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Abstract

Motivation: Intra-sample heterogeneity describes the phenomenon where a genomic sample contains a diverse
set of genomic sequences. In practice, the true string sets in a sample are often unknown due to limitations in
sequencing technology. In order to compare heterogeneous samples, genome graphs can be used to represent
such sets of strings. However, a genome graph is generally able to represent a string set universe that contains
multiple sets of strings in addition to the true string set. This difference between genome graphs and string sets is
not well characterized. As a result, a distance metric between genome graphs may not match the distance between
true string sets.

Results: We extend a genome graph distance metric, Graph Traversal Edit Distance (GTED) proposed by
Ebrahimpour Boroojeny et al., to FGTED to model the distance between heterogeneous string sets and show that
GTED and FGTED always underestimate the Earth Mover’s Edit Distance (EMED) between string sets. We introduce
the notion of string set universe diameter of a genome graph. Using the diameter, we are able to upper-bound the
deviation of FGTED from EMED and to improve FGTED so that it reduces the average error in empirically estimating
the similarity between true string sets. On simulated T-cell receptor sequences and actual Hepatitis B virus genomes,
we show that the diameter-corrected FGTED reduces the average deviation of the estimated distance from the true
string set distances by more than 250%.

Availability and implementation: Data and source code for reproducing the experiments are available at: https://
github.com/Kingsford-Group/gtedemedtest/.

Contact: carlk@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Intra-sample heterogeneity describes the phenomenon where a gen-
omic sample contains a diverse set of genomic sequences. A hetero-
geneous string set is a set of strings where each string is assigned a
weight representing its abundance in the set. Computing the distance
between heterogeneous string sets is essentially computing the dis-
tance between two distributions of strings. We formulate the prob-
lem of heterogeneous sample comparison as the heterogeneous
string set comparison problem.

This problem can be used to compare samples where differences
can be traced to the differences between sets of genomic sequences.
For example, cancer samples are clustered based on differences in
their genomic and transcriptomic features (Morris et al., 2016;
Zhao et al., 2019) into cancer subtypes that correlate with patient
survival rates. The dissimilarities between T-cell receptor (TCR)
sequences are computed between individuals to study immune
responses (Bolen et al., 2017). Different compositions of these
sequences result in different clinical outcomes such as response to
treatment.

We point out that the Earth Mover’s Distance (EMD) (Rubner
et al., 2000), or the Wasserstein distance (Wasserstein et al., 1969),

with edit distance as the ground metric is an elegant metric to com-
pare a pair of heterogeneous string sets. Given two distributions of
items and a cost to transform one item into another, EMD computes
the total cost of transforming one distribution into another. The
EMD was initially used in computer vision to compare distributions
of pixel values in images (Levina and Bickel, 2001) and later
adapted to natural language processing (Kusner et al., 2015). It has
also been used to approximate the distance between two genomes
(Mangul and Koslicki, 2016) by computing the distance between
two distributions of k-mers. To compare heterogeneous string sets,
when the strings and their distributions are known, we use edit dis-
tance as the cost to transform one string to another. We refer to this
as the Earth Mover’s Edit Distance (EMED).

In practice, the complete strings of interest and their abundances are
often unknown because these strings are only observed as fragmented
sequencing reads. It is impossible to exactly compute EMED between
the true sets of complete strings from the sequencing reads only.

The challenges posed by incomplete observed sequences can be
alleviated by representing the string set using a graph structure.
Multiple types of genome graphs have been introduced (Almodaresi
et al., 2018; Dilthey et al., 2015; Garrison et al., 2018; Holley and
Melsted, 2020; Iqbal et al., 2012; Lee and Kingsford, 2018; Li et al.,
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2020; Minkin et al., 2017; Paten et al., 2017, 2011). For our pur-
poses, a genome graph is a directed multigraph with labeled nodes
and weighted edges, along with a source and a sink node. A string is
spelled by a source-to-sink path, or s–t path, if it is equal to the con-
catenation of node labels on the path. We say that a genome graph
represents a string set if the union of paths that spells each string in
the set is equal to the graph. In other words, a string set can be
spelled by a decomposition of the genome graph.

There are several methods that compute the distance between
genome graphs (Ebrahimpour Boroojeny et al., 2020; Minkin and
Medvedev, 2020; Polevikov and Kolmogorov, 2019). Among those,
Graph Traversal Edit Distance (GTED) (Ebrahimpour Boroojeny
et al., 2020) is a general measure that can be applied to genome
graphs and does not rely on the type of genome graphs nor the
knowledge of the true string sets. Given two genome graphs, GTED
finds an Eulerian cycle in each graph that minimizes the edit distance
between the strings spelled by each cycle.

However, applying GTED on genome graphs representing het-
erogeneous string sets may overestimate the similarity between these
string sets for two reasons. First, since GTED computes the distance
between Eulerian cycles in genome graphs, it may align the prefix of
a string to the suffix of another string with no additional penalties.
We address this challenge by proposing an extension of GTED,
called FGTED, which penalizes direct alignment of prefixes of a
string with suffixes of other strings.

Second, and more significantly, both FGTED and GTED compute
the edit distance between the two string sets represented by each gen-
ome graph that are most similar to each other. However, a genome
graph that is constructed from sequencing fragments typically is able
to represent more than one set of strings (Kingsford et al., 2010; Paten
et al., 2018). As a genome graph merges shared sequences into the
same node, it creates chains of bubble structures (Zerbino and Birney,
2008) that result in an exponential number of possible paths, and
these paths spell a much more diverse collection of strings than the
original set. We call the degree to which a genome graph encodes a
larger set of strings than the true underlying set the ‘expressiveness’ of
a genome graph. Due to the expressiveness of a genome graph, the
Eulerian cycles found by GTED may not spell the true set of strings
and the computed distance may be far from the true distance between
string sets used to construct the graphs (Fig. 1a).

We prove both that FGTED always produces a distance that is
larger than or equal to GTED, and that FGTED computes a metric
that is always less than or equal to the EMED between true sets of
strings.

However, FGTED and GTED can be quite far from the EMED. To
resolve this discrepancy between FGTED and EMED, we define the
collection of strings that can be represented by the genome graph as its
string set universe, and genome graph expressiveness as the diameter of
its string set universe (SUD), which is the maximum EMED between
two string sets that can be represented by the graph (Fig. 1b).

Using diameters, we are able to upper-bound the deviation of
FGTED from EMED. Additionally, we are able to correct FGTED and
more accurately estimate the true string set distance empirically. On
simulated TCR sequences, we reduce the average deviation of FGTED
from EMED by more than 300%, and increase the correlation between
the true and estimated string set distances by 20%. On Hepatitis B virus
genomes, we reduce the average deviation by more than 250%.

These results provide the first connection between comparisons
of genome graphs that encode multiple sequences and a natural
string distance and provide the first formalization of the expressive-
ness of genome graphs. Additionally, they provide a practical
method to estimate and reduce discrepancy between genome graph
distances and string set distances.

2 Preliminary concepts

2.1 Strings

DEFINITION 1 (Heterogeneous string set). A heterogeneous string set S ¼
fðw1; s1Þ; . . . ; ðwn; snÞg contains a set of strings, where each string si is

assigned a weight wi 2 ½0; 1� that indicates the abundance of si in S. We

say that the total weight of S is
P

i2½1;n�wi ¼ 1.

EDðs1; s2Þ is the minimum cost to transform s1 into s2 under edit distance

(Levenshtein et al., 1966). The set of operations that transforms s1 to s2

can be written as an alignment between s1 and s2, or A ¼ alignðs1; s2Þ.
The i-th position in A is denoted by A i½ � ¼ cð1;iÞ

cð2;iÞ

� �
, where cða;iÞ is either a

gap character ‘-’ or a character in sa.

2.2 Earth Mover’s Edit Distance
To find a distance between two heterogeneous string sets, we need
to take into account not only the distance between pairs of strings,
but also the weight, or abundance of each string in the set. When we
are comparing two heterogeneous string sets, we are essentially com-
paring two distributions of strings. Therefore, we propose using the
EMD as a natural distance measure.

Given two distributions of items (here, strings) and a cost func-
tion that quantifies the cost of transforming one item into another,
the EMD between the two distributions is the minimum cost to
transform one distribution into another. Computing EMD can be
viewed as a transportation problem that finds a many-to-many map-
ping between two sets of items and minimizes the total cost of the
mapping (Rubner et al., 2000; Wasserstein et al., 1969).

Given two heterogeneous string sets S1 ¼ fðw1; s1Þ; . . . ; ðwn; snÞg
and S2 ¼ fðwnþ1; snþ1Þ; . . . ; ðwm; smÞg, to compute the EMED, we
use the edit distance between si and sj as the cost of transforming one
string to another. Following procedures to compute EMD (Rubner
et al., 2000) as a min-cost max-flow problem, we find a mapping M,
where Mðsi; sjÞ is the amount of si 2 S1 to be transformed into

Fig. 1. (a) Genome graph expressiveness results in inexact representations of true

string sets. (b) Overview of part of theoretical contributions
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sj 2 S2, which minimizes costðMÞ ¼
P

sj 2 S2

si2S1
Mðsi; sjÞ � EDðsi; sjÞ. We

define that EMEDðS1;S2Þ ¼ minMcostðMÞ.

2.3 Flow networks

DEFINITION 2 (Valid flow network). A directed graph G ¼ ðV;E;wÞ,
where w(e) is the weight of each edge, is a valid flow network if there

exists a source s and sink node t such that:

ðFlow conservationÞ
X
ðu;vÞ2E

wðu; vÞ ¼
X
ðv;wÞ2E

wðv;wÞ

8v 2 V; v 6¼ s; v 6¼ t;

ðTotal capacityÞ
X
ðs;uÞ2E

wðs;uÞ ¼
X
ðv;tÞ2E

wðv; tÞ:

DEFINITION 3 (Flow decomposition). A flow decomposition of a valid

flow graph G, denoted as DðGÞ, is a collection of paths and their weights

P ¼ fðw1;p1Þ; . . . ; ðwn;pnÞg, where pi ¼ ððs; u1Þ; . . . ; ðum; tÞÞ is an

ordered sequence of edges in G, such that:

ðFlow coverageÞ
X
pi2P

Oðe; iÞ �wi ¼ wðeÞ 8e 2 G;

where O(e, i) is equal to the number of occurrences of edge e in path pi.

A valid flow network typically has more than one flow decompos-
ition. Let the set of possible flow decompositions of G be DG.

2.4 Genome graphs
There are many variants of genome graphs used for various purposes
and in various settings. Here, we introduce the definition of genome
graphs we will use.

DEFINITION 4 (Genome graph). A genome graph G ¼ ðV;E; l;wÞ is a valid

flow network with node set V, edge set E, node labels l(u) for each u 2 V

and edge weights w(e) for each e 2 E. A genome graph contains a source

node s and a sink node t, and lðsÞ ¼“$”, lðtÞ ¼“#”, where $ and # are

special characters that do not appear in any string set considered in the

scope of this manuscript.

Define operator Sð�Þ that transforms a set of paths in a genome graph G
to a set of strings by concatenating the node labels on each path. SðPÞ ¼
fðconcatðpÞ;wðpÞÞjp 2 Pg is a heterogeneous string set where the weight

of each string is equal to the weight of the path that spells the string.

DEFINITION 5 (String set represented by a genome graph). A genome

graph G represents a string set S if there exists a decomposition

DðGÞ 2 DG, such that SðDðGÞÞ ¼ S.

We use G ¼ GðSÞ to denote when G represents S.

DEFINITION 6 (String set universe represented by a genome graph). The

string set universe SUðGÞ of a genome graph G is the collection of all het-

erogeneous string sets that can be represented by G. Formally,

SUðGÞ ¼ fSðDÞjD 2 DGg.

2.5 Alignment graph
An alignment graph is used to align two genome graphs
(Ebrahimpour Boroojeny et al., 2020) and can be viewed as a graph
product between two genome graphs. A special case of the align-
ment graph (Jain et al., 2020) is used to align a string to a graph
where the string is represented as a graph with only one path. We as-
sume that the genome graphs to be aligned are transformed so that
the label of each node contains only one character.

DEFINITION 7 (Alignment graph). Given genome graphs G1 ¼
ðV1;E1; l1;w1Þ and G2 ¼ ðV2;E2; l2;w2Þ, an alignment graph

AGðG1;G2Þ ¼ ðVA;EA; cost;wÞ is a directed graph with node set VA,

edge set EA, edge cost cost(e) and edge weight w(e) for each edge e 2 EA.

The alignment graph is defined following the steps:

• VA is constructed by adding pairings of nodes in V1 and V2; that is

VA ¼ fðu1; u2Þju1 2 V1; u2 2 V2g.

• For each edge ðu1; v1Þ 2 E1 and ðu2; v2Þ 2 E2, where ðu1; u2Þ 2 VA

and ðv1; v2Þ 2 VA, create three types of edges:

1. A match/mismatch edge e ¼ ððu1; u2Þ; ðv1; v2ÞÞ with

wðeÞ ¼ minfw1ðu1; v1Þ;w2ðu2; v2Þg.

2. An insertion (in) edge e ¼ ððu1; u2Þ; ðu1; v2ÞÞ with

wðeÞ ¼ w2ðu2; v2Þ.

3. A deletion (del) edge e ¼ ððu1; u2Þ; ðv1; u2ÞÞ with wðeÞ ¼ w1ðu1; v1Þ.

The cost of an in/del edge and a mismatch edge is equal to a customized

penalty. The cost of a match edge is equal to zero. A match/mismatch

edge should be distinguished with an in/del edge if the corresponding

edge in one of the input graphs is a self-loop.

Each edge e ¼ ððu1; u2Þ; ðv1; v2ÞÞ in an alignment graph can be projected

onto one edge in each of the input graphs. An edge in each of the input

graphs can also be projected onto a set of edges in AG. The size of AG is

OðjE1j � jE2jÞ and thus the time to construct AG is quadratic in the sizes

of the input genome graphs.

DEFINITION 8 (Projection function). Define the projection function as

PðG;HÞðeÞ ¼ E0 that maps an edge e from graph G to a set of edges E0 in

graph H. The projection function maps an edge in the alignment graph

to the edges in the input graphs that are matched together by that edge.

It also maps an edge in one of the input graphs to a set of edges in the

alignment graph where it is matched with other edges in another input

graph. Specifically:

Projection from alignment graph to one of the input graphs is defined by

PðAG;GiÞððu1; u2Þ; ðv1; v2ÞÞ ¼ fðui; viÞg; i 2 f1; 2g:

Projection from one of the input graphs to alignment graph is defined by

PðG1 ;AGÞððu1; v1ÞÞ ¼ feje ¼ ððu1; u2Þ; ðv1; v2ÞÞ 2 EAGg;

PðG2 ;AGÞððu2; v2ÞÞ ¼ feje ¼ ððu1; u2Þ; ðv1; v2ÞÞ 2 EAGg:

Given a set of paths P in AG, we use PðAG;GiÞðPÞ to denote the projection

of P onto Gi, where PðAG;GiÞðPÞ ¼ fPðAG;GiÞðpÞjp 2 Pg and the projection

of p onto Gi is PðAG;GiÞðpÞ ¼
�

PðAG;GiÞðejÞ
�m

j¼1
for p ¼ ðe1; . . . ; emÞ.

For convenience, we define that fiðDðAGÞÞ ¼ SðPðAG;GiÞðDðAGÞÞÞ, which

is the set of strings spelled by a path decomposition in AG that is pro-

jected onto Gi.

2.6 Graph Traversal Edit Distance
GTED, proposed by Ebrahimpour Boroojeny et al. (2020), is a dis-
tance between two labeled graphs which are assumed to be Eulerian
graphs. Given a genome graph in our definition, we add an edge
directing from sink to source with weight equal the sum of edge
weights that are directing from the source node in order to make an
Eulerian graph.
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Let the language of G; LðGÞ, be the set of strings spelled by
Eulerian cycles in G. Formally, LðGÞ ¼ fSðcÞjc is an Eulerian
cycle in Gg.

DEFINITION 9 (Graph Traversal Edit Distance (Ebrahimpour Boroojeny

et al., 2020)). Let G1 and G2 be two Eulerian graphs, where the weights

on the edges are seen as the number of times an edge must be visited in

each Eulerian cycle. Then,

GTEDðG1;G2Þ ¼ min

s2 2 LðG2Þ
s12LðG1Þ

EDðs1; s2Þ:

GTED finds one Eulerian cycle in each genome graph such that the edit

distance between the strings spelled by the Eulerian cycles is minimized.

GTED is computed by solving a linear programming (LP) formulation

(Equations (1)–(4)) on the alignment graph AGðG1;G2Þ, which minimizes

the cost of a flow in the graph with the flow conservation (Equation (4))

and flow coverage constraints (Equations (2) and (3)). The LP formula-

tion is as follows:

min
x2RjEA j

X
e2EA

costðeÞ � xe (1)

s:t:
X

j;l

xðði;jÞ;ðk;lÞÞ ¼ w1ði; kÞ 8ði; kÞ 2 E1 (2)

X
i;k

xðði;jÞ;ðk;lÞÞ ¼ w2ðj; lÞ 8ðj; lÞ 2 E2 (3)

X
ðu;vÞ2EA

xðu;vÞ ¼
X

ðv;wÞ2EA

xðv;wÞ 8v 2 VA (4)

Ebrahimpour Boroojeny et al. (2020) prove that GTED is equal to the

optimal solution of this LP formulation, and thus GTED is computable

in polynomial time. The number of constraints in the above LP is linear

in the size of the alignment graph and thus quadratic in the size of the in-

put genome graphs.

3 An extension of GTED

GTED was originally used to compare genome graphs that are
assumed to contain single genomes. It is therefore intuitive that each
string represented by the genome graph is spelled with an Eulerian
cycle. This property follows the property of assembly graphs
(Pevzner et al., 2001). When the genome graph represents more than
one string, finding a string spelled by an Eulerian cycle c in the graph
is equivalent to finding a concatenation of a permutation of strings
in a string set. When aligning two Eulerian cycles, c1 and c2, from in-
put graphs, the boundaries between strings are ignored and the pre-
fix of one string may be aligned to the suffix of another string with
no cost. However, such alignment is not allowed when we align sets
of strings using EMED.

We propose an extension of GTED with a modified cost function
in edit distance computation so that the cost of aligning the sink
character # with any other character is infinity.

Figure 2a shows an example of the alignment graph built from
two input graphs using the proposed cost function. Let the sink
nodes in G1 and G2 be t1 and t2, and the source nodes be s1 and s2, re-
spectively. After removing all the alignment edges with infinite costs,
there is an edge to the alignment node (t1, t2) in AG if and only if
there exists an edge (u1, t1) in G1 and an edge (u2, t2) in G2. The only
incoming edge to (s1, s2) is ððt1; t2Þ; ðs1; s2ÞÞ. We refer to the edge
ððt1; t2Þ; ðs1; s2ÞÞ as the sink-to-source edge, or t–s edge in alignment
graph in the rest of the article.

We let Flow-GTED, or FGTED, denote the distance computed
using the alignment graph after removing all infinity cost edges.

FGTED assumes that the input genome graphs are flow networks

that represent string sets, which can be seen as an analog to Eulerian
tours in the graphs that are used as input for GTED. Sink-to-source
edges are added to transform flow networks into Eulerian graphs

such that FGTED can be reduced to GTED. As FGTED solves a
similar LP formulation as GTED that is constructed on a slightly

smaller alignment graph, FGTED is also solvable in polynomial
time.

THEOREM 1. GTEDðG1;G2Þ � FGTEDðG1;G2Þ for any pair of genome

graphs G1;G2.

PROOF. Since FGTED is computed on a smaller alignment graph that

contains fewer edges than that for computing GTED, FGTED
explores a smaller solution space than GTED in solving the LP for-
mulation. Therefore, any feasible solution to the LP formulation for

FGTEDðG1;G2Þ is a feasible solution to the LP formulation for
GTEDðG1;G2Þ. Since GTEDðG1;G2Þminimizes the objective, the the-

orem is true. �

Fig. 2. (a) An alignment graph AG between G1 (vertical) and G2 (horizontal).

Insertion, deletion and match/mismatch edges are labeled with different colors. (b)

AG0 after removing all the edges with zero flow in a solution to FGTEDðG1;G2Þ.
Edges in G1 and G2 that are highlighted with matching colors are projections from

edges in AG0 to G1 and G2, respectively. Path ð$;A;T; #Þ 2 G1 is aligned to

ð$;A;T; #Þ 2 G2 and path ð$;A;C; #Þ 2 G1 is aligned to ð$;A; #Þ 2 G2. The weights

on AG and AG0 edges are omitted for simplicity

Genome graph expressiveness i407



4 The relationship between GTED, FGTED and
EMED

Let AG� be the alignment graph after removing the t–s edge and all
the edges from fejxe ¼ 0; e 2 EAg from the LP solution to Equations
(1)–(4). We say that AG� is a solution of FGTED. Due to constraints
(2)–(4), AG� is a valid flow network. Let DðAG�Þ be a flow decom-
position in AG�. Similar to the Eulerian cycles found during the
GTED computation, each path in DðAG�Þ can be projected to a
path in G1 and a path in G2.

Denote S�1 ¼ f1ðDðAG�ÞÞ ¼ SðPðAG� ;G1ÞðDðAG�ÞÞÞ as the set of
strings spelled by the set of projected paths from a decomposition
DðAG�Þ to G1. Similarly, S�2 ¼ f2ðDðAG�ÞÞ ¼ SðPðAG� ;G2ÞðDðAG�ÞÞÞ.
We show an example of path projections in Figure 2b.

Observing that we can do flow decomposition in both the
FGTED solution and input genome graphs, we will show in this sec-
tion that FGTED can be bounded by EMED between decomposi-
tions in the input genome graphs and in the alignment graph
solutions.

THEOREM 2. Given two sets of strings S1 and S2, and genome graphs rep-

resenting these string sets, G1 ¼ GðS1Þ and G2 ¼ GðS2Þ,

0 � EMEDðS1;S2Þ � FGTEDðG1;G2Þ

� min
DðAG�Þ 2 DAG�

S�1 ¼ f1ðDðAG�ÞÞ
S�2 ¼ f2ðDðAG�ÞÞ

ðEMEDðS1;S�1Þ þ EMEDðS2;S�2ÞÞ

where AG� is the solution obtained from FGTEDðG1;G2Þ. �

The proof of this theorem is completed in two parts. The first inequality
is proven in Section 4.1 and the second is proven in Section 4.2. Since
FGTED computes a distance that is larger than GTED between the
same pair of genome graphs (Theorem 1), Theorem 2 also shows that
FGTED always estimates the distance between true string sets more ac-
curately than GTED.

4.1 FGTED is always less than or equal to EMED
We show in this section that FGTED can be expressed in terms of
EMED between string sets constructed from decomposing AG�. In
other words, while GTED finds an Eulerian tour in each input
graph, FGTED finds a flow decomposition in G1 and G2, respective-
ly, that minimizes the EMED between them. Analogous to
Definition 9, we have:

THEOREM 3. Given two genome graphs G1 and G2,

FGTEDðG1;G2Þ ¼ min
DðG1Þ 2 DG2

;
DðG2Þ 2 DG2

EMEDðSðDðG1ÞÞ; SðDðG2ÞÞÞ

Theorem 3 allows us to define FGTED as the minimum EMED between

flow decompositions in input graphs. To prove Theorem 3, we first ex-

plore the relationship between an s–t path in AG� and the strings spelled

by the projections of this path onto G1 and G2.

LEMMA 1. Given an s-t path p 2 DðAG�Þ, let s1 ¼ SðPðAG� ;G1ÞðpÞÞ be the

string spelled by projecting p onto G1, and s2 ¼ SðPðAG� ;G2ÞðpÞÞ. Then for

any p 2 DðAG�Þ,

X
e2p

costðeÞ ¼ EDðs1; s2Þ:

PROOF. We prove in two directions.
(� direction) We construct A ¼ alignðs1; s2Þ from p. For each

e ¼ ððu1;u2Þ; ðv1; v2ÞÞ 2 p:

(i) if u1 ¼ v1, add c ¼ �
lðv2Þ

� �
to A, (ii) if u2 ¼ v2, add c ¼

lðv1Þ
�

� �
to A, (iii) else, add c ¼ lðv1Þ

lðv2Þ

� �
to A.

By definition of an alignment graph, costðeÞ ¼ costðcÞ in for all
e, and therefore costðAÞ ¼

P
c2A costðcÞ ¼

P
e2p costðeÞ. Since edit

distance minimizes the cost of edit operations,
costðAÞ ¼ costðpÞ � EDðs1; s2Þ.

(� direction) We construct p0 from A� ¼ alignðs1; s2Þ such that
costðA�Þ ¼ EDðs1; s2Þ. The procedure is similar as above—for each
pair of adjacent entries in A�, add corresponding edge to p0. Then
costðp0Þ ¼ costðA�Þ ¼ EDðs1; s2Þ.

Let AG0 ¼ AG� p [ p0. Both p and p0 can be found in AG, and
both p and p0 can be constructed by the alignment of the same pair of
strings. Therefore, AG0 is also a valid flow network and a feasible solu-
tion to FGTED. Since AG� is the optimal solution to
FGTED; costðAG�Þ � costðAG0Þ, and

costðAG�Þ � costðAG0Þ � 0
) wðpÞ � ðcostðpÞ � costðp0ÞÞ � 0
) wðpÞ � ðcostðpÞ � EDðs1; s2ÞÞ � 0
) costðpÞ � EDðs1; s2Þ: �

We have shown that the cost of an s–t path in AG� is equal to
the edit distance between its projections onto input graphs. Using
this lemma, we can transform an optimal FGTED solution into an
EMED solution.

Given an optimal FGTED solution, AG�, let the set of possible
flow decompositions of AG� be DAG� . Let DðAG�Þ be one of the
flow decompositions that is a set of weighted s–t paths. We can con-
struct heterogeneous string sets S�1 and S�2 by projecting paths in
DðAG�Þ to G1 and G2. Formally, S�1 ¼ fSðPðAG� ;G1ÞðpÞÞjp 2 DðAG�Þg
and S�2 ¼ fSðPðAG� ;G2ÞðpÞÞjp 2 DðAG�Þg.

LEMMA 2. Given S�1 and S�2 obtained from any decomposition

DðAG�Þ 2 DAG� ,

EMEDðS�1;S�2Þ ¼ costðAG�Þ;

where costðAG�Þ is sum of edge costs in the solution alignment graph to

FGTED.

PROOF. We prove in two directions.
(� direction) We construct a mapping M between strings in S�1

and S�2 from the decomposition DðAG�Þ, where Mðsi; sjÞ is the por-
tion of si 2 S1 and sj 2 S2 that are aligned. For each p 2 DðAG�Þ,
we obtain s1 and s2 as strings constructed from projections of p onto
G1 and G2 and increment the weight of mapping Mðs1; s2Þ by w(p).
After iterating through all paths in DðAG�Þ, the cost of M is

costðMÞ ¼
X

ðs1 ;s2Þ2M

Mðs1; s2Þ � EDðs1; s2Þ

¼
X

p2DðAG�Þ
wðpÞ � costðpÞ ¼ costðAG�Þ:

M is also a feasible solution to the LP formulation of EMED.
Since EMED minimizes the cost of mapping between S�1 and
S�2; EMEDðS�1;S�2Þ � costðAG�Þ.

(� direction) We construct a valid flow network, AG0 using an
optimal solution to EMEDðS�1;S�2Þ. For each pairing (si, sj) for si 2
S1 and sj 2 S2, we obtain its weight w and cost c from the EMED
solution. Let A ¼ alignðsi; sjÞ be an optimal alignment under edit dis-
tance, and cost(A) ¼ c. We then add a path corresponding to A with
weight w in AG0. This follows the same procedure in the proof of
Lemma 1. After adding all paths, we obtain AG0 with
costðAG0Þ ¼ EMEDðS�1;S�2Þ. Since costðAG�Þ is minimized by
FGTED, costðAG0Þ � costðAG�Þ ) EMEDðS�1;S�2Þ � costðAG�Þ. �

Lemma 2 provides a transformation algorithm between optimal
solutions to EMED and solutions to FGTED. Using Lemma 2, we
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can show that the EMED between S�1 and S�2 constructed from any
decomposition in AG� is equal to the decompositions of G1 and G2

that are closest in terms of EMED.

LEMMA 3. Given S�1 and S�2 obtained from any decomposition

DðAG�Þ 2 DAG� ,

EMED S�1;S�2
� �

¼ min

D G1ð Þ 2 DG2
;

D G2ð Þ 2 DG2

EMED S D G1ð Þð Þ; S D G2ð Þð Þð Þ

PROOF. In Lemma 2, S�1 and S�2 can be constructed from decomposing G1

and G2. Suppose for contradiction that there exists a decomposition that con-

structs string sets S01 and S02, such that EMEDðS�1;S�2Þ > EMEDðS01;S02Þ.
Following the procedure in the proof of Lemma 2, we can construct a feas-

ible solution to FGTED with cost equal to EMEDðS01;S02Þ, which is less

than costðAG�Þ ¼ EMEDðS�1;S�2Þ. This contradicts with the assumption

that FGTED minimizes costðAG�Þ. �

Theorem 3 is therefore true because of Lemmas 2 and 3. Using
Theorem 3, we are able to prove the first inequality in Theorem 2

with Lemma 4.

LEMMA 4. Given heterogeneous string sets S1 and S2 and genome graphs

representing these string sets, G1 ¼ GðS1Þ and G2 ¼ GðS2Þ,
FGTEDðG1;G2Þ � EMEDðS1;S2Þ.

PROOF. Given Theorem 3, FGTED finds flow decomposition in DG1
and

DG2
that minimizes the EMED between them. Since S1 and S2 can be

constructed from a flow decomposition in DG1
and DG2

, respectively, this

lemma is true. �

4.2 Genome graph expressiveness
A genome graph typically can represent more than one set of strings.

We name the collection of string sets representable by a genome
graph the string set universe of that genome graph, or SUðGÞ. Using
Theorem 3, we can say that FGTED finds two sets of strings in the

string set universe of G that are closest in the metric space of EMED.
We define the expressiveness of a genome graph as the diameter of

its string set universe, which is the maximum EMED between the
string sets in SUðGÞ.

DEFINITION 10 (String Set Universe Diameter (SUD)). Given a genome

graph G,

SUDðGÞ ¼ max
Sa ;Sb2SUðGÞ

EMEDðSa;SbÞ:

4.2.1 String set universe diameter as an upper bound on deviation of

FGTED from EMED

The string set universe diameter gives one measure of the size of

SU(G), and it can also be used to characterize the deviation of
GTED from EMED.

Recall that S�1 and S�2 are string sets obtained from a decompos-
ition DðAG�Þ, and that EMEDðS�1;S�2Þ ¼ FGTEDðGðS1Þ;GðS2ÞÞ,
where S1 and S2 are true string sets. From Theorem 2, we have that

EMEDðS1;S2Þ � EMEDðS�1;S�2Þ. We can bound the deviation of
EMEDðS�1;S�2Þ from EMEDðS1;S2Þ using triangle inequalities.

LEMMA 5. Given string sets S1 and S2 and genome graphs G1 ¼ GðS1Þ
and G2 ¼ GðS2Þ,

EMEDðS1;S2Þ � FGTEDðG1;G2Þ

� min
DðAG�Þ 2 DAG�

S�1 ¼ f1ðDðAG�ÞÞ
S�2 ¼ f2ðDðAG�ÞÞ

ðEMEDðS1;S�1Þ þ EMEDðS2;S�2ÞÞ; (5)

where AG� is the solution obtained from FGTEDðG1;G2Þ.

PROOF. Both edit distance and EMD are metrics (Levenshtein et al.,

1966; Rubner et al., 2000), which means that triangle inequality holds

for EMED between strings. Therefore, for any string sets S�1 and S�2,

EMEDðS1;S�1Þ þ EMEDðS�1;S2Þ � EMEDðS1;S2Þ

EMEDðS2;S�2Þ þ EMEDðS�1;S�2Þ � EMEDðS�1;S2Þ

Combining two inequalities, we have

EMEDðS�1;S�2Þ ¼ FGTEDðG1;G2Þ
� EMEDðS1;S2Þ � ðEMEDðS1;S�1Þ þ EMEDðS2;S�2ÞÞ
) EMEDðS1;S2Þ � FGTEDðG1;G2Þ
� EMEDðS1;S�1Þ þ EMEDðS2;S�2Þ:

(6)

�

The above inequality (6) holds for any string sets S�1 and S�2. To give a

tight upper bound on the deviation, we take the minimum over all pos-

sible pairs of string sets constructed from decomposing AG� that yields

inequality (5).

Lemma 5 proves the second inequality of Theorem 2 thus complet-
ing the proof for Theorem 2 with Lemma 4.

The upper bound found in Lemma 5 can be used as a factor that
evaluates the pairwise expressiveness of two genome graphs. While
a genome graph may represent a large universe of string sets, as long
as the true string set is close to the ‘best’ string set in the pair-wise
comparison, the deviation of FGTED from EMED is small. We de-
fine this upper bound as the String Universe Co-Expansion Factor
(SUCEF), which can be used to evaluate the discrepancy between
FGTED and EMED.

DEFINITION 11 (String Universe Co-Expansion Factor (SUCEF)).

SUCEFðS1;S2;G1;G2Þ
¼ min

DðAG�Þ 2 DAG�

S�1 ¼ f1ðDðAG�ÞÞ
S�2 ¼ f2ðDðAG�ÞÞ

ðEMEDðS1;S�1Þ þ EMEDðS2;S�2ÞÞ;

where AG� is the solution to FGTEDðG1;G2Þ.

On the other hand, finding SUCEF not only requires knowledge of true

string sets S1 and S2, but SUCEF is also a pair-dependent measure that

needs to be calculated for every pair of string sets and corresponding

genome graphs. In order to characterize the effect of the expressiveness

of individual genome graphs, we derive another upper bound on the de-

viation of FGTED from EMED using the string set universe diameters.

The sum of string set universe diameters of two genome graphs is
an upper bound on SUCEF of these graphs and any two sets of
strings they represent.

LEMMA 6. Given two genome graphs G1 and G2 and two sets of strings

S1 and S2 they represent,

EMEDðS1;S2Þ � FGTEDðG1;G2Þ � SUCEFðS1;S2;G1;G2Þ
� SUDðG1Þ þ SUDðG2Þ:

PROOF. Both S1 and S�1 are represented by G1 and belong to SUðG1Þ.
Therefore, by definition of string set universe diameter,

EMEDðS1;S�1Þ � SUDðG1Þ as the diameter maximizes the distance be-

tween any pair of strings represented by the genome graph. The same

holds for EMEDðS2;S�2Þ � SUDðG2Þ. �
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Using Lemma 6, we can bound the deviation of FGTED from
EMED using the expressiveness of individual genome graphs even
when we do not have the knowledge of ground truth string sets. In
practice, we can construct genome graphs using known sequences
from the species of interest and form a training set. Using the train-
ing set, we can learn the relationship between SUDs and the devi-
ation of FGTED from EMED, and then empirically estimate the
anticipated discrepancy between FGTED and EMED. In the follow-
ing sections, we show that we can improve FGTED using SUDs to
obtain reduced anticipated deviation from EMED and stronger cor-
relation with EMED.

5 Practically correcting the discrepancy between
FGTED and EMED

5.1 Estimating string set universe diameters
The string set universe diameter of a genome graph can be estimated
by sampling flow decompositions of the graph. To sample a flow de-
composition, we first sample one s–t path. At each node u, we
choose the neighbor v with the highest edge weight w(u, v) with
probability 0.5 and randomly choose a neighbor otherwise. After
sampling a path, we send flow that is equal to the minimum edge
weight on that path and produce the residual graph by subtracting
the flow from edge weights on that s–t path. We repeat this process
on the residual graph until all edge weights are zero. This process
assumes that the input genome graphs are acyclic to ensure all edge
capacities (weights) are satisfied. If a genome graph is cyclic, e.g. de
Bruijn graphs, string sets from SUðG1Þ can be obtained by sampling
Eulerian cycles in the genome graph, and each string in the string set
is obtained by segmenting the sampled Eulerian cycle at source and
sink nodes. After sampling 50 pairs of flow decompositions, we con-
struct string sets from sampled flow decompositions and calculate
pairwise EMED. We then obtain the highest pairwise EMED and
use it as the estimated diameter.

5.2 Correcting FGTED using string set universe

diameters
Using the sum of SUDs, we empirically estimate the deviation of
FGTED from EMED with a linear regression model. We denote the
deviation of FGTED from EMED by deviationðS1;S2;G1;G2Þ,
which is computed as jEMEDðS1;S2Þ � FGTEDðGðS1Þ;GðS2ÞÞj.
The linear regression model, LR, has the following form

deviationðS1;S2;G1;G2Þ
¼ a � ðSUDðG1Þ þ SUDðG2ÞÞ þ b ¼ LRðSUDðG1Þ þ SUDðG2ÞÞ;

where a is the coefficient of the model and b is the intercept. The fit-
ted model will minimize the mean squared error between predicted
deviation and true deviation in the training set.

The corrected FGTED for each pair of graphs is calculated using
the learned linear regression model as follows.

correctedFGTEDðG1;G2Þ
¼ FGTEDðG1;G2Þ þ LRðSUDðG1Þ þ SUDðG2ÞÞ

The deviation of corrected FGTED from EMED has the same
form as the deviation of uncorrected FGTED from EMED.

5.3 Data
We evaluate the use of string set universe diameters on two sequence
sets:

1. Simulated T-cell receptor (TCR) repertoire. We simulate 50 sets

of TCR sequences and assign weights to each sequence using ref-

erence gene sequences of V, D and J genes from Immunogenetics

(IMGT) V-Quest sequence directory (Lefranc and Lefranc,

2001). The number of sequences in each set varies from 2 to 5.

We then generate 225 pairs of TCR string sets. Each TCR se-

quence is about 300 base pairs long. See Supplementary

Materials for detailed simulation process.

2. Hepatitis B virus (HBV) genomes. We collect 9 sets of HBV

genomes from three hosts—humans, bats and ducks—from the

NCBI virus database (Hatcher et al., 2017). We build 36 pairs of

HBV string sets. See Supplementary Materials for detailed string

set construction process.

We construct a partial order multiple sequence alignment (MSA)
graph on each string set (Lee et al., 2002). We first conduct MSA for
each string set using Clustal Omega (Sievers et al., 2011). Then for
each column of the MSA, we create a node for each unique character
and add an edge between two nodes if the characters in node labels
are adjacent in the input strings at that column. For each consecutive
stretch of gap characters, no nodes are created, but an edge is added
between flanking columns of the stretch of gaps. We also create a
source node and a sink node that are connected to nodes represent-
ing the first and last characters of the input strings. The MSA graphs
created in this process are all acyclic. We compute FGTED on MSA
graphs by adding sink-to-source edges.

We also construct a de Bruijn graph (Pevzner et al., 2001) with
k-mer size equal to 4 on TCR sequence sets, which we refer to as
dBG4 in the following sections. This k-mer size is reasonable as
compared to the average lengths of TCR sequences which is 350
base pairs and allows us to experiment with graphs that are expected
to have higher expressiveness. In dBG4, each node corresponds to a
k-mer, S½i : iþ k�, where S is a string from the ground truth string
set, S. Each edge corresponds to the overlap between two k-mers,
S½i : iþ k� and S½iþ 1 : iþ kþ 1� for any S 2 S. In order to construct
the alignment graph, we process the de Bruijn graphs such that each
node represents one character. We add a source node and a sink
node to each dBG4 and connect them to nodes that represent the
first and the last character in each string, respectively.

All of used sequences and constructed genome graphs can be
found in the GitHub repository at https://github.com/Kingsford-
Group/gtedemedtest/.

5.4 FGTED deviates from EMED as the expressiveness

of the genome graph increases
We compute EMED and FGTED on string set pairs and genome
graph pairs. The alignment graphs are constructed using one thread,
which on average takes 6 s for dBG4s, 8 s for each MSA graph on
TCR sequences, 9.43 min for each MSA graph on HBV genomes.
Optimization for LP with 10 threads takes on average 601 s for each
dBG4, 1 h for each MSA graph of TCR sequence sets and 4 h for
each MSA graph on HBV genomes (Supplementary Fig. S1).

We show that the deviation of FGTED from EMED is higher on
genome graphs that are more expressive. We compare the FGTED
computed on dBG4s and MSA graphs constructed with TCR
sequences and the diameters of two types of graphs. DBG4 repre-
sents all sequences with the same 5-mer distributions as the ground
truth sequences. Therefore, as expected, we observe larger sampled
SUDs from dBG4 than the MSA graphs (Fig. 3a). The deviation of
FGTED from EMED is also larger with dBG4s than the MSA graphs
(Fig. 3b). This further illustrates the effect of graph construction
approaches on the resulting expressiveness.

5.5 Corrected FGTED more accurately estimates

distance between unseen string sets encoded with

genome graphs
For each pair of string sets, we obtain the deviation of FGTED from
EMED and sum of estimated SUDs. We fit three linear regression
models, LRdBG4, LRTCR and LRHBV, to predict deviation from sum
of SUDs on simulated TCR sequences and HBV genomes of different
types of graphs separately.
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We evaluate the corrected and uncorrected FGTED by per-
forming Pearson correlation experiments. We fit LR models on
half of the data and compute the corrected FGTED on the other
half as the test set. We evaluate the correlation between corrected
and uncorrected FGTED and EMED on the test set. Two-tail P-
values are calculated for each correlation experiment to test for
non-correlation.

The LR models are evaluated with 10-fold cross validation. We
randomly permute and split data into 10 equal parts. In each of the
10 iterations, we use one part as the test set and the rest as the train-
ing set. An average deviation is calculated across all iterations.

In Tables 1 and 2, we show that using string set universe diame-
ters, we are able to improve the correlation between FGTED and
EMED on MSA graphs of both the simulated TCR sequences and
HBV genomes. On dBG4s, the correlation is reduced slightly by the
correction. All Pearson correlation experiments are statistically sig-
nificant with P-values <0.01, which tests for the probability of non-
correlation. On HBV genomes, since the correlation between uncor-
rected FGTED and EMED is approaching 1, no significant improve-
ment is observed. On the other hand, significant reduction in
average deviation is observed on both types of data. We are able to
reduce the average deviation from 77.29 to 19.08 on de Bruijn
Graphs with TCR sequences, from 32.74 to 9.13 on MSA graphs
containing simulated TCR sequences and from 140.12 to 54.87 on
HBV genomes.

One caveat of using SUDs for correcting distances between gen-
ome graphs is that this correction is not guaranteed to always im-
prove the distance. Given two string sets, there is usually an
adversarial worst case where adjusting the distance using this ap-
proach reduces the accuracy in estimating string sets distances.
When EMED between true string sets are small, the corrected
FGTED may overestimate the EMED and result in a larger devi-
ation. Nevertheless, we show that corrected FGTED reduces the
anticipated deviation from EMED.

6 Discussion

A genome graph’s string set universe diameter (SUD) provides infor-
mation on the size and diversity of the represented string sets. We
show that we can use SUDs to practically characterize the discrep-
ancy between FGTED and EMED and to obtain a more accurate
distance between unseen string sets encoded in genome graphs on
average. While the results are obtained on short genomic sequences
due to the high computational cost of FGTED and GTED, this result
is encouraging.

The corrected FGTED can be used to compute a more
accurate distance between heterogeneous samples represented
by genome graphs in applications such as immune repertoire
analysis and cancer subtyping. This opens up avenues for more
comprehensive heterogeneous sample comparison methods.
However, FGTED, as well as GTED, is not scalable to mammalian
genomes due to the quadratic size of the alignment graph and time
it takes to solve the LP formulations. Algorithms that compute
FGTED faster or efficient approximation genome graph compari-
son methods (Minkin and Medvedev, 2020; Polevikov and
Kolmogorov, 2019) are needed for comparing large heterogeneous
string sets.

SUDs may also be used to characterize the diversity of strings
represented by reference genome graphs that are used in sequence-
to-graph alignment (Rautiainen and Marschall, 2020; Sir�en et al.,
2020). In sequence-to-graph alignment, it is often desired that a
more diverse set of strings than the original reference string set is
represented by the graph. Here, SUDs could be used as a measure to
control the right amount of variation in the string set universe of cre-
ated genome graphs.

Another future direction is to use expressiveness as a regulariza-
tion term in the objective function to construct better genome
graphs. To ensure efficiency of genome graphs in storing sequences,
we can construct genome graphs that minimize their sizes (Pandey
et al., 2021; Qiu and Kingsford, 2021). However, reducing the size
of a genome graph may result in graphs that are highly expressive,
and the distance between these genome graphs will deviate further
from distances between true string sets. Adding a SUD term to the
objective may address this problem.

Fig. 3. Comparison between de Bruijn graphs and MSA graphs constructed with

TCR sequence sets. (a) The distribution of diameters sampled in both types of

graphs. Each box shows the quartiles of the distribution, and the whiskers show the

rest of the distribution. Each black dot represent the diameter of one graph. (b) The

correlation between FGTED and EMED with different types of graphs. The diag-

onal line denotes equality between FGTED and EMED

Table 1. Pearson correlation between EMED and corrected and un-

corrected FGTED on simulated TCR and HBV sequences

FGTED Pearson correlation

TCR (dBG4) TCR (MSA graph) HBV (MSA graph)

Uncorrected 0.75 0.74 0.99

Corrected 0.68 0.90 0.99

Note: Pearson correlation is calculated on a held-out set of data for both

simulated TCR and HBV that consist of 50% of data, and LR model is fit on

the other half. Bold font numbers identify the better performing method with

higher Pearson correlation with EMED on each type of data.

Table 2. Average deviation of corrected and uncorrected FGTED

from EMED on simulated TCR and HBV sequences

FGTED Average deviation

TCR (dBG4) TCR (MSA Graph) HBV (MSA Graph)

Uncorrected 77.29 32.74 140.12

Corrected 19.08 9.13 54.87

Note: The average deviation is calculated over a 10-fold cross-validation of

the LR model. Bold font numbers identify the better performing method with

lower average deviation from EMED on each type of data.
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