the endogenous HOTAIR was 

specifically enriched in the miR-301a-3p mimic transfected-U87MG and -PDX-L14 glioma 

cells (Fig. 3C), indicating that HOTAIR directly targeted miR-301a-3p, and miR-301a-3p 

was negatively regulated by HOTAIR.

To understand the biological effects of miR-301a-3p on glioma cell proliferation, 

miR-301a-3p expression was manipulated by transfecting A172, U87MG, and PDX-L14 

cells with either miR-301a-3p mimics, inhibitors, or controls (Ctrl) for 72 h to increase 

or decrease miR-301a-3p expression levels. The stem-loop RT-PCR assay confirmed that 

miR-301a-3p expression levels were dramatically increased in A172, U87MG, and PDX-

L14 cells transfected with miR-301a-3p mimics as compared to those in cells transfected 

with control (Fig 3 D). Similarly, miR-301a-3p was significantly decreased in the above 

three cell lines transfected with miR-301a-3p inhibitors as compared to that in cells 

transfected with control (Fig 3 D). As shown in Fig. 3E, the overexpression of miR-301a-3p 

by transient transfection of miR-301a-3p mimic dramatically inhibited the growth rate of 

A172, U87MG, and PDX-L14 glioma cells, whereas cell proliferation decreased from 59.4 

to 44.2% with the maximum at 96 h in A172, from 52.8 to 29.2% with the maximum 

at 72 h in U87MG, and from 35.4 to 25.4% with the maximum at 96 h in PDX-L14 

cells. In contrast, reduced miR-301a-3p expression by miR-301a-3p inhibitor augmented 

the growth of the three glioma cell lines above, whereas cell proliferation increased in 
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A172 from 33.3 to 37.9%, in U87MG from 27.8 to 41.2%, and in PDX-L14 from 23.9 to 

44.5% for a 96 h period. Next, the Matrigel transwell invasion assays were performed on 

A172, U87MG, and PDX-L14 cell lines that were transiently transfected with miR-301a-3p 

mimic, miR-301a-3p inhibitor, or control. The results showed that the ectopic expression of 

miR-301a-3p inhibited the number of invaded cells by 69.0, 60.0, and 80.0%, respectively 

(Fig. 3F); on the other hand, miR-301a-3p inhibitors enhanced the number of invaded cells 

by 67.7, 60.0, and 70.6%, respectively (Fig. 3F). These data showed that miR-301a-3p 

served as a tumor suppressor inhibiting glioma cell growth and invasion.

3.3.2. HOTAIR positively regulates while miR-301a-3p negatively regulates 
the target gene FOSL1 in glioma cells—While in the search for miR-301a-3p 

targeting genes, FOSL1 was initially identified as a potential miR-301a-3p targeted 

gene using public prediction algorithms (miRbase.org and Starbase v2.0) (Fig. 4A). 

Experimentally, as shown in Fig. 4B, we found that FOSL1 mRNA and miR-301a-3p 

had a negative correlation in 14 glioma cell lines by Pearson’s correlation analysis. 

Then, a dual-luciferase reporter assay was performed to further verify the surmise that 

FOSL1 was directly targeted by miR-301a-3p in U87MG and PDX-L14 cells. To this 

end, we constructed FOSL1 3’ UTR sequence into a pGL3 promoter vector to generate 

a luciferase reporter (wild-type FOSL1 or Wt-FOSL1). Concurrently, we mutated the 

binding sites of miR-301a-3p to FOSL1 to generate another luciferase reporter, mutant-

FOSL1 (Mut-FOSL1) (Fig. 4C, two upper panels). The luciferase activity of U87MG and 

PDX-L14 cells cotransfected with miR-301a-3p mimic and control, along with luciferase 

reporters containing Wt-FOSL1 or Mut-FOSL1, were performed. The luciferase activity 

was discovered to be pronouncedly reduced when Wt-FOSL1 and miR-301a-3p mimic were 

cotransfected into U87MG and PDX-L14 cells in comparison with the activity in those cells 

cotransfected with Wt-FOSL1 and control. However, the luciferase activity of Mut-FOSL1 

showed no statistical changes. The results of the dual-luciferase reporter assay showed that 

FOSL1 was indeed the direct target of miR-301a-3p (Fig. 4C, two lower panels). To further 

explore the association between miR-301a-3p and FOSL1 in glioma cells, we analyzed 

endogenous FOSL1 expression after transiently transfecting cells with either miR-301a-3p 

mimics, miR-301a-3p inhibitor, or control in A172, U87MG, and PDX-L14 cells. As shown 

in Fig. 4D, FOSL1 protein expression levels were significantly reduced by miR-301a-3p 

mimics and significantly enhanced by miR-301a-3p inhibitor in each of the three glioma cell 

lines [(Fig. 4D (a)]. Note, in U87MG cells, FOSL1 protein expression changes in response 

to miR-301a-3p were more obvious at the underexposure setting due to highly expressed 

FOSL1 in this cell line [(Fig. 4D (b)]. The above results suggested that FOSL1 was the 

direct target of miR-301a-3p and was negatively regulated by miR-301a-3p.

As HOTAIR negatively regulated miR-301a-3p by directly targeting it (Fig. 3A–C), FOSL1 

was the direct target of miR-301a-3p and was negatively regulated by miR-301a-3p (Fig 

4A–D); therefore, it is reasonable for us to conclude that HOTAIR could positively 

regulate the FOSL1 gene. To determine the relationship between HOTAIR and FOSL1, 

gene co-expression network was constructed by TCGA (http://www.betastasis.com/glioma/

tcga_gbm/) to visually study the relationship between the lncRNA HOTAIR and FOSL1 

mRNA expression levels. The HOTAIR and FOSL1 mRNA expression showed a moderate 
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positive correlation in GBM patients by Pearson’s correlation analysis (r = 0.241, Fig. 

4E). We further assessed FOSL1 protein expression levels when downregulating HOTAIR 

using siHOTAIR by Western blot analysis. In A172, U87MG, and PDX-L14 cell lines, the 

protein level of FOSL1 was significantly decreased in cells transfected with siHOTAIR 

compared with that in cells transfected with scrambled control (Fig. 4F), further supporting a 

significant positive correlation between HOTAIR and FOSL1.

To further determine how HOTAIR integrated with miR-301a-3p to target FOSL1 gene, 

we designed an experiment to understand whether the effects of HOTAIR on FOSL1 

expression could be reversed by miR-301a-3p. As shown in Fig. 4G, FOSL1 expression was 

significantly decreased after transfecting with siHOTAIR in PDX-L14 and U87MG cells. 

The inhibitory effect of siHOTAIR was notably reversed by co-transfection with siHOTAIR 

and miR-301a-3p inhibitor in PDX-L14 and U87MG cells. These results indicated that 

HOTAIR functioned as a ceRNA by sponging miR301a-3p and indirectly regulated FOSL1 

expression.

3.4. FOSL1’s high expression is associated with poor survival in GBM patients and 
elevates glioma cell proliferation and invasion

The TCGA database, which contained information on 454 glioblastoma patients, classified 

based on WHO classification as GBM, was then analyzed for the clinical significance 

of FOSL1 mRNA expression. FOSL1 mRNA expression levels in GBM patients were 

significantly higher than those in normal individuals as detected by Affymetrix HT HG 

U133A (Fig. 5A left panel); furthermore, classical, mesenchymal, and neural molecular 

subtypes in glioma tissue were higher than those in the normal brain (p < 0.05; Fig. 5A, 

right panel). Although a similar tendency was displayed in the proneural subtype, it did 

not reach a significant difference (Fig. 5A, right panel). To determine whether FOSL1 gene 

expression is related to patient survival, all GBM patients from The Human Protein Atlas 

(https://www.proteinatlas.org) were analyzed in a pooled setting, and the median value was 

selected as the cut-off point, the 7-year OS rate, as revealed by the Kaplan-Meier survival 

curves (Fig. 5B), was significantly higher (p < 0.001; log-rank test) in those with low 

FOSL1 transcript levels (blue curve) compared with those with high expression (red curve).

We then determined the biological functions of FOSL1 on glioma by transiently transfecting 

A172, U87MG, and PDX-L14 glioma cells with siFOSL1 and corresponding controls. The 

transient transfection efficiency was determined by Western blot. As shown in Fig. 5C, 

FOSL1 protein expression levels were significantly reduced by siFOSL1 treatment in each 

of the glioma cell lines. As expected, the reduction of FOSL1 expression by siFOSL1 

effectively reduced glioma cell proliferation during 24 to 96 h post-transfection from 30.6 

to 35.0% in A172 cells, 15.8 to 41.4% in U87MG cells, and 35.7 to 50.2% in PDX-L14 

cells (Fig. 5D). Similarly, the number of invasive cells that crossed the Matrigel transwells 

was reduced by 80.0, 75.0, and 70.0% in A172, U87MG, and PDX-L14 cells at 72 h 

post-transfection of siFOSL1, respectively (Fig. 5E). These data suggested that FOSL1 

upregulation promoted glioma cell growth and invasion.

As knockdown of the highly endogenously expressed FOSL1 significantly weakened 

proliferation and invasion of PDX-L14 cells (Fig. 5D–E), while FOSL1 was the direct 
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target of miR-301a-3p and was negatively regulated by miR-301a-3p (Fig. 4A–D), we then 

further hypothesized that miR-301a-3p exerted its function through regulation of FOSL1 

in glioma cells. To test this hypothesis, rescue experiments were conducted. Our results 

showed that FOSL1 suppression blocked the effect induced by miR-301a-3p reduction on 

glioma cell growth and invasion (Fig. 5F). In detail, siFOSL1 effectively reduced glioma 

cell proliferation induced by miR-301a-3p inhibitor during 24 to 96 h post-transfection 

from 23.8 to 45.6% for PDX-L14. Similarly, siFOSL1 markedly reduced miR301a-3p 

inhibitor-induced invasion by 66.7%. These data suggested that FOSL1 partially reversed 

the promoting effect of miR-301a-3p inhibition on the growth and metastasis of glioma 

cells. These results further support our findings in Fig. 3E–F, that reduced miR-301a-3p 

expression alone dramatically enhanced the proliferative and invasive ability of PDX-L14. 

We use the proposed model to summarize the role of the TRPM7-mediated HOTAIR/

miR-301a-3p/FOSL1 axis in glioma tumorigenesis (Fig. 6). TRPM7 mediates the Ca2+ 

influx necessary for NF-κB activation, which transcriptionally activates lncHOTAIR. In 

turn, lncHOTAIR directly inhibits miR-301a-3p expression, which directly functionally 

impede FOSL1 gene activity.

4. Discussion

Major findings from the present study include: 1) TRPM7 functions as a positive regulator 

of lncRNA HOTAIR and a negative regulator of miR-301a-3p; 2) HOTAIR acts as a 

ceRNA by sponging miR-301a-3p and indirectly regulates target gene FOSL1 expression; 

3) Both HOTAIR and FOSL1 play oncogenic roles in glioma tumorigenesis, which promote 

glioma cell growth/proliferation and migration/invasion; increased expression of HOTAIR 

and FOSL1 are associated with unfavorable survival in GBM patients; 4) miR-301a-3p 

inhibits glioma cell proliferation and invasion by directly targeting FOSL1. Taken together, 

our study elucidated the role of TRPM7 mediated HOTAIR as a miR-301a-3p sponge to 

target the FOSL1 gene in glioma.

TRPM7 is a bifunctional protein fusing a divalent cations channel to a C-terminal serine/

threonine kinase. Since cloned two decades ago, TRPM7 has emerged as new therapeutic 

target and is associated with tumor progression, anoxic neuronal death, tissue fibrosis, giant 

platelet disorders, neutrophil recruitment, and production of reactive oxygen species [30,31]. 

Our group has long been focusing on the study of TRPM7’s potential as a therapeutic target 

in glioblastoma. Our previous work uncovered that aberrant TRPM7 expression and activity 

is essential for glioma malignancy not only through modulating protein-coding genes such 

as Notch, STAT3-ALDH1, and CD133 [21,22] but also managing sncRNAs/miRNAs, which 

play key regulatory roles in shaping glioma cellular functions. Continuously, our current 

study identified the lncRNA, HOTAIR mediated by TRPM7 competing with its downstream 

miRNA, miR-301a-3p, positively regulate oncogenic gene FOSL1, which contributes to 

glioblastoma growth.

The majority of human RNA transcripts do not encode for proteins, instead, non-coding 

RNAs are crucial to the regulation of cell physiology and shape cellular activity. The 

aberrant expression of many non-coding RNAs has been documented and associated 

with human malignancies including GBM [23,32]. Previously, our in-depth data analysis 
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from miRNA microarray data revealed that hsa-miR-301a-3p is statistically significantly 

upregulated by TRPM7 knockdown [Fig. 2 in Frontiers in Oncology 2019,9:1413 [20]]. The 

signaling pathways involving lncRNA-miRNA-mRNA axis to fine tune their effects on the 

gene regulation [33] prompted us to investigate the lncRNAs changes based upon TRPM7 

deletion in glioma cells. When A172 glioma cells with TRPM7 depletion were subjected 

to lncRNA PCR array assay, we did find a panel of 17 significantly altered lncRNAs, by 

which HOTAIR is the most upregulated one when TRPM7 was deleted. TRPM7 encodes 

a permeable nonselective cation channel fused with serine/threonine kinase at its carboxyl 

terminus. Although the channel function is dissociated from intrinsic kinase activity [34] 

and the kinase activity is not channel dependent, the kinase domain may modulate channel 

activity [13,35,36]. Our previous studies showed that TRPM7’s channel activity is required 

for glioma cell growth, while the kinase domain is required for cell migration/invasion [20]. 

Therefore, we surmise that both the TRPM7 channel and kinase domain are involved in the 

regulation of TRPM7 on HOTAIR, which is worth further investigation.

HOTAIR, an oncogenic lncRNA located on chromosome 12q13.13, is transcribed from 

the antisense strand by RNA polymerase II and is 2.2 kb long, capped, spliced, and 

polyadenylated [37]. HOTAIR is overexpressed in glioma [7], breast [38], lung [39], 

colorectal [40], and hepatocellular carcinoma [41], and is associated with the promotion 

of oncogenesis and metastasis [42]. HOTAIR silences target genes via multiple mechanisms. 

One of the well characterized and well-established mechanisms is HOTAIR’s interaction 

with chromatin-modifying enzymes polycomb repressive complex 2 (PRC2) and lysin 

specific demethylase 1 (LSD1) [43]. Beyond that, HOTAIR plays a role in protein 

degradation [44,45], microRNA sponging [46], and immune modulation [47,48]. However, 

most of the research into HOTAIR’s role in GBMs has been documented in biomarkers 

[49,50], with relative few studies on mechanisms, especially the lackluster of studies on 

relationships with another type of non-coding RNA, miRNA. This leaves a crucial gap in 

our understanding of glioma pathogenesis. Our current study discovered that HOTAIR acted 

as an oncogene, mediated by TRPM7, and directly bound to its downstream miR-301a-3p, 

which ultimately led to the positively regulated oncogene FOSL1 in glioma cells.

FOSL1, encoding FRA-1, is an AP-1 transcription factor with prognostic value in human 

solid tumors such as breast, lung, pancreatic, and colon cancer, where its overexpression 

correlated with tumor progression or worse patient survival [51–54]. FOSL1 controls 

cancer cell proliferation and survival, acts as a master switch of epithelial-to-mesenchymal 

transition (EMT) [55,56]. In agreement with other studies, our results showed that FOSL1 

is responsible for sustaining glioma cell growth and glioma cell invasion in vitro and is 

an unfavorable prognostic factor for GBM patients. Although previously, Verde’s group 

postulated that FOSL1 expression depends on the balance between the p53-mediated 

transactivation and miR-34a-mediated posttranscriptional inhibition of FOSL1 in MCF7 

cells [55], we are the first group to report that miR-301a-3p directly bind to FOSL1 and 

mediate posttranscriptional inhibition of FOSL1 in support of gliomagenesis, as represented 

by the luciferase reporter assay (Fig. 4C). FOSL1’s role in tumor microenvironment (TME) 

has also been documented. In colorectal cancer (CRC), FOS-L1 is both a transactivator of 

IL-6 in tumor associated macrophages (TAMs) and a transcriptional target of the IL-6/Stat3 

pathway in cancer cells. FOSL1 induces the IL-6 transcription in TAMs, the IL-6 secreted 
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by TAMs is a major inducer of EMT in CRC cancer cells, in which the IL-6-Stat3-FOSL1 

axis critically contribute to FOSL1 accumulation, invasion and metastasis [55,57]. As we 

previously found that TRPM7 channels regulate glioma stemness through Stat3 [21], in 

the future, it is worth further investigation into the mutual regulation between FOSL1 and 

Stat3 in remodeling glioma TME in support of glioma cell invasion and progression. Of 

note, inhibition of FOSL1 represents “a double-edged sword,” the opposite data from Tian’s 

group in cervical cancer showed that FOSL1 favors apoptosis, decreases in MDM2, and 

piles up p53, in which, FOSL1 expression is reduced in tumor with respect to normal 

tissue [58]. In addition, the treatment (vemurafenib)-induced FOSL1 downregulation, 

unexpectedly, critically contributes to the increase of growth factors, such as EGF, and 

decrease of growth inhibitors, such as IGFBP3 in melanoma [59]. Therefore, context-and 

therapy-dependent mechanisms of FOSL1 should be taken into account when considering 

any approach to target FOSL1.

miRNAs are thought to regulate the expression of various coding genes simultaneously. 

miR-301a-3p was reported to promote oxidative stress, inflammation and apoptosis in 

oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells 

(HUVECs) [60]. Previously, we reported that miR-28–5p is negatively regulated by TRPM7 

and inhibits glioma cell growth and invasion by targeting Rap1b gene [20]. In addition, 

we also found that miR-301a-3p showed the same trend as miR-28–5p when TRPM7 is 

silenced in glioma cells [20]. Thus, we speculated that miR-301a-3p might have a similar 

effect as miR-28–5p on glioma cell phenotype by targeting different target genes. Several 

other targets of miR-301a-3p, such as FOSL1, KLF7 [60] and MYBL1, are shown based 

on TargetScanHuman, which is a tool for microRNA targets prediction (targetscan.org). In 

the current study, we focused on FOSL1, which was associated with HOTAIR (Fig. 4E). We 

observed an inverse correlation between HOTAIR and miR-301a-3p (Fig. 3B). Importantly, 

we found that HOTAIR binds directly to miR-301a-3p, as shown by the endogenous 

interaction between HOTAIR and miR-301a-3p by coimmunoprecipitation with the Ago2 

protein in glioma cells (Fig. 3C). HOTAIR could play a role of endogenous sponge or 

ceRNA to control miR-301a-3p availability for its target gene FOSL1 (Fig. 4G).

In summary, overexpressed HOTAIR mediated by TRPM7 promoted glioma cell 

proliferation and invasion, suggesting that HOTAIR exhibits oncogenic properties in glioma 

progression. HOTAIR exerted the oncogenic effects partially through TRPM7/HOTAIR/

miR301a-3p/FOSL1 axis. These findings provide novel molecular mechanisms and useful 

information to find new biomarkers for diagnosis and therapeutic applications in glioma 

progression. To be noted, transcriptional regulation of FOSL1 has been documented through 

several transcription factors binding to the FOSL1 promoter such as AP-1, SNAIL1, 

TWIST1, SMADS, and Stat3 [55]. As FOSL1 is a key glioma regulator, it is expected 

that other TRPM7-mediated FOSL1 activation could contribute to glioma pathogenesis 

other than HOTAIR and miR-301a-3p. As mentioned above, the mechanism by which Stat3 

activated by TRPM7 modulates FOSL1 transcription and translation in glioma will be worth 

investigating in the future.
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Significance:

Our study elucidated the role of TRPM7-mediated HOTAIR as a miRNA sponge to target 

downstream FOSL1 oncogene and therefore consequently contribute to gliomagenesis, 

which shed new light on TRPM7/lncRNA-directed diagnostic and therapeutic approach 

in glioma.
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Fig. 1. 
TRPM7 functions as a positive regulator of lncRNA HOTAIR. We used the TRPM7 KN2.0 

human gene knockout via CRISPR, a non-homology mediated kit from OriGene to knockout 

all the splicing variants of the TRPM7 gene in A172 glioma cells. A, Two of A172 stable 

cell lines with TRPM7 deletion (A172 KO1 and A172 KO2) were generated after puromycin 

selection. TRPM7 knockout was confirmed by GFP positive cells (upper panel), reduced 

expression of TRPM7 mRNA by qPCR (middle panel), and reduced TRPM7 protein 

expression on Western blot (lower panel). B-D, A172 KO1 was the most efficient to be 

selected for further experiments and is labeled as A172 KO. Total RNA from glioma cells 

either with A172 or A172 KO cells were extracted and then subjected to Human Cancer 

Pathway Finder, RT2 lncRNA PCR Array. Data analysis from RT2 data resulted in a list of 

10 downregulated and 7 upregulated lncRNAs whose transcripts are statistically significant 

with fold changes greater than 2.0 by TRPM7 knockout. B, A list of the IncRNAs with a 

fold change greater than 2.0. C, the scatter plot, and D, heat map.

Guo et al. Page 20

Cell Signal. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Knockdown of HOTAIR inhibits glioma cell proliferation and migration/invasion. A, 

HOTAIR expression levels in brain tissues of GBM (left panel) and different molecular 

subtypes of GBM patients (right panel) were analyzed by Affymetrix Human Exon 1.0 

ST of TCGA data. B, Kaplan-Meier survival curve for the 10-year OS rate of glioma 

patients were analyzed by OncoLnc TCGA data. The cut-off was set at the median. C-F, 

Different sets of A172, U87MG, and PDX-L14 cells were transfected with siRNA HOTAIR 

(siHOTAIR) for certain period of times, as indicated, followed by MTT (D), clonogenic (E) 

and cell invasion (F) assay. C, Transfection efficiency of A172, U87MG, and PDX-L14 was 

revealed by the expression of HOTAIR at 48 h via qPCR. D, MTT assays were conducted 

to examine the effects of HOTAIR on cell viability after transfecting A172, U87MG, and 

PDX-L14 with siHOTAIR targeting HOTAIR mRNA from 24 h to 96 h. E, Clonogenic 

assays were performed to examine the effects of HOTAIR on long-term cell viability 

after transfecting A172, U87MG, and PDX-L14 cells with siHOTAIR for two weeks. F, 

Cell invasion assays were performed to detect the effects of HOTAIR on invasion after 

transfecting A172, U87MG, and PDX-L14 cells with siHOTAIR targeting HOTAIR mRNA. 

Images were captured at magnification of x10, *p < 0.05.
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Fig. 3. 
HOTAIR acts as a ceRNA by sponging miR-301a-3p and indirectly regulates FOSL1 

expression. HOTAIR negatively regulates miR-301a-3p, which inhibits glioma cell growth 

and invasion. A, The predicted binding sites of miR-301a-3p to the HOTAIR sequence 

were shown by analyzing LncBase Predicted v.2 database. B, Pearson’s correlation curve 

revealed the negative relationship between HOTAIR and miR-301a-3p expression in glioma 

cells. C, RIP was performed in U87MG and PDX-L14 cells transfected with miR-301a-3p 

mimics and controls, HOTAIR expression was detected using qRT-PCR. D, The transfection 

efficiency represented by the differential expression of miR-301a-3p was examined in A172, 

U87MG, and PDX-L14 cells transfected with miR-301a-3p mimic, inhibitor, or control. E, 

A172, U87MG, and PDX-L14 cells were transfected with miR-301a-3p mimic, inhibitor, or 

control for 24 to 96 h followed by an MTT assay. F, Cell invasion assays were performed to 

examine the effects of miR-301a-3p on invasion after transfecting A172, U87MG, and PDX-

L14 with miR-301a-3p mimic, inhibitor, or control. Images were captured at a magnification 

of x10, *p < 0.05.
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Fig. 4. 
HOTAIR positively regulates while miR-301a-3p negatively regulates the target FOSL1 

gene in glioma cells. A, The predicted binding sites of miR-301a-3p to the FOSL1 sequence 

were shown. B, Pearson’s correlation curve revealed the negative relationship between 

FOSL1 and miR-301a-3p. C, DNA sequencing of binding sites of miR-301a-3p to FOSL1 

3’ UTR (Wt-FOSL1) and to mutated FOSL 3’ UTR (Mut-FOSL1) as indicated by stars 

were shown in the two upper panels. Luciferase activity of U87MG (left lower panel) and 

PDX-L14 cells (right lower panel) cotransfected with miR-301a-3p mimic and luciferase 

reporters containing Wt-FOSL1 or Mut-FOSL1 were performed. D, The endogenous FOSL1 

protein expression levels were examined by Western blot after transiently transfecting with 

miR-301a-3p mimic, inhibitor, or control in A172, U87MG, and PDX-L14 cells. The gel 

images of both over-and less-exposure were shown. The bar graphs indicate the mean ± 

SD of three independent experiments. All data represent a representative experiment from 

three independent experiments, * p < 0.05 (Note, miR-301a-3p mimic was labeled as 

“mimic,” while miR-301a-3p inhibitor was labeled as “inhibitor” due to space limitations). 

E, Pearson’s correlation between HOTAIR and FOSL1 in brain tissues of glioma patients 

was analyzed by Affymetrix Human Exon 1.0 ST. F, FOSL1 protein was examined when 

the HOTAIR gene was silenced by siHOTAIR in A172, U87MG, and PDX-L14 cells. The 

bar graphs indicate the mean ± SD of three independent experiments. All data represent a 

representative experiment from three independent experiments, * p < 0.05. G, The levels 

of FOSL1 transfected with miR-301a-3p inhibitor along with siHOTAIR in PDX-L14 and 

U87MG cells were analyzed by Western blot.
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Fig. 5. 
FOSL1’s high expression is associated with poor survival in GBM patients and increases 

glioma cell proliferation and invasion. A, FOSL1 mRNA expression levels in brain tissues 

of glioma patients (left panel) and different molecular subtypes (right panel) were analyzed 

by Affymetrix Human Exon 1.0 ST of TCGA data, respectively. B, Kaplan-Meier survival 

curve for the 7-year OS rate of glioma patients. The cut-off was set at the median. C, 

The level of FOSL1 was analyzed in A172, U87MG, and PDX-L14 cells transfected 

with siFOSL1 and control by Western blot. D, A172, U87MG, and PDX-L14 cells were 

transfected with siFOSL1 for 24 to 96 h followed by an MTT assay. E, Cell invasion 

assays were conducted to examine the effects of FOSL1 on invasion after transfecting 

A172, U87MG, and PDX-L14 with siFOSL1 targeting FOSL1 mRNA. Images were 

captured at a magnification of x10, *p < 0.05. F, Functional assays were performed to 

identify the phenomenon of FOSL1 inhibition partially reverses the promoting effects of 

the miR-301a-3p inhibitor on the growth (upper panel) and metastasis (lower panel) of 

PDX-L14 cells.
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Fig. 6. 
The proposed model for the role of TRPM7-mediated HOTAIR/miR-301a-3p/FOSL1 axis in 

glioma tumorigenesis. TRPM7 mediates the Ca2+ influx necessary for NF-κB activation, 

which transcriptionally activates lncHOTAIR. In turn, lncHOTAIR directly inhibits 

miR-301a-3p expression, which directly functionally impede FOSL1 gene expression 

activity.
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