
Comprehensive Quantitative Analysis on Privacy Leak
Behavior
Lejun Fan, Yuanzhuo Wang*, Xiaolong Jin, Jingyuan Li, Xueqi Cheng, Shuyuan Jin

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

Abstract

Privacy information is prone to be leaked by illegal software providers with various motivations. Privacy leak behavior has
thus become an important research issue of cyber security. However, existing approaches can only qualitatively analyze
privacy leak behavior of software applications. No quantitative approach, to the best of our knowledge, has been developed
in the open literature. To fill this gap, in this paper we propose for the first time four quantitative metrics, namely, possibility,
severity, crypticity, and manipulability, for privacy leak behavior analysis based on Privacy Petri Net (PPN). In order to
compare the privacy leak behavior among different software, we further propose a comprehensive metric, namely, overall
leak degree, based on these four metrics. Finally, we validate the effectiveness of the proposed approach using real-world
software applications. The experimental results demonstrate that our approach can quantitatively analyze the privacy leak
behaviors of various software types and reveal their characteristics from different aspects.

Citation: Fan L, Wang Y, Jin X, Li J, Cheng X, et al. (2013) Comprehensive Quantitative Analysis on Privacy Leak Behavior. PLoS ONE 8(9): e73410. doi:10.1371/
journal.pone.0073410

Editor: Francesco Pappalardo, University of Catania, Italy

Received March 5, 2013; Accepted July 21, 2013; Published September 16, 2013

Copyright: � 2013 Fan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is supported by National Program (973 Program) on Key Basic Research Project of China (No. 2013CB329602, 2012CB316303) and National
Natural Science Foundation of China (No. 61173008, 61100175, 61232010, 60933005?61303244). Y. Wang is supported by Beijing Nova Program
(No. Z121101002512063). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: wangyuanzhuo@ict.ac.cn

Introduction

Privacy leak behavior invading users’ data privacy has been

widely discovered in different types of software and has thus

become a very important research issue of cyber security. Existing

approaches to analyzing privacy leak behavior can be classified

into two categories: black-box approaches and white-box ap-

proaches. The black-box approaches focus on the input data and

output network traffic of software, which rapidly find privacy data

with well-defined format (e.g., credit card number) by evaluating

the variation of privacy information between input and output

data [1–2]. However, these approaches face the limitation of

packet obfuscating techniques (e.g., encrypted connections,

message reordering and traffic randomization) [1]. In comparison

to the black-box approaches, the white-box approaches can

accurately analyze privacy leak behavior in detail [3]. These

approaches can be further divided into static analysis approaches

and dynamic analysis approaches. Static analysis approaches

reveal the accurate data flow from binary executable files of the

target software [4], which also confront code obfuscating problems

(e.g., code morphing, packer and opaque constant) [5]. Dynamic

analysis approaches, which detect the runtime data flow by tracing

the execution of the target software, are widely used in software

behavior analysis [6–7]. Unfortunately, dynamic analysis ap-

proaches have their shortages in solving problems such as multiple

paths [8] and dormant functionality [9]. Although the above

black-box and white-box approaches have been proposed for

years, privacy leak behavior analysis still suffers from two common

problems. First, there are no quantitative evaluation metrics for

analyzing privacy leak behavior. Second, there is no metric for

comprehensively comparing the overall degree of privacy leak of

different software applications. Such a metric is very important,

because it can indicate the overall threat level of the tested

software application.

To overcome these two problems, we propose, for the first time,

a set of desired quantitative metrics based on an abstract model

called Privacy Petri Net (PPN) presented in [10], which

characterizes the entire privacy leak procedure with more high-

level description. Specifically, we propose and define four

quantitative metrics, i.e., possibility, severity, crypticity, and manipula-

bility, to characterize different aspects of privacy leak behavior and

make the analysis more understandable. In order to compare the

privacy leak behavior of different software applications, we further

present a comprehensive metric, i.e., the overall privacy leak

degree, by virtue of the above four metrics. Finally, we apply the

proposed approach to real-world software applications and show

that it can quantitatively analyze the privacy leak behavior of

various software types and find their characteristics from different

aspects.

Model

Privacy Petri Net (PPN) is a high-level Petri net dedicated to

privacy leak behavior analysis [10], which has three main features.

Firstly, PPN has formal mathematical definitions of syntax and

semantics, which provide a precise specification on the target

software behavior, so as to essentially define various behavior

properties. Secondly, PPN has powerful modeling primitives of

graphical abstraction. Specific graph structures can be used to

identify unique private information leak behavior. Finally, PPN is

modularized and can thus be used to build hierarchical models. By

virtue of these features, we can use PPN to model different types of

PLOS ONE | www.plosone.org 1 September 2013 | Volume 8 | Issue 9 | e73410



privacy leak behaviors and construct more complicated and

powerful models. Here we first make a brief introduction to PPN

and then present seven typical modules of PPN.

Definition of Privacy Petri Net (PPN)
Fig. 1 presents a schematic diagram of a PPN that can be

formally defined as follows.

Definition 1. A Privacy Petri Net (PPN) is a seven-tuple,

PPN = (P, T, A, INST, fpos, ftran, farc), where:

1) P is a finite set of positions. Each position in P denotes a local

status of a subroutine of software execution.

2) T is a finite set of transitions. Each transition in T denotes a

system call or an API call.

3) A#{P6T} < {T6P} is a set of directed arcs that connect

positions and transitions. The arcs heading to and emiting

from a transition are called input and output arcs of the

transition, respectively (e.g., a1i and a1o in Fig. 1).

4) INST = {(Ctg, Cont, Proc)} is the set of instances of privacy data

sources in each access. Each instance in INST can be denoted

by a token with three special attributes, Ctg, Cont, and Proc. Ctg

is the category of data sources, taking possible values from the

set, {‘‘File’’, ‘‘Application’’, ‘‘System’’, ‘‘Dynamic’’}. Cont is the

content of privacy data which differs according to its category.

For example, for a file, Cont is its name or path, while for a

system, Cont is the registry key name and key value. Proc

denotes the steps/path that the token traverses through the

whole PPN, which is a sequence of positions and transitions,

denoted as Proc = p1t1p2…pn21tn21pn (n$1), where piMP (i = 1,

2, …, n) and tjMT (j = 1, 2, …, n21). These attributes depict

the fundamental information of the privacy leakage, which are

initialized with an empty value when the token is created.

5) fpos is a mapping fpos : PR{‘‘Start’’,‘‘Source’’,‘‘Absorb’’,‘‘Mid’’,

‘‘Discrim’’}. It assigns a property to each position to indicate its

role in privacy leak. In a PPN, different positions are indicated

with distinct icons as depicted in Fig. 2. A ‘‘Start’’ position

spawns new tokens with unassigned privacy attributes. A

‘‘Source’’ position denotes the access point of a privacy data

source. A ‘‘Discrim’’ position means that the privacy leak

behavior can be discriminated when a token reaches it. An

‘‘Absorb’’ position implies that the operation on the related

data source has been checked and is not considered as privacy

leak behavior. ‘‘Mid’’ positions indicate all other positions. In

order to implement the modularization of PPNs, a few PPN

module will be defined later for the privacy leak procedure.

Each PPN module must have at least one ‘‘start’’ position, one

‘‘absorb’’ position, one ‘‘source’’ position and one ‘‘discrim’’

position to depict a complete privacy leak procedure.

6) farc is an arc function set that assigns a set of variables to each

arc and is denoted by farc : ARVARSET. The variable set

assigned to an input arc is called an input variable set (e.g., vs1i in

Fig. 1), while the one assigned to an output arc is called an

output variable set (e.g., vs1o in Fig. 1). All variables can be

categorized into two main kinds. One is the parameters used

to support the system or API calls, such as, integer, float,

handle, pointer, string and struct. The other is used to support

the privacy attributes. They are mainly calculated from the

parameter variables.

7) ftran is a transition function that maps an expression to each

transition and is denoted by ftran: TREXPR. EXPR is a

Boolean operation of some conditions on checking privacy

leak, which intrigue the corresponding transition. These

conditions include many categories, such as, the name

checking of the current system call or API call, the value

checking of the current system environment variable, globe

system configuration checking, and other predefined con-

straint conditions. There must be at least one condition

checking the name of the current system call or API call,

because we characterize the software behavior mainly by the

call sequence.

Next, we present two concepts and an important theorem about

PPN for checking the privacy leak behavior.

Definiton 2. Behavior path set

Let C = c1c2…cn (n$1) be a call sequence of the target software

application and inst1, inst2, …, instm (m$1) be privacy instances

spawned when the calls in C are checked to trigger the transitions.

The behavior path set, BPS, is the set of move traces of all privacy

instances, denoted as BPS = {inst1.proc, inst2.proc, …, instm.proc}.

Each call sequence C can be mapped to a unique BPS to describe

the privacy leak related behavior of the target software application.

Definiton 3. Leak path and leak reachability

A leak path is a special move trace of a privacy instance in BPS,

where there must exist a source position and a discrimination

position. Let instk.proc = p1t1p2…pn21tn21pn and instk.procMBPS. We

have: instk.proc is a leak path u the privacy instance instk has leak

reachabilityu’i, j : fpos(pi) = ‘‘source’’‘fpos(pj) = ‘‘discrim’’.

With the leak reachability property we can verify whether a

certain type of private information contained in the target software

application is leaked as presented in Theorem 1.

Theorem 1. (Discrimination Theorem) If a privacy instance, inst,

spawned in a PPN module, m, has leak reachability, then the call sequence C

of the target software application contains a privacy leak behavior procedure

that modeled by the PPN module.

The proof of Theorem 1 can be found in our previous work

[10].

Typical Modules of PPN
In PPN, there are a few typical PPN modules corresponding to

sub-procedures of privacy leak behavior of Windows software.

Specifically, there are four typical PPN modules corresponding to

unauthorized data access (see Fig. 3) and three PPN modules for

Figure 1. A schematic diagram of a PPN.
doi:10.1371/journal.pone.0073410.g001

Figure 2. Position icons.
doi:10.1371/journal.pone.0073410.g002

Privacy Leak Behavior Analysis

PLOS ONE | www.plosone.org 2 September 2013 | Volume 8 | Issue 9 | e73410



covert network transmission (see Fig. 4). The integration of some

typical PPN modules may generate more complicated PPNs.

The PPN modules presented in Fig. 3 (a)–(d) correspond to the

behavior of software for accessing ordinary files, application data,

system data and dynamic data, respectively. It can be seen from

Fig. 3(a) that to access data in an ordinary file: (1) The target

software should check the possible directories to find the file by

‘‘NtQueryDirectoryFile’’ or ‘‘NtNotifyChangeDirectoryFile’’,

which can be found in Table 1. Then the corresponding

transitions t1 or t4 are triggered and the token moves to position

p2; (2) The software application acquires the file handle by

‘‘NtCreateFile’’ or ‘‘NtOpenFile’’. Then the corresponding

transitions t2 or t3 are triggered and the token moves to position

p3; (3) Finally, the application obtains the properties or content of

the file by ‘‘NtFsControlFile’’. Then the corresponding transition

t5 is triggered and the token moves to position p7. There are also

three other possible leak paths from position p3 to position p7:

p3t6p4t9p7, p3t7p5t10p7 and p3t8p6t11p7. To differentiate from the

legitimate file access, we have to check the file path for further

verification. For example in Table 1, the ‘‘Path Check’’ in the

EXPR of t2 and t3, only software installation path, system path and

pathes created by software are permitted to be accessed. For the

sake of space limitation, we do not describe the other three

modules in Fig. 3 in detail.

The PPN modules presented in Fig. 4 (a)–(c) for coverting

network transmission correspond to three kinds of connections,

namely, socket connection, FTP connection, and HTTP connec-

tion, respectively. In Fig. 4(a), it can be observed that to build a

socket connection, the target software application should first

create a socket and further build the server side or the client side.

The application can then send privacy data and receive remote

data. In Fig. 4(b), for building an HTTP connection to leak

privacy data, the target software application has to first create an

Internet handle and set up a connection to a remote HTTP server.

Next, it creates an HTTP request and adds HTTP headers.

Finally, it sends data by posting an HTTP request. As depicted in

Fig. 4(c), an FTP connection is used to transfer privacy data in

files. It is especially suitable for a large number of files or a single

large file. The leak procedure is similar to that of an HTTP

connection: An Internet handle and connection are created first.

Then, the work directory for file transmission is set. After these two

steps, privacy data is leaked.

Methods

Privacy leak can mainly be described from four aspects, namely,

content, source, procedure and destination. Leak content refers to

which kind of privacy data is leaked. Leak source means the

storage form of privacy data. Leak procedure records the related

system call sequence and the final destination of privacy data.

Finally, leak destination is the remote server to which the privacy

data is sent. In this paper, we propose to analyze privacy leak

behavior from the above four aspects using PPN. We will not only

qualitatively but also quantitatively analyze privacy leak behavior

Figure 3. Typical module for privacy data accessing. (a) Module mnfda : PPN module for ordinary file data access; (b)Module mada : PPN module
for application data access; (c) Module msda : PPN module for system data access; (d) Module mdda : PPN module for dynamic data access.
doi:10.1371/journal.pone.0073410.g003

Privacy Leak Behavior Analysis

PLOS ONE | www.plosone.org 3 September 2013 | Volume 8 | Issue 9 | e73410



by proposing four metrics, i.e., possibility, severity, manipulability, and

crypticity. Possibility is a basic metric denoting the probability that

privacy leak behavior may occur. Severity denotes the negative

consequence of an actual privacy leak behavior. Manipulability

implies the tendency that the software application may be used by,

or cooperated with, other applications to leak privacy data.

Crypticity indicates the difficulty to detect the corresponding

privacy leak behavior. These quantitative metrics characterize

different aspects of privacy leak behavior, the combination of

which makes the analysis more understandable and comprehen-

sive. They are calculated mainly based on the output of PPN, i.e.,

the behavior path set (BPS). As presented in Definition 3, software

behavior can be mapped to a set of traces of privacy instances

moving across positions and transitions in the PPN corresponding

to the execution of the target software application.

Weights of Transitions and PPN Modules
For a behavior path spathi = insti.proc = pi1ti1pi2…pi(n21)ti(n21)pin,

we first assign a weight to each transition tj (1#j#n21) according

to its importance in the privacy leak procedure. A high weight

means that the corresponding transition is more likely to be

triggered in existing malware and is more important to privacy

leak behavior. The weights are actually the statistical probabilities

of these transitions. Specifically, given a set of software applica-

tions, they are run for a long enough period of time such that no

more type of transitions can be observed. Assume that there are

totally N types of transitions. In this situation, let wtj
(0#wtj#1,

1#j#N) be the weight of transition tj. If the corresponding system/

API call is invoked, its call counter cj increases by 1. Consequently,

wtj
can be calculated by

Figure 4. Typical module for privacy data transmission. (a)Module msocket : PPN module for socket connection; (b)Module mhttp : PPN
module for HTTP connection; (c) Module mftp : PPN module for FTP connection.
doi:10.1371/journal.pone.0073410.g004

Table 1. DETAILS OF THE MODULE PRESENTED IN FIG. 3(A).

EXPR Input VarSet Output VarSet

t1 ‘‘NtQueryDirectoryFile’’ Dir name ‘‘Ctg’’

t2 ‘‘NtCreateFile’’‘Path Check File name File handle

t3 ‘‘NtOpenFile’’‘ Path Check File name File handle

t4 ‘‘NtNotifyChangeDirectoryFile’’ Dir name File handle

t5 ‘‘NtFsControlFile’’ Ctl Code Pointer,‘‘Cont’’

t6, t7, t8 ‘‘NtQueryInformationFile’’ ‘‘NtQueryAttributeFile’’ ‘‘NtQueryVolumeInformationFile File handle Pointer,‘‘Cont’’

t9,t10,t11 ‘‘NtReadFile’’ File handle Pointer,‘‘Cont’’

t12 ‘‘NtClose’’ File handle NULL

doi:10.1371/journal.pone.0073410.t001

Privacy Leak Behavior Analysis

PLOS ONE | www.plosone.org 4 September 2013 | Volume 8 | Issue 9 | e73410



wtj
~

cj

PN

k~1

ck

ð1Þ

Additionally, we divide the entire behavior path into different

parts based on the typical PPN modules. Assume that a behavior

path spathi
passes through m modules. spathi

can then be denoted

as spathi
= s1s2…sm, where si = pi1ti1pi2…pi(n21)ti(n21)pin (1#i#m).

We also assign a weightwsi
to the path fragment si according to

the negative consequence of the corresponding PPN module. Such

a negative consequence is affected by many factors, including the

content, source and final destination of the leaked privacy data.

Furthermore, the application scenario of the software application

also influences the severity of the negative consequence. For

instance, for a business server, the leak of the system data may

expose the vulnerability of the system and make the server more

vulnerable to network intrusion. For a personal computer, the leak

of some dynamic data (e.g., bank account information and

password) may cause financial loss. Considering all these factors,

we sort the typical PPN modules in an ascending order based on

the severity of their negative consequences and assign the module

weight wsi
accordingly. More specifically, in this paper the seven

PPN modules are sorted as msda, mnfda, mada, mdda, mhttp, msocket, mftp.

Therefore, since spathi
contains m predefined PPN modules, their

weights wsi
are assigned values from 1 to m in an ascending order.

These weights will be used to calculate the severity and

manipulability of privacy leak behavior.

Calculation of Quantitative Metrics
In this subsection, we show how to calculate the four metrics

based on the aforementioned behavior paths.

N Possibility

Possibility implies the probability that the paths in the BPS

actually form leak paths. It is the fundamental metric for

evaluating privacy leak behavior. Assume that spath is a behavior

path in the BPS that contains nj transitions and nj+1 positions.

Then, the possibility p(spathj) can be calculated as:

p(spathj
)~

1

nj

Pnj

i~1

wti
. If there are N behavior paths in the BPS,

the corresponding possibility can be obtained by:

P(BPS)~
1

N

XN

j

p(spathj
) ð2Þ

N Severity

The calculation of severity is also based on the leak paths in

the BPS. Assume that leak path spathj
contains mj PPN modules.

Its severity s(spathj
) can be calculated as s(spathj

)~
1

mj

Xmj

i~1

wsi
.

Further, the overall severity of the application under test can be

denoted as:

S(BPS)~
1

N

XN

j~1

s(spathj
)p(spathj

) ð3Þ

where N is the numbers of leak paths in the BPS. Severity is a

comprehensive and intuitive metric for evaluating privacy leak

behavior. The higher the severity, the severer the loss caused by

the leak behavior.

N Manipulability

Manipulability concerns whether the software application can

be manipulated by other applications. Although some application

only performs sub-procedure of a privacy leak behavior and thus

has low possibility and severity, they may become a component of

other malicious software in the multi-process collaborative work

mode. Typically, manipulability has two modes, the relay race

mode and the master/slave mode. The former splits its main

functionality flow into two or more consequent parts, while the

latter uses a master process to create and control slave processes. A

feature they both have is that they split the leak behavior into

several partial procedures. Therefore, manipulability should be

evaluated for the leak behavior that is only partially completed.

Specifically, it can be calculated for the paths that are not leak

paths but still contain a source position or a discrimination

position. And such paths should also be weighted by their severity.

In general, manipulability can be calculated as

M(BPS)~
1

NPL

XNPL

i~1

s(spathi
)p(spathi

) ð4Þ

where NPL is the number of partial leak paths in the BPS. The

above definition of manipulability simplifies the metric in practice,

but still captures the core of manipulation techniques. Although

high manipulability does not lead to direct damage to privacy

data, it is still necessary to pay special attention to it.

N Crypticity

Crypticity is to evaluate the ability of privacy leak behavior to

avoiding detection. Dedicately designed software applications

always employ hiding and obfuscating techniques to improve

their resistance against anti-virus software. There are many hiding

and obfuscating techniques that privacy leak software applications

often use. Most of them employ additional operations to disguise

obvious malicious behavior. Assume that within the system call

sequence of the target software application, nei extra system calls

are traced but not represented by transitions between the start

position and the end position of a behavior path spathi
. The

crypticity can then be calculated by

C(BPS,nei
)~

1

N

XN

i~1

nei

ni

p(spathi
) ð5Þ

Equation (5) indicates that the more the obfuscating or hiding

operations for disguising the privacy leak behavior, the higher

crypticity. Crypticity is essentially a complementary metric to

severity. The software application with high severity may be easily

detected and removed by anti-virus software, although high

crypticity may help the privacy leak software application be active

for a longer time and thus amplify its damage significantly.

Although the four metrics describe privacy leak behavior from

different aspects, they have interrelations between each other.

Fig. 5 summarizes the interrelationship, where the plus and minus

signs indicate the positive and negative correlation between two

metrics, respectively. The ‘‘+/2’’ signs denote the uncertain but

Privacy Leak Behavior Analysis

PLOS ONE | www.plosone.org 5 September 2013 | Volume 8 | Issue 9 | e73410



potential interrelations. We can see from Fig. 5 that the four

metrics constitute a closely linked entirety.

Possibility is a fundamental metric for evaluating privacy leak

behavior. High possibility means a large probability p spathi

� �
that

the behavior path exists. Because only if a privacy leak behavior

probably occurs, severity, manipulability and crypticity make

sense. Therefore, possibility is a prerequisite of severity, manip-

ulability and crypticity and p spathi

� �
thus appears in their formulae

as a factor. Severity and manipulability are complementary to

each other, which characterize the straightforward and potential

negative consequence of the privacy leak behavior of the software

application under consideration, respectively. Crypticity is more

special than other metrics. It may have an indirect impact on other

metrics, because the obfuscating technique can conceal extra

malicious operations. For example, it may cause unknown

negative consequences, and thus increase severity and manipula-

bility. Therefore, even if the other metrics are trivial, a software

application with high cypticity is still likely to exhibit privacy leak

behavior.

The Overall Leak Degree
In order to compare the overall degree of privacy leak behavior

of different software applications, a comprehensive metric need to

be proposed based on the possibility, severity, manipulability and

crypticity metrics. Quantifying the overall degree of privacy leak

behavior can be abstracted as a Multiple Attribute Decision

Making (MADM) problem. An MADM problem aims to choose

an item from a set of alternatives characterized by multiple

attributes. Consider an MADM problem with n alternatives that

denote the values of the four metrics of n software applications

under test. A matrix corresponding to privacy leak metric is shown

in Fig. 6, where the rows, denoted as P, S, M, C, correspond to the

four metrics, and the columes, denoted as A1, A2, …, An, correspond

to n alternative, i.e., the n software applications, respectively.

As aforementioned, the four metrics are interrelated. Therefore,

in order to evaluate the overall degree of privacy leak behavior of

the software application under test, we propose an algorithm,

called PLEAS (Privacy Leak ovErall quAntitative analysiS), based

on the Principal Component Analysis (PCA) to solve the above

MADM problem. PCA is a method for identifying patterns in

interrelated data and expressing the data in a way that highlights

their similarities and differences. PCA can guarantee that PLEAS

is able to obtain the most meaningful overall degree based on four

metrics for comparative analysis between different software

Figure 5. Interrelationship among the four metrics.
doi:10.1371/journal.pone.0073410.g005

Figure 6. Privacy leak metric matrix.
doi:10.1371/journal.pone.0073410.g006

Figure 7. The call sequence fragment of A1.
doi:10.1371/journal.pone.0073410.g007

Privacy Leak Behavior Analysis

PLOS ONE | www.plosone.org 6 September 2013 | Volume 8 | Issue 9 | e73410



applications. With PLEAS, the alternatives A1, A2, …, An will be

finally ranked. The higher the ranking value is, the more severe

the privacy leak behavior of the corresponding software applica-

tion will be. Readers are referred to Supporting Information S1 for

more details about PLEAS.

Results

This section validates the proposed PPN based approach to

quantitative analysis on privacy leak behavior. Specifically, we first

present an overview of the analysis environment and software set

used for experiments. Next, we show a case study on an Internet

software tool in order to demonstrate the effectiveness of the

developed approach. Finally, as a direct application, we adopt the

approach to carry out a comparative analysis on different software

categories and discuss the experimental results.

Analysis Environment
In the experiments, VMware Workstation 7.0 is used as a virtual

machine platform to build a Windows OS image. The core

algorithm of the PPN model is implemented by Python 3.1. API

monitor2 r9 is adopted to extract runtime execution traces of the

set of software tools under test. All the software tools are installed

and tested in different snapshots of the virtual host to avoid mutual

interference.

We selected the programs contained in the Windows OS (WIN

7 Professional Edition) as the evaluation baseline environment.

This program set includes system utilities under the system path

‘‘C:\\Windows\\System32’’ and the preinstalled software appli-

cations under the program path ‘‘C:\\Program Files’’. For some

software tools that need user interaction, we tested them manually

for 10 minutes. We then calculated the quantitative metrics of

these tools as the baseline values of the baseline environment. After

averaging the results of 1,026 benign software tools, the baseline

values of the total leak paths, possibility, severity, manipulability

and crypticity are 5, 0.35, 2.78, 2.59, and 3.26, respectively.

For the purpose of experiments, we also downloaded seven

main categories of software tools from the well-known free

software download website, Download.com: (1) entertainment

software, including games, music software, video software, etc; (2)

operating systems utilities, including file management software,

backup software, automation software, desktop enhancement, etc;

(3) Internet software, including browsers, email clients, file

download/upload software, social networking software, etc; (4)

business software, including office suites, account and billing

software, E-commerce software, etc; (5) educational software,

including E-book software, language software, student tools,

science software, etc; (6) developer tools, including IDEs,

debugging software, coding utility; (7) security software, including

anti-virus software, encryption software, firewalls, etc. Specially,

for each category, we downloaded the top ten software applica-

tions according to their popularity.

Figure 8. The PPN presenting the privacy leak behavior of A1.
doi:10.1371/journal.pone.0073410.g008

Figure 9. Quantitative values of A1 among browsers.
doi:10.1371/journal.pone.0073410.g009

Privacy Leak Behavior Analysis

PLOS ONE | www.plosone.org 7 September 2013 | Volume 8 | Issue 9 | e73410



Case Study on a Web Browser
A web browser, referred to as A1 in this paper, has many plug-

in enabled functions. Its call sequence fragments are depicted in

Fig. 7. If the user installs a plug-in for managing the browse history

and the favorite folder, it exposes to leak behavior, such as,

collecting the cookies of some websitses and the sensitive system

info beyond its authority. According to the call sequence,

‘‘GetComputerName, GetUserName, InternetGetCookie, Socket,

Bind, Connect, Send’’, we obtained the PPN model as shown in

Fig. 8. By tracing the execution of A1, we collected 15 leak

behavior paths within 121 behavior paths. The number of leak

behavior paths of A1 is larger than that of the baseline

environment. The possibility, P, of the leak paths of A1 is 0.67,

which is much higher than the corresponding baseline value, 0.35,

indicating that A1 very probably has privacy leak behavior.

According to the characteristic of web browsers, system data and

Figure 10. The four metrics and the overall degree of the seven categories of software applications.
doi:10.1371/journal.pone.0073410.g010

Table 2. quantitative metrics of different software categories.

Category P S M C O

avg. std.dev. avg. std.dev. avg. std.dev. avg. std.dev.

Entertainment 0.473 0.152 0.434 0.095 0.920 0.080 0.265 0.062 0.510

Utilities 0.669 0.102 0.555 0.148 0.534 0.081 0.792 0.185 0.677

Internet 0.649 0.105 0.709 0.130 0.473 0.087 0.135 0.026 0.695

Business 0.503 0.153 0.255 0.042 0.324 0.068 0.036 0.009 0.354

Educational 0.230 0.049 0.075 0.012 0.431 0.095 0.454 0.080 0.145

Developer 0.805 0.176 0.589 0.110 0.765 0.156 0.563 0.097 0.595

Security 0.666 0.121 0.674 0.126 0.588 0.107 0.231 0.035 0.506

doi:10.1371/journal.pone.0073410.t002

Privacy Leak Behavior Analysis

PLOS ONE | www.plosone.org 8 September 2013 | Volume 8 | Issue 9 | e73410



application data that contain the browse history, usage habit and

favorite websites of users are prone to be leaked. Therefore, the

severity S of A1 is obtained to be 4.15. Due to the high percentage

of the partial behavior paths, although A1 does not have many

complete leak paths, its manipulability M was 3.39, higher than

the baseline value. In addition, since a few obfuscating techniques

are adopted by A1, its crypticity, P, is 9.51. The above results show

that A1 more probably leaks privacy data, causes more severe

consequence, and is more probably manipulated by other software

tools, than the baseline program set in WIN 7, which is basically a

reasonable observation.

In order to observe the relative performance of A1, we selected

9 other web browsers and calculated the average and variance of

the corresponding four metrics. The values of different metrics

were further normalized into [0, 1] and compared with those of A1

in Fig. 9. It can be seen that the consequence of privacy leak

behavior of A1 is more severe than the average consequence of

other browsers, while its manipulability is lower than them. As for

possibility and crypticity, A1 and other browers are at the same

level.

In summary, this case study has well demonstrated that the

developed approach is effectiveness in quatitatively analyzing the

privacy leak behavior of software applications.

Comparative Analysis on Different Software Categories
In order to demonstrate the value and merits of the developed

PPN based analysis approach, in this subsection we employ it to

investigate the privacy leak behavior of different software

categories. For each software category, we calculated the average

and standard deviation of the four quantitative metrics and futher

obtained the overall degree of privacy leak behaviors using the

PLEAS algorithm. The results are presented in Table 2. Figure 10

presents the corresponding ordered result for each metric.

Fig. 10 (a) shows that the category with the largest possibility is

developer tools, because most developer tools not only manipulate

many kinds of system resource such as file, processes and services,

but also communicate with their remote servers such as code

repository. The system utilities, security software and Internet

software also have chances to access different kinds of privacy data

and send them out via certain network operations, such as,

updating database, getting new versions or communicating with

service providers. Business software, entertainment software and

educational software usually focus on local operations in their own

data spaces and thus have fewer chances to form complete leak

paths.

Fig. 10 (b) indicates that Internet software, security software and

developer software are able to access most kinds of privacy data

and have chances to send them out. Their behavior paths contain

leak paths in all kinds of PPN modules such that the severity

parameter s spathi

� �
is usually larger than that of other software

categories. Therefore, the severity of these categories is high. Due

to similar reasons, entertainment software, business software and

educational software have low severity.

High manipulability means that the software has more partial

privacy leak paths. Fig. 10 (c) shows that entertainment software

and utilities software have high manipulability because they

usually collect some privacy data but do not send them out.

Therefore, they often contain partial leak paths with only a source

position, but without a discrimination position in the correspond-

ing PPNs. Educational software and business software usually do

not access privacy data. Consequently, their manipulability is low.

As shown in Fig.10 (d), obfuscating techniques involved in

software design are often for the encryption of internal

implementation and therefore immune to most of the reverse

engineering tools. Software like utilities and business software

which are not free usually contain many such techniques so that

their crypticity is high. For developer tools that are usually open

source, their crypticity is low.

As a comprehensive evaluation metric, the overall privacy leak

degree of the seven software categories is presented in Fig.10 (e). It

can be observed that Internet software, system utilizes and

developer tools have a high privacy leak degree and educational

software has the lowest degree. It should be pointed out that this is

a general result for different software categories and it may not be

appropriate for some special software tools. From this result, we

can conclude that privacy leak behavior of software is mainly

affected by three factors, namely, the chances that the application

has to access important privacy data sources, the network function

for transferring privacy data, and the crypticity for concealling the

unauthorized operations.

Comparing the order of the seven software categories on

different metrics, we find that the relationships between possibility

and other three metrics are obviously verified. The possibility of

Internet software, developer tools and system utility is high, and

other three metrics of them are also higher than other software

categories. The relation that severity and manipulability are

complementary to each other is also verified. Internet software,

security software, developer tools, utilities and entertainment

software have reverse orders on severity and manipulability,

respetively. The order of different software categories on crypticity

implies the relationship we presented in the previous section.

Although the other metrics of some software categories are low,

they still have privacy leak threats if they have high crypticity. For

example, the overall privacy leak degree of entertainment software

is high, because its crypticity is high, although it has low possibility

and severity.

From the above experimental results and reasonable explana-

tions, we can conclude that the developed PPN based approach is

an effective tool for quantitatively analyzeing privacy leak behavior

of different software applications.

Supporting Information

Supporting Information S1 Supporting Materials.

(DOCX)

Author Contributions

Conceived and designed the experiments: LF. Performed the experiments:

LF YW. Analyzed the data: LF YW. Contributed reagents/materials/

analysis tools: YW XJ JL XC SJ. Wrote the paper: LF XJ JL.

References

1.

system for finding application leaks with black box differential

testing. In the 15th ACM Conference on Computer and Communications

Security. Alexandria, Virginia, USA. ACM. pp. 279–288.

2. Borders K, Prakash A (2009) Quantifying Information Leaks in Outbound Web

Traffic. In the 30th IEEE Symposium on Security and Privacy. Oakland,

California, USA. IEEE. pp. 129–140.

3. Egele M, Kruegel C, Kirda E, Vigna G (2011) PiOS: Detecting Privacy Leaks in

iOS Applications. In the 18th Annual Network & Distributed System Security

Symposium. San Diego, California, USA. The Internet Society.

4. Kruegel C, Robertson W, Vigna G (2004) Detecting kernel-level rootkits

through binary analysis. In the 20th Annual Computer Security Applications

Conference. 0006-10-20; Tucson, Arizona, USA. ACM. pp. 91–100.

Privacy Leak Behavior Analysis

PLOS ONE | www.plosone.org 9 September 2013 | Volume 8 | Issue 9 | e73410

Jung J, Sheth A, Greenstein B, Wetherall D, Maganis G, et al. (2008) Privacy

oracle: a

Administrator
Typewritten Text

Administrator
Typewritten Text

Administrator
Typewritten Text

Administrator
Typewritten Text

Administrator
Typewritten Text

Administrator
Typewritten Text



5. Moser A, Kruegel C, Kirda E (2007) Limits of Static Analysis for Malware

Detection. In the 23th Annual Computer Security Applications Conference.

Miami Beach, FL, USA. ACM. pp. 421–430.

6. Egele M, Kruegel C, Kirda E, Yin H, Song D (2007) Dynamic spyware analysis.

In the 16th USENIX Security Symposium. Boston, MA, USA. USENIX

Association. pp. 233–246.

7. Lanzi A, Sharif MI, Lee W (2009) K-Tracer: A System for Extracting Kernel

Malware Behavior. In the 16th Annual Network & Distributed System Security

Symposium. 2009; San Diego, California, USA. The Internet Society.

8. Moser A, Kruegel C, Kirda E (2007) Exploring Multiple Execution Paths for

Malware Analysis. In the 28th IEEE Symposium on Security and Privacy. 2007;
Oakland, California, USA. IEEE. pp. 231–245.

9. Comparetti PM, Salvaneschi G, Kirda E, Kolbitsch C, Kruegel C, et al. (2010)

Identifying Dormant Functionality in Malware Programs. In the 31th IEEE
Symposium on Security and Privacy. 2010; Oakland, California, USA. IEEE.

pp. 61–76.
10. Fan L, Wang Y, Cheng X, Li J (2012) Analyzing Application Private

Information Leaks With Privacy Petri Net. In the 17th IEEE Symposium on

Computers and Communication. 2012; Cappadocia, Turkey. IEEE.

Privacy Leak Behavior Analysis

PLOS ONE | www.plosone.org 10 September 2013 | Volume 8 | Issue 9 | e73410




