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Abstract

Motivation: Accurate annotation of protein functions is fundamental for understanding molecular

and cellular physiology. Data-driven methods hold promise for systematically deriving rules under-

lying the relationship between protein structure and function. However, the choice of protein

structural representation is critical. Pre-defined biochemical features emphasize certain aspects of

protein properties while ignoring others, and therefore may fail to capture critical information in

complex protein sites.

Results: In this paper, we present a general framework that applies 3D convolutional neural net-

works (3DCNNs) to structure-based protein functional site detection. The framework can extract

task-dependent features automatically from the raw atom distributions. We benchmarked our

method against other methods and demonstrate better or comparable performance for site detec-

tion. Our deep 3DCNNs achieved an average recall of 0.955 at a precision threshold of 0.99 on

PROSITE families, detected 98.89 and 92.88% of nitric oxide synthase and TRYPSIN-like enzyme

sites in Catalytic Site Atlas, and showed good performance on challenging cases where sequence

motifs are absent but a function is known to exist. Finally, we inspected the individual contributions

of each atom to the classification decisions and show that our models successfully recapitulate

known 3D features within protein functional sites.

Availability and implementation: The 3DCNN models described in this paper are available at

https://simtk.org/projects/fscnn.

Contact: rbaltman@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Accurate annotation of protein functions is key to understanding cellu-

lar physiology at the molecular level. Structural genomics efforts have

enabled an exponential growth in the determination of novel protein

structures (Grabowski et al., 2009). However, biochemical character-

ization of protein function does not scale as our database of structures

increases (Liolios et al., 2010). Computational methods for protein

function annotation are therefore urgently needed. Traditionally, se-

quence similarities are used to infer function for newly identified pro-

teins. One common approach is to search for local sequence motifs

within a functional family; sequence motif databases include

PROSITE (Sigrist et al., 2012), PRINTS (Attwood, 2002), BLOCKS

(Henikoff et al., 2000), InterPro (Hunter et al., 2009) and PANTHER

(Mi et al., 2005). However, as sequences diverge, the conserved signals

become increasingly weak. Sequence-based methods can therefore

have high false negative (FN) rates for novel proteins (Xiong, 2006).

They also have limited ability to capture physiochemical properties

and 3D orientation essential for a functional site.

An alternative approach is to seek -3D motifs within protein

sites—when a structure is available. Early template-based methods

such as FFFs (Fetrow and Skolnick, 1998) and TESS (Wallace et al.,

1997), use information about key site residues and local structural

alignments to identify consensus 3D motifs within functionally

similar proteins. More recently, machine learning algorithms have
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enabled automated discovery of 3D motifs in functional sites.

GASPS (Polacco and Babbitt, 2006) uses a genetic algorithm strat-

egy to create 3D templates within a protein family to best identify

family members from the background. GASS (Izidoro et al., 2015;

Moraes et al., 2017), on the other hand, employs genetic algorithms

to search for similar active sites in proteins, given active site tem-

plates. Structurally Aligned Local Sites of Activities (Wang et al.,

2013) combines predicted functional residues from POOL

(Somarowthu et al., 2011) with local structural alignments to create

characteristic structural patterns within a functional family. These

methods provide a natural way of identifying key residues in active

sites. However, in cases where functional residues are not as precise-

ly oriented, incorporation of higher-level physiochemical features

can help performance.

Property-based methods use a pre-defined set of biochemical or

structural properties to describe a protein site microenvironment.

For example, FEATURE (Bagley and Altman, 1995) defines a pro-

tein site by its 3D local neighborhood, consisting of six 1.25 Å-thick

concentric shells, and evaluates 80 physicochemical properties with-

in each shell. It has been applied to the detection of functional sites

(Buturovic et al., 2014), the characterization of protein pockets (Liu

and Altman, 2011) and prediction of pocket–ligand interactions

(Tang and Altman, 2014). However, FEATURE is limited by the

high dimensionality, the inhomogeneity of features and the loss of

orientation information. The need to define input biochemical fea-

tures prior to using machine learning algorithms can lead to loss of

critical information relevant to protein functional mechanisms.

The emergence of deep learning has enabled development of

methods that extract task-specific features directly from raw data.

Deep learning algorithms have been applied to small molecule repre-

sentations (Duvenaud et al., 2015; Kearnes et al., 2016), protein

contact prediction (Skwark et al., 2014) and protein–ligand inter-

action prediction (Gomes et al., 2017; Ragoza et al., 2017). The

strength of deep learning lies in its ability to learn useful representa-

tions directly from raw data (LeCun et al., 2015). Convolutional

neural networks (CNNs) (Krizhevsky et al., 2012) are a subclass of

deep learning networks that specialize in extracting spatial features

in data. CNNs search for recurring spatial patterns and compose

them into complex features in a hierarchical manner. Biochemical

interactions start between atoms and can extend over space to form

complex interactions. We have previously applied 3D convolutional

neural networks (3DCNNs) to amino acid similarity analysis and

showed deep learning framework outperformed conventional

feature-based algorithms (Torng and Altman, 2017).

In this paper, we develop a general framework that applies

3DCNNs for protein functional site annotation. We represent pro-

tein structures as 3D images; analogous to red, green, blue channels

in images, a protein site is represented as four atom ‘channels’ (cor-

responding to carbon, oxygen, nitrogen and sulfur) in a 20-Å box

surrounding a location within the protein site. Driven by supervised

labels, the developed pipeline automatically extracts task-specific

features from the raw atom distribution. We perform head-to-head

comparisons of prediction performances between our 3DCNNs,

SVM models trained with raw atom distributions (Voxel-SVM) and

SVM and 1DCNN classifiers that utilize the FEATURE descriptors.

Our 3DCNNs achieve an average prediction recall of 0.955 at the

precision threshold of 0.99 on PROSITE functional families, com-

pared to recalls of 0.883, 0.857 and 0.754 of the Voxel-SVM,

FEATURE-SVM and FEATURE-1DCNN models, respectively.

We characterized performance of the models on challenging cases

where PROSITE motifs miss or falsely detect functional signals

and additionally benchmarked our performance with GASS

(Izidoro et al., 2015) on enzyme site detection tasks. Finally, we

visualized individual contributions of each atom to the classification

decision and show that our networks recognize meaningful bio-

chemical features within protein functional sites.

2 Materials and methods

2.1 Datasets
2.1.1 PROSITE functional families

To demonstrate the advantages of 3DCNNs over conventional mod-

els, we focus on 10 of the 20 functional sites where models in our

previous work performed least well (Buturovic et al., 2014)

(Supplementary Table S1). Each of the 10 functional sites was

defined using sequence motifs annotated in the PROSITE database.

Each PROSITE pattern comprises multiple conserved residues, each

of which can be used as a reference residue to train a ‘residue model’

for the overall functional site. In this study, to simplify the proced-

ure, for each functional site, we choose a single conserved residue in

the PROSITE pattern, and a key functional atom selected based on

its chemical properties. Each site is then defined around this func-

tional atom of the selected residue (Supplementary Table S2).

To train and validate our models, we used the PROSITE data-

base to construct the training and independent test datasets for each

functional site. Specifically, for each functional family, the

PROSITE database provides (i) PROSITE true positive (PROSITE

TP) sequences: when PROSITE motif successfully detects a true site.

(ii) PROSITE false negative (PROSITE FN) sequences: when the

PROSITE motif is absent but the function is known to exist.

(iii) PROSITE false positive (PROSITE FP) sequences: when the

PROSITE motif is present but the function is not. We trained our

models on examples of each functional site, using the PROSITE TP

sites as positive training examples, and randomly sampled PDB

(Berman et al., 2000) structures as negative training examples. To

independently validate our trained models, we used PROSITE FN

sites as the positive test set and PROSITE FP sites as the negative

test set. Since only PROSITE TP sites and randomly sampled nega-

tive sites were used in training, none of our models have seen these

test sites.

2.1.1.1 Training dataset. We used the same true positive and nega-

tive structures as in Buturovic et al., 2014. For each true positive

protein structure, we mapped the PROSITE pattern to the protein

sequence, identified our target residue within the mapped subse-

quence(s), and extracted the coordinate(s) of the functional atom of

the residue(s)—thus defining the true positive sites. For the negative

structures, we extract coordinates of all atoms with the same (resi-

due, atom) types as the (target residue, functional atom) and

sampled 50 000 atom coordinates per functional family. Number of

true positive and negative examples are summarized in

Supplementary Table S3.

2.1.1.2 Independent test dataset. For each functional site, we col-

lected the FN Uniprot (Consortium, 2014) sequences from

PROSITE. For each mapped structure, we identified key subsequen-

ces or catalytic residues associated with the function (Supplementary

Note S1). We then extracted coordinates of the functional atoms of

the identified catalytic residues or of all target residues within the

key subsequences—thus defining the PROSITE FN sites. To con-

struct the PROSITE FP set, for each functional site, we downloaded

structures that map to the PROSITE FP Uniprot sequences, and

removed structures that do not conform to the PROSITE pattern.
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For the remaining, we extracted coordinates of the functional atoms

of all target residues. The final PROSITE FP and FN datasets com-

prise a set of Uniprot IDs with their PDB structures and coordinates

(Supplementary Tables S4 and S5).

2.1.2 Protein enzyme site detection

2.1.2.1 NOS dataset. We collected our nitric oxide synthase (NOS)

structure set following procedures for DS 1 described in

Izidoro et al. (Izidoro et al., 2015), resulting in 138 NOS structures,

5000 negative train structures and 139 negative test structures

(Supplementary Note S2.) Using Catalytic Site Atlas (CSA)

(Furnham et al., 2014) annotation of structure 3NOS, we identified

four key residue types: arginine (ARG), cysteine (CYS), glutamic

acid (GLU), tryptophan (TRP), and constructed four positive and

negative training sets, each for one of the key residue types. For each

key residue type, (i) we identified CSA residue(s) that matches the

residue type in the positive NOS structures to form the positive

training set. (ii) We identified all residues that match the key residue

type in the negative train structures, and sampled 50 000 sites to

form the negative training set. The test sites comprise all residues

that match the key residue types in the negative test structures and

positive NOS structures. Sites in the positive NOS structures are

evaluated by the corresponding test fold model trained by 5-fold

cross-validation (Sections 2.4.3.1 and 2.4.3.2).

2.1.2.2 TRYPSIN-like dataset. The TRYPSIN-like dataset is con-

structed following procedures for DS 2 in Izidoro et al. (Izidoro

et al., 2015). We first identified PDBs under the same superfamily as

structure 1A0J from SCOP (Chandonia et al., 2017), and removed

the structures that lack CSA annotation, resulting in 1447 struc-

tures. Coordinates of the functional atoms of all histidine (HIS) and

serine (SER) residues in all 1447 structures are used as the test set.

2.1.3 Input featurization and processing

2.1.3.1 Atom-channel dataset. For each of the atom coordinate

extracted in Sections 2.1.1 and 2.1.2, we define a local 20-Å cubical

box using orthogonal axes defined by the backbone geometry of the

parent amino acid. The positive z-axis is chosen such that it is or-

thogonal to the x–y plane defined by N-Ca-C, and has a positive dot

product with the Ca-Cb bond. Using the defined orientation, we ex-

tract a 20 Å box around the Cb atom of the residue (Fig. 1).

Each local 20-Å box is then divided into square 3D voxels with

1-Å dimension. Within each voxel, we record the presence of car-

bon, oxygen, sulfur and nitrogen atoms in a corresponding atom

type channel (Fig. 2). To approximate atom connectivity and elec-

tron delocalization, we apply Gaussian filters to the discrete counts,

using the average Van der Waals radii of the atom types as the SD.

The resulting four 3D-matrices are then stacked together as different

input channels.

2.1.3.2 FEATURE dataset. For each functional site, we generated

the true positive, true negative, PROSITE FP and PROSITE FN

datasets by applying FEATURE (Fig. 3) (Supplementary Table S6)

to each recorded functional atom location (Section 2.1.1).

2.2 Model design
To perform comparisons between the deep learning framework and

conventional machine learning models, we benchmarked perform-

ances of models that use combinations of two different input repre-

sentations: 3D Voxels versus FEATURE descriptors, and two

Fig. 1. Local box extraction. (a) For each recorded functional atom coordinate (dotted sphere), the amino acid which this atom belongs to is identified (highlighted

in red) and assigned as the central amino acid. (b) Backbone atoms of the selected amino acid are used to calculate the orthogonal axes for box extraction. (c)

Using the defined orientation, a local box of 20 Å is extracted around the selected amino acid, centering on the Cb atom

Fig. 2. Local box featurization. (a) Structure in each local 20 Å box is decom-

posed into Carbon, Oxygen, Nitrogen, and Sulfur channels. (b) Each atom

type channel structure is further divided into 3D 1-Å voxels, within which the

presence of atom of the corresponding atom type is recorded. Gaussian fil-

ters are applied to the discrete counts within each channel. (c) The resulting

numerical 3D matrices of the four atom types are then stacked together as dif-

ferent input channels
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different learning algorithms: SVM models versus CNNs. Thus, we

construct the following four models: 3DCNN, Voxel-SVM

Classifier, FEATURE-SVM Classifier and FEATURE-1DCNN

(Fig. 4).

3DCNNs directly take in voxel representation of local protein

boxes, and use three sequential alternating 3D Convolutional and

max-pooling layers to search for biochemical features at different

spatial scales. The Softmax classifier layer uses the extracted features

and calculates the probability of the function of interest. Model

parameters are summarized in Supplementary Table S7.

The Voxel-SVM and FEATURE-SVM classifiers take in voxel and

FEATURE representation of local protein environment, respectively, and

employ SVM classifiers to make classifications. FEATURE-1DCNNs

take in FEATURE representation of local protein structure as input, fol-

lowed by two 1D convolutional layers with 32 and 64 filters, respective-

ly (each with filter size of 10), and end with a Softmax classifier layer.

2.3 Model training
For each functional site, we used 5-fold cross-validation to train our

models. The folds were created using stratification by class label.

Within each training fold, we up-sampled the positive examples

such that the final training examples are balanced. The same train/

validation/test splits were used to train models of the four methods.

Implementation and training procedures of the models are summar-

ized in Supplementary Note S3.

2.4 Evaluation
2.4.1 Five-fold cross-validation on PROSITE TP and TN sites

We evaluated performance by examining recalls of models on

PROSITE true positive and negative datasets from our cross-valid-

ation procedure. To minimize FP predictions, we evaluated our

models at high precision of 0.99. For each site, we treated all five

test folds as a single continuous experiment and evaluated the aggre-

gate precision and recall values (Supplementary Note S4). We then

chose the threshold that results in a precision value of 0.99 or above,

and evaluated the recall value.

Additionally, for each functional site, we computed the mean

and SDs of the precision and recall between the fold models for each

method. To evaluate the statistical significance of our results, we fol-

lowed procedures outlined in (Dem�sar, 2006) for comparing per-

formances of multiple classifiers over multiple data sets. Specifically,

we performed Friedman test (Friedman, 1937, 1940) followed by

post-hoc two-tailed Nemenyi test (Nemenyi, 1963).

2.4.2 Independent test: PROSITE FN and FP examples

For each functional site model, we then evaluated the PROSITE FN

and FP examples, using the same probability threshold determined

in Section 2.4.1. Specifically, representative probability estimate of a

test site is produced by selecting the maximum probability estimate

generated among the 5-fold models. The test site is then assigned as

a positive site if the representative probability score is higher than

the specified threshold, or negative otherwise.

A PROSITE FN site is predicted as positive if any of the 5-fold

models assigns a probability estimate higher than the threshold. If a

site is predicted as positive, we confirm by examination of the 3D

local structure. A PROSITE FN PDB structure or Uniprot sequence

is considered correctly predicted if any of its true sites are detected.

On the other hand, a PROSITE FP site is predicted to be negative

only if all probability estimates from the 5-fold models are below

the threshold. A PROSITE FP PDB structure or Uniprot sequence is

considered correctly predicted only if all examined sites are negative.

For both datasets, our final evaluation metric evaluates the number

of PDBs and Uniprot IDs predicted correctly, divided by the total

number of PDBs and Uniprot IDs in the datasets.

2.4.3 Benchmarking protein enzyme site detection with GASS

We benchmarked our 3DCNNs against GASS (Izidoro et al., 2015)

on the three protein enzyme site detection and classification tasks:

2.4.3.1 Detecting catalytic sites within a family. Our first experi-

ment tests our ability to detect catalytic sites within the NOS family.

We trained four residue-3DCNNs on our CYS, ARG, TRP, GLU

training datasets, each using 5-fold cross-validation. Using the corre-

sponding test fold model, we examined all residues that match the

Fig. 3. The FEATURE program. FEATURE characterizes a specified location in

protein structure by dividing the local environment into six concentric shells,

each of 1.25 Å in thickness. Within each shell, 80 different physicochemical

properties are evaluated, resulting in a numeric vector of length 480

Fig. 4. Schematic diagram of the models. (a) 3DCNNs take in voxel represen-

tation of local protein boxes. The 3D convolutional and max-pooling layers

extract 3D biochemical features at different spatial scales and the Softmax

classifier calculates the class probabilities. Prediction error drives parameter

updates in the Softmax layer and convolutional filters to achieve optimal per-

formance. (b) The Voxel-SVM models take in flattened voxel representation

and calculate class probabilities via the SVM classifier. (c) The FEATURE-

SVM models use FEATURE vectors as input, and calculate class probabilities

via the SVM classifier. In contrast to 3DCNNs, the input features are fixed dur-

ing training. (d) The FEATURE-1DCNNs extract 1D features from FEATURE

vectors and use the Softmax classifier to make predictions
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key residue types in the positive structures. For each residue model,

we evaluate (1) The percentage of true sites detected (2) Number of

FP sites detected. The overall performance was also evaluated by

considering sites with any positive key residue predictions as

positive.

2.4.3.2 Classifying sites within a family against random structures.

The second experiment tests our models on 139 non-NOS family

structures previously unseen by our models. Combining probability

scores of the negative structures (Supplementary Note S5) and of the

NOS structures from Section 2.4.3.1, we evaluate precision and re-

call for each residue model for classifying NOS structures against

random structures, and area under the curve (AUC) scores at the

residue-level and structure-level (Supplementary Note S5).

2.4.3.3 Detecting catalytic sites within less-controlled datasets. In

addition to the tests that benchmarked the methods on small and

controlled sets of enzymes, we compared performances of 3DCNNs

and GASS on detecting sites in 1447 Trypsin-like enzymes. We

employed the TRYPSIN_HIS and TRYPSIN_SER models from our

PROSITE experiment to examine all HIS and SER residues in the

test structures. For each of the two models, we evaluate (i) the per-

centage of true sites detected (ii) number of FP sites detected. We

also evaluate the overall performance by considering sites with any

positive residue predictions as positive. Details of the above three

experiments are summarized in Supplementary Note S5.

2.5 Network visualization: atom importance map
The atom importance map shows the contribution of each atom to

the final classification decisions by displaying the importance score

(0–100) in color. Importance scores are calculated following the

procedure described previously (Torng and Altman, 2017). We add-

itionally use mTM-align (Dong et al., 2018) to identify conserved

structural features among local site boxes. For each functional site,

we randomly sampled 30 positive site boxes to perform the

alignment.

3 Results

3.1 Performances of models on PROSITE functional

families
Precision and recall values of 3DCNNs, Voxel-SVM, FEATURE-

SVM and FEATURE-1DCNN models for the true positive and true

negative datasets are summarized in Table 1. Means and SDs of pre-

cision and recall between the fold models are summarized in

Supplementary Table S8.

Our statistical analysis indicates that the performance of the four

methods are not drawn from the same distribution (P < 0.05) and

that 3DCNN models significantly outperformed FEATURE-SVM

and FEATURE-1DCNN models (P < 0.05). Also, the Voxel-SVM

models performed significantly better than the FEATURE-1DCNN

models (P < 0.05) (details provided in Supplementary Note S6 and

Supplementary Table S9). Performance statistics of the models on

the independent test set: PROSITE FP and FN datasets are summar-

ized in Table 2.

3.2 Performances on enzyme site detection tasks
3.2.1 Detecting catalytic sites within the NOS family

Among the 138 NOS structures, there are a total of 1066 residue

sites, and 270 overall catalytic sites. At the individual residue-level,

our 3DCNNs detected 1060 out of 1066 residue sites, missing 3

CYS sites from structures 1TLL and 1F20, and 3 GLU sites from

structures 2ORQ, 2ORP, and 1NOC. No FP site was detected

among the positive NOS structures. At the NOS site level, we

detected 267 out of 270 NOS sites (98.89%) annotated in CSA.

Detailed results are summarized in Supplementary Note S7 and

Supplementary Table S11.

The percentage of sites detected using the 3DCNN models and

GASS are summarized in Table 3. Although there is a slight differ-

ence in the number of NOS structures between the two datasets, we

believe this would not result in significant biases. An example visual-

ization of detecting NOS sites using 3DCNNs is shown in

Supplementary Figure S1.

3.2.2 Classifying catalytic NOS sites against random structures

Using the 5-fold models trained in Section 2.4.3.1, no FP sites were

detected among the negative test PDBs at the default probability

Table 1. Precision and recall values for PROSITE TP and TN

examples

PROSITE site Input Method Precision Recall Recall SD

between

folds

EGF_1 Voxels 3DCNN 0.992 0.836 0.105

SVM 0.99 0.693 0.097

FEATURE SVM 0.988 0.571 0.122

1DCNN 0.984 0.450 0.285

TRYPSIN_SER Voxels 3DCNN 0.994 0.991 0.013

SVM 0.990 0.984 0.020

FEATURE SVM 0.990 0.962 0.019

1DCNN 0.990 0.968 0.027

RNASE_

PANCREATIC

Voxels 3DCNN 0.992 0.985 0.010

SVM 0.990 0.982 0.030

FEATURE SVM 0.992 0.900 0.042

1DCNN 0.992 0.926 0.042

EF_HAND_1 Voxels 3DCNN 0.996 0.899 0.051

SVM 0.990 0.888 0.060

FEATURE SVM 0.990 0.840 0.089

1DCNN 0.991 0.851 0.056

IG_MHC Voxels 3DCNN 0.990 0.915 0.035

SVM 0.990 0.741 0.053

FEATURE SVM 0.990 0.610 0.070

1DCNN 0.982 0.304 0.227

PROTEIN_

KINASE_TYR

Voxels 3DCNN 0.997 0.993 0.008

SVM 0.993 0.94 0.025

FEATURE SVM 0.993 0.913 0.059

1DCNN 0.989 0.63 0.096

TRYPSIN_HIS Voxels 3DCNN 0.993 0.998 0.005

SVM 0.993 0.998 0.004

FEATURE SVM 0.991 0.957 0.033

1DCNN 0.990 0.935 0.036

INSULIN Voxels 3DCNN 0.993 0.954 0.013

SVM 0.991 0.972 0.019

FEATURE SVM 0.989 0.858 0.058

1DCNN 0.991 0.916 0.024

PROTEIN_

KINASE_ST

Voxels 3DCNN 0.992 0.977 0.023

SVM 0.988 0.641 0.101

FEATURE SVM 0.991 0.939 0.018

1DCNN 0.990 0.587 0.125

ADH_SHORT Voxels 3DCNN 1.0 0.995 0.006

SVM 0.995 0.992 0.016

FEATURE SVM 0.992 0.987 0.017

1DCNN 0.989 0.976 0.021

The bold values highlight the best performing model(s) for each task.
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threshold 0.5. Precisions and recalls of each residue model for classi-

fying NOS structures against random structures are summarized in

Supplementary Table S12. GASS reported the AUC considering the

distance threshold as the performance metric. To compare perform-

ance, we report the residue-level and structure-level AUC measures

while varying our probability threshold (Supplementary Note S5).

The AUC scores are summarized in Table 4.

3.2.3 Detecting catalytic sites within TRYPSIN-like enzymes

3DCNN models detected catalytic sites in 1330 out of 1447

enzymes by using our TRYPSIN_HIS models only. Using

TRYPSIN_SER model only, we detected catalytic sites in 1287 out

1447 of enzymes. Using both models, we detected catalytic sites in

1344 out 1447 of enzymes. Percentage of sites detected using the

TRYPSIN_HIS and TRYPSIN_SER 3DCNN models, and average

results of GASS running nine templates against 1085 enzymes are

summarized in Table 5. Nine ‘false positive’ residue sites are

detected by our 3DCNNs but are not annotated in CSA. Further

examination showed that they are correct predictions from our

models that are not documented in CSA. For example, CSA annota-

tion of structure 2LPR list ASP (A, 102), GLY (A, 193), and HIS (A,

57) as key residues. Our 3DCNN models additionally predicted SER

(A, 195) as part of the catalytic site, which agrees with Bone et al.

(Bone et al., 1991). These nine predictions are summarized in

Supplementary Table S13.

Table 2. Performance statistics of PROSITE FP and PROSITE FN sites

PROSITE site Method PROSITE FN Uniprot PROSITE FN PDB PROSITE FP Uniprot PROSITE FP PDB

EGF_1 3DCNN 6/15 58/90 3/3 19/19

Voxel-SVM 5/15 57/90 3/3 19/19

FF-SVM 6/15 34/90 3/3 19/19

1DCNN 4/15 31/90 3/3 19/19

TRYPSIN_SER 3DCNN 6/7 9/12 1/1 1/1

Voxel-SVM 6/7 9/12 0/1 0/1

FF-SVM 6/7 9/12 1/1 1/1

1DCNN 6/7 9/12 0/1 0/1

EF_HAND_1 3DCNN 12/16 34/48 23/25 125/128

Voxel-SVM 11/16 30/48 22/25 125/128

FF-SVM 11/16 28/48 22/25 106/128

1DCNN 11/16 27/48 21/25 77/128

IG_MHC 3DCNN 5/7 8/47 10/10 31/31

Voxel-SVM 4/7 9/47 10/10 31/31

FF-SVM 4/7 8/47 10/10 31/31

1DCNN 3/7 8/47 10/10 31/31

PROTEIN_

KINASE_

TYR

3DCNN 1/1 3/3 5/5 20/20

Voxel-SVM 1/1 3/3 5/5 20/20

FF-SVM 1/1 3/3 5/5 20/20

1DCNN 1/1 3/3 5/5 20/20

TRYPSIN_HIS 3DCNN 5/6 10/16 2/2 4/4

Voxel-SVM 5/6 10/16 2/2 4/4

FF-SVM 2/6 3/16 2/2 4/4

1DCNN 2/6 3/16 2/2 4/4

PROTEIN_

KINASE_

ST

3DCNN 19/20 268/271 — —

Voxel-SVM 16/20 226/271 — —

FF-SVM 18/20 264/271 — —

1DCNN 15/20 235/271 — —

ADH_

SHORT

3DCNN 5/8 7/14 8/9 32/33

Voxel-SVM 5/8 7/14 9/9 33/33

FF-SVM 6/8 8/14 9/9 33/33

1DCNN 8/8 12/14 9/9 33/33

Note: For each functional site and each method, the entry records (the number of Uniprot IDs and PDBs correctly predicted)/(total number of Uniprot IDs and

PDBs in the PROSITE FP or FN dataset) A ‘–’ indicates that no PROSITE FP or FN structure was available for the functional site. FF-SVM refers to FEATURE-

SVM models. The bold values highlight the best performing model(s) for each task.

Table 3. Percentage of NOS sites detected using 3DCNNs and

GASS

Method Residue model/template Percentage of sites detected (%)

3DCNN CYS 98.89 Out of 270 sites in

138 PDBsARG 98.89

TRP 98.89

GLU 95.93

Overall 98.89

GASS Best template—3NOS 100 Out of 248 sites in

125 PDBsAll structures against all 94.49

Table 4. 3DCNN and GASS AUC scores for NOS structure

classification

Method AUC Total Positive

3DCNN—residue level 0.998 42 556 sites 1066 sites

3DCNN—structure level 0.986 277 structures 138 structures

GASS—structure level 0.97 251 structures 125 structure
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3.3 Network visualization
Example visualizations for true positive examples of functional sites

EGF_1, EF_HAND_1, RNASE_ PANCREATIC, TRYPSIN_SER

and INSULIN, and a PROSITE FN example of functional site

EF_HAND_1 are shown in Figure 5. The color shows how each

atom contributes to the decision. The red to blue heat map spectrum

highlights the most important to the least important atoms.

4 Discussion

4.1 Cross-validation performances on PROSITE TP and

TN sites
As shown in Table 1, 3DCNN models achieve better or comparable re-

call compared to the other models for all the 10 functional sites—sites

chosen because they were challenging for both Naı̈ve Bayes and SVM

classifiers (Buturovic et al., 2014). On average, at the precision thresh-

old of 0.99, 3DCNN models achieved a recall of 0.955, whereas Voxel-

SVM models, FEATURE-SVM models and FEATURE-1DCNN mod-

els attained recalls of 0.883, 0.857 and 0.754, respectively. Among the

four methods, the 3DCNN models significantly outperformed

FEATURE-SVM and FEATURE-1DCNN models (P < 0.05) and the

Voxel-SVM models performed significantly better than the FEATURE-

1DCNNs (P < 0.05). We observe better performances of 3DCNNs

over the Voxel-SVMs and improved performance of Voxel-SVMs over

the FEATURE-SVMs although the comparisons were not statistically

significant.

3DCNN models achieved the best improvements over the other three

methods on sites EGF_1.10, IG_MHC.3 and PROTEIN_KINASE_ST.

These sites generally have a higher degree of local structural variations

and thus are particularly challenging. The success of 3DCNNs on these

challenging sites suggests that 3DCNNs have stronger ability to capture

features that are generalizable to sites with local structural variations.

Although FEATURE employ biochemical features with different

levels of details, larger perturbations of local structure may cause a

biochemical feature to trans-locate to a different shell and therefore

significantly change its input representation. The loss of orientation-

specific information may also affect performances of the models.

FEATURE-SVM models performed particularly well on site

PROTEIN_KINASE_ST, but poorly on sites EGF_1.10 and

IG_MHC.3. FEATURE-1DCNN models generally do not perform

well. This is not surprising because CNNs generally thrive when local

spatial correlations are present in the input representation while

attributes in FEATURE vectors typically do not have such properties.

Overall, 3DCNNs and Voxel-SVMs demonstrated better per-

formances over the FEATURE-based methods. The similar perform-

ance of 3DCNNs and Voxel-SVMs on some PROSITE functional

sites may be due to the low structural diversity of these sites. In the

PROSITE dataset, since the positive training examples are defined

around selected conserved residues in sequence motifs, local site

microenvironments are inherently more conserved, and information

of conserved atom positions can contribute significantly to model

performances. To investigate the effects of 3D site diversity of func-

tional families on model performances, we additionally character-

ized the performance of different models on predicting adenosine

triphosphate (ATP) binding residues. ATP binding sites are ubiqui-

tous, diverse and critical to drug development (Maxwell and

Lawson, 2003).

We trained and validated 3DCNN, Voxel-SVM and FEATURE-

SVM models on the PATP-388 and PATP-TEST datasets described

in Hu et al., 2018, and show that 3DCNNs demonstrate strong

advantages over both FEATURE-SVM and Voxel-SVM models on

the ATP binding site prediction task. 3DCNNs achieved an AUC of

0.906 separating ATP binding residues from non-binding residues,

whereas FEATURE-SVM and Voxel-SVM attained AUC scores of

0.809 and 0.764, respectively. In this case, Voxel-SVMs performed

significantly worse than both 3DCNNs and FEATURE-SVM mod-

els, since for sites with diverse local microenvironments, there is less

conservation of atom position and orientation. Experimental

designs, model performance and an example visualization for ATP

site detection are summarized in Supplementary Note S8,

Supplementary Tables S14–S16 and Supplementary Figure S2.

4.2 Performances on PROSITE FP and FN sites
As reported in Table 2, on the independent test set, we achieved bet-

ter or comparable performance for 7 out of 8 functional sites with

Table 5. Percentage of sites detected in TRYPSIN-like enzymes

Method Model/rank size Percentage of sites detected (%)

3DCNN TRYPSIN_HIS 91.90 Out of 1447 enzymes

TRYPSIN_SER 88.94

Both 92.88

GASS Rank size—1 82.85 Out of 1085 enzymes

Rank size—5 90.94

Rank size—10 93.52

Fig. 5. Importance visualization of local functional site microenvironments. The

atom importance map displays the importance score (0–100) of each input atom

in heat map colors, from the most important (red) to the least important (blue).

(a) Microenvironment surrounding a conserved ASP residue in the EF_HAND

motif (PDB: 1CKK, ASP 20). (b) Microenvironment surrounding a ASP residue in a

PROSITE false negative EF_HAND site (PDB: 2LE9, ASP 64). (c) Microenvironment

surrounding a conserved CYS residue in the EGF_1 motif (PDB: 1BF9, CYS 81).

(d) Microenvironment surrounding a conserved LYS residue in the

RNASE_PANCREATIC motif (PDB: 11BG, LYS 41). (e) Microenvironment sur-

rounding a TRYPSIN_SER motif, centered on a conserved SER residue (PDB:

1ELD, SER 203). (f) Microenvironment surrounding an INSULIN motif, centered

on a conserved CYS residue (PDB: 1IOG, CYS 7-chain A)
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available PROSITE FN structures, and demonstrated better or com-

parable ability ruling out PROSITE FP examples for 6 out of 7 func-

tional sites. 3DCNN models achieved the best improvements in

detecting PROSITE FN sites on sites EF_HAND_1, TRYPSIN_HIS,

PROTEIN_KINASE_ST and EGF_1, on average detecting 1.6-fold

more PROSITE FN structures compared to the other three methods.

FEATURE-based models achieved better performance on site

ADH_SHORT, which has the most structurally conserved positive

training sites among the ten sites. Because 3DCNNs rely on varia-

tions within training data to learn features that are robust to noise,

they might fail to capture the key invariant features within the sites

when they are highly conserved. In this case, FEATURE-based mod-

els detected more signals in PROSITE FN sites by using high-level

and shell-based descriptors.

4.3 Protein enzyme site detection
4.3.1 Detecting NOS catalytic sites

3DCNNs and GASS have key differences and strengths. For each

run of GASS, only a single template is required and used to search

for similar active sites in the test proteins. GASS thus has advantages

when only few known active sites are available, and each of them

can be used as a template to search for active sites in query struc-

tures. However, the results could be sensitive to the choice of the

template. Using the best template, GASS achieved 100% detection

rate whereas the average detection rate using all available templates

reduced to 94%. 3DCNNs, on the other hand, require a set of posi-

tive structures for training. The method is less applicable when only

a single structure is available. However, the models integrate infor-

mation from all training sites and thus are relatively robust. GASS

reported 2BHJ as a particular challenging case, while 3DCNNs

detected all catalytic residues in 2BHJ with high confidence. CYS

194, ARG 197, TRP 366 and GLU 371 received probability scores

of 0.989, 0.999, 1.0 and 0.933, respectively. Importantly, because

of the high precision of our residue models, 3DCNNs made no FP

predictions in all the NOS structures.

We further looked at the NOS sites that our 3DCNN models

missed. Structures 1TLL and 1F20, which our models failed to de-

tect, have very different sets of catalytic residues compared to those

of the other NOS structures. While typical NOS structures have

catalytic residues CYS, ARG, TRP and ARG, the two structures

have SER, ASP and CYS. Furthermore, 1TLL and 1F20 are under

different SCOP Superfamilies from the other NOS proteins: while

the template structure 3NOS belongs to Superfamily d.174.1: NOS

oxygenase domain, the two chains of structure 1F20 belong to

Superfamily b.43.4 and Superfamily c.25.1, respectively. The signifi-

cantly different site microenvironments may have caused the models

to miss the functional signals.

For the task of classifying NOS structures against random struc-

tures, we also achieved AUCs comparable with GASS, as reported in

Table 4.

4.3.2 Detecting catalytic sites within TRYPSIN-like enzymes

As shown in Table 5, we achieved comparable performances with

GASS on detecting catalytic sites in TRYPSIN-like enzymes. Further

analysis on catalytic sites that we missed showed that the majority

of structures that our models failed to detect are structures under

SCOP family b.47.1.4: viral CYS protease of trypsin fold. These

structures are CYS proteases that use CYS and HIS as main catalytic

residues, instead of the ASP, SER, HIS triad observed in SER pro-

teases. Our models were not able to capture strong signals from

these sites.

As described in Section 3.2.3, nine ‘false positive’ residue sites

are detected by our 3DCNNs but are not annotated in CSA.

However, further examination of these sites show that they are

true sites that are missed in the CSA annotation (Supplementary

Table S13).

4.4 Network visualization
To visualize site-specific information captured by 3DCNNs, we pre-

sent examples of atom importance maps of functional site microen-

vironments, highlighting the key features contributing to the

3DCNN classifications. We additionally compared our key features

to conserved residues identified by local structural alignments using

mTM-align.

4.4.1 EF_HAND_1.1

Figure 5a shows a true positive site surrounding a conserved ASP

residue in the EF_HAND motif [PDB: 1CKK (Osawa et al., 1999),

ASP 20]. The 3DCNN correctly identifies the positive site and the

atom importance map shows that the decision depends on the oxy-

gen atoms in the side-chains of ASP 22, ASP 24 and GLU 31, known

residues involved in the calcium-binding (Moncrief et al., 1990).

On the other hand, mTM-align identifies LYS 21 and LEU 18 in

1CKK as the core common region among the aligned EF_HAND

boxes. The two residues lie in close proximity to the key residues

identified by the 3DCNN, but are not in direct contact with the cal-

cium ion (Supplementary Fig. S3).

Figure 5b shows an EF_HAND site surrounding a ASP residue

[PDB: 2LE9 (Rani et al., 2014), ASP 64, chain B], which is a

PROSITE FN. The site has alternative residue SER at PROSITE

motif position 6 and LYS at position 8. Nevertheless, the 3DCNN

correctly classifies the site with high confidence. The importance

map shows that the decision relies on oxygen atoms in ASP 64, ASN

66, GLN 67, ASP 68 and SER 69. The successful detection suggests

that 3DCNNs can capture similar physiochemical and structural

features in sites with local structural variations. This PROSITE FN

site was not detected by the other classifiers.

4.4.2 EGF_1.10

Figure 5c shows a true positive site surrounding a conserved CYS

residue in the EGF_1 motif [PDB: 1BF9 (Muranyi et al., 1998), CYS

81]. 3DCNN correctly classifies the site using key residues GLY 78,

ARG 79, GLN 56, along with four conserved CYS residues that

form two disulfide bonds (CYS 55, CYS 70, CYS 72, CYS 81). GLY

78 and the CYS residues are conserved in the PROSITE motif. The

most weighted residue, ARG 79, is crucial in the formation of the

epidermal growth factor receptor-ligand complex (Engler et al.,

1990). Local structural alignments on EGF_1.10 site boxes identi-

fied a single residue GLY 59 as the structurally conserved residue,

and did not identify the residues highlighted by the 3DCNN.

4.4.3 RNASE_PANCREATIC.2

Figure 5d shows a microenvironment surrounding a conserved LYS

residue in the RNASE_PANCREATIC motif [PDB: 11BG

(Vitagliano et al., 1999), LYS 41]. The importance map shows that

the correct prediction depends on GLU 86 and GLY 38. GLY 38 is

critical for the ribonucleolytic activity of human pancreatic ribo-

nuclease on double-stranded RNA (Gaur et al., 2002). The center

catalytic LYS is not highlighted, likely because a significant number

of both positive and negative examples have LYS in similar con-

formation. On the other hand, mTM-align identified ASN 44 and
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THR 45 as the core common region among the site boxes, which are

not heavily used by the 3DCNN for classifications.

4.4.4 TRYPSIN_SER

Figure 5e shows the TRYPSIN_SER motif, centered on a conserved

SER [PDB: 1ELD (Mattos et al., 1995), SER 203]. The importance

map highlights GLY 204, SER 203, HIS 60, which are consistent

with the key biochemical features identified by Bagley and Altman,

1996. SER 203, HIS 60 and ASP 108 form a SER-HIS-ASP catalytic

triad (Rawlings and Barrett, 1994), although ASP 108 received a

lower importance score here. LEU, PHE and TYR residues around

the active site show moderate importance, and may facilitate non-

specific polypeptide ligand binding and stabilization. mTM-align

similarly identified HIS 60 and ASP 108. However, it additionally

identified 13 other residues as structurally conserved: THR 57, ALA

58, ALA 59, CYS 61, VAL 62, THR 44, CYS 45, GLY 46, GLY 47,

LEU 33, THR 145, GLY 146 and GLY 148. These residues do not

contribute significantly to the 3DCNN classification.

4.4.5 INSULIN

Figure 5f shows a PROSITE INSULIN motif, centered on a con-

served CYS residue [PDB: 1IOG (Olsen et al., 1998), CYS 7-chain

A]. The importance map shows that the prediction depends on ILE

10, CYS 6 and CYS 11. The two CYSs form a disulfide bond and

are conserved in the INSULIN motif (Blundell and Humbel, 1980).

mTM-align identified two CYS residues CYS 6-chain A, CYS 7-

chain A and nearby residues THR 8 and SER 9 as the conserved re-

gion among the site local boxes. The 3DCNN uses some but not all

of these residues to make the classification.

4.5 Input featurization and network architecture
In this study, we employed 3DCNNs with three alternating 3D con-

volutional and max-pooling layers to learn features that are less sen-

sitive to translational variance within inputs. Due to its robustness

to noise and ability to extract task-specific features, the same frame-

work can be directly applied to different functional sites without ex-

plicit tuning of model parameters or architecture. Therefore, our

proposed framework is general-purposed and is applicable to any

functional site given available data.

Two important hyper-parameters in our system are the dimen-

sion of the site bounding box and the voxel size. Larger boxes in-

crease marginal information accessible by the network but are more

computationally expensive. We choose to extract local protein

boxes of 20 Å based on our previous experience with the FEATURE

program (Bagley and Altman, 1995) and our experience of applying

3DCNNs to protein structures (Torng and Altman, 2017). Beyond a

16–20 Å cutoff, the atomic details do not provide additional infor-

mation. The choice of 1 Å voxels together with small filter sizes

allow the models to extract features with fine spatial resolution.

Because the grid voxel system is not rotational invariant, we cali-

brate all boxes using backbone atoms to ensure similar orientation.

Although we focused on 10 representative functional sites in this

study, since our framework can be applied to different functional

sites without manual adjustments, the framework can be easily

applied to datasets with large amount of functional sites.

Furthermore, because our models exploit variations within the train-

ing data to learn features that are robust to noise, our method espe-

cially thrives when a large number of training examples are

available. Once the models have been trained, evaluation at test

time is efficient, which enables our models to be applied to large

datasets at test time.

The success of 3DCNNs on difficult annotation tasks suggests

that this framework is well-suited for protein structural analysis and

can discover features from raw data that outperform pre-defined

features. As more structural data become available, deep learning

models hold promise for advanced protein engineering applications.
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