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Abstract

We propose a method to discover differential equations describing the long-

term dynamics of phenomena featuring a multiscale behavior in time,

starting from measurements taken at the fast-scale. Our methodology is

based on a synergetic combination of data assimilation (DA), used to esti-

mate the parameters associated with the known fast-scale dynamics, and

machine learning (ML), used to infer the laws underlying the slow-scale

dynamics. Specifically, by exploiting the scale separation between the fast

and the slow dynamics, we propose a decoupling of time scales that allows

to drastically lower the computational burden. Then, we propose a ML algo-

rithm that learns a parametric mathematical model from a collection of

time series coming from the phenomenon to be modeled. Moreover, we

study the interpretability of the data-driven models obtained within the

black-box learning framework proposed in this paper. In particular, we

show that every model can be rewritten in infinitely many different equiva-

lent ways, thus making intrinsically ill-posed the problem of learning a

parametric differential equation starting from time series. Hence, we pro-

pose a strategy that allows to select a unique representative model in each

equivalence class, thus enhancing the interpretability of the results. We

demonstrate the effectiveness and noise-robustness of the proposed

methods through several test cases, in which we reconstruct several differ-

ential models starting from time series generated through the models them-

selves. Finally, we show the results obtained for a test case in the

cardiovascular modeling context, which sheds light on a promising field of

application of the proposed methods.
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1 | INTRODUCTION

Mathematical models are built upon two types of sources, namely a priori information (physics principles, simplifying
assumptions, empirical laws, etc.) and experimental data. The relative weight of the two sources should be properly bal-
anced: the fewer data are available, the stronger a priori assumptions are needed. By moving towards the Big Data era,
mathematical models are fed with more and more data, reducing the necessity of strong a priori assumptions. The
asymptote of this process is data-driven modeling, that is to say the construction of a mathematical model for a given
phenomenon solely on the basis of experimental data, as opposed to physics-based modeling, that on the other hand
makes use of data only to tune the parameters appearing in equations written on the basis of a detailed study of the
phenomenon by the modeler. Between pure physics or pure data, hybrid approaches allow to circumvent the uncer-
tainties inherent to physics-based models by making full use of the data available on the system. This is particularly the
case when developing estimation strategies of dynamical models,1,2 with a particular concern in identification—that is,
parameter estimation—of such systems.3,4,5,6 Note that these strategies are also known as data assimilation
(DA) approaches in the engineering community since their introduction in environmental sciences in the late 70s.7

Data-driven modeling appears particularly advantageous when traditional modeling encounters limitations. A rep-
resentative case is given by systems whose behavior is well understood and accurately modeled, but for which the
model parameters themselves feature a long-term evolution that is difficult to predict because the underlying mecha-
nisms are not fully elucidated. This motivates the idea of resorting to a data-driven approach to apprehend the slow-
scale parameter evolution, while still relying on the mathematical model at the fast scale. This is the specific focus of
this paper. Examples are given by the long-term remodeling of biological systems and by the development of diseases
under the influence of factors such as lifestyle or environmental conditions that are hardly within reach of mathemati-
cal modeling. In Section 1.3 we consider an example model inspired by the development of hypertension.

Data-driven modeling poses the problem of finding the laws governing the evolution of a given phenomenon
(a natural phenomenon, an engineering process, a system of agents, etc.) starting from its observation. Here comes the
challenge of leveraging the information contained in large amounts of data to extract knowledge, by finding the princi-
ples hidden in data.

In the past few years, several algorithms have been proposed to automate the process—historically a human
prerogative—of discovering the laws hidden in experimental data. In this paper we consider data-driven modeling of
time-dependent phenomena. With respect to most machine learning (ML) techniques that are designed to learn the
steady-state relationship between two quantities, the introduction of the time variable dramatically increases the com-
plexity of the problem since the object to be learned is not a function, but, typically, a differential equation.

1.1 | Learning time-dependent models from data

Data-driven algorithms capable of building black-box time-dependent models have been developed with the two follow-
ing goals:

• Data-driven modeling: in this case data come from experimental measurements of a given phenomenon that one
wants to understand and possibly predict (this is the case considered in this paper).

• Data-driven model order reduction (MOR): in this case data are generated by an high-fidelity model and the goal is to
obtain a different model (hopefully with fewer variables and with a lower computational complexity) reproducing—
up to some error—the same input–output map.8,9,10,11

In most cases, the algorithms developed for one goal are also suited for the other one. Hence, in this section, we
review the algorithms proposed in the literature for either goal.

Symbolic regression12,13,14 is a technique to find a model, written as a differential equation in symbolic form, by
means of an iterative process consisting in the generation of candidate symbolic differential equations and in the selec-
tion of the best ones.

In Peherstorfer et al.15 the authors propose a data-driven MOR technique for systems with linear state dependence,
based on the idea of inferring the frequency-domain response of the linear system from a collection of trajectories and
to apply the Loewner framework16 to interpolate the transfer function measurements at a collection of interpolation
points.
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Sparse Identification of Nonlinear Dynamics (SINDy, see Brunton et al17) is an algorithm that infers a dynamical
system from a collection of measurements on the system—the state, the time derivative of the state and the input at dif-
ferent times—under the assumption that the right-hand side of the model depends on a few combination of pre-
determined functions of the input and the state (linear combinations, products and trigonometric functions). In
Costello and Martin18 a similar ML technique is employed to predict metabolic pathway dynamics from time series
multiomics data. In Wang et al.19 a nonlinear differential equation is learned from data, by assuming a polynomial form
with sparse coefficients by compressive sensing. In Bocquet et al.20 the authors proposed a method to infer an ODE
(ordinary differential equation) representation of a model from time-dependent output data. The right-hand side of the
ODE is represented as a linear combination of multivariate polynomials of (at most) quadratic order in each state
variable.

In Daniels and Nemenman21 an S-system (a class of models inspired by the mass-action kinetics) is trained by
Bayesian model selection to learn a time-dependent dynamics.

Dynamic mapping Kriging (DMK, see Hernandez and Gallivan22) is an extension to the time-dependent
case of Kriging23 or Gaussian process (GP) regression.24,25 Kriging is a regression method that uses a GP, with
a covariance function dependent on hyper-parameters to be tuned from data, as prior for the outcome of a
function. DMK consists in performing Kriging on a difference equation, where the independent variables are
the state and the input of a system at the current time step, and the dependent variable is the state at the
next time step.

In Regazzoni et al.26 a technique based on artificial neural networks (ANNs) to learn a time-dependent differ-
ential equation from a collection of input–output pairs has been proposed. The authors also provided a universal
approximation result stating that these ANN models can approximate any time-dependent model with arbitrary
accuracy. In Regazzoni et al.27 this method has been extended by informing the learning machine with some a
priori knowledge on the system to learn, moving from a purely black-box framework to a semi-physical (or gray-
box) one. A similar ANN model is proposed in Chen et al.,28 where an efficient algorithm for sensitivities computa-
tion is discussed.

Learning algorithms for data-driven discovery of PDEs, either based on ANNs (see, e.g., Raissi et al.29,30,31) or
GP32,33 have been proposed. Those methods require the knowledge of the form of the equations and are thus better
suited for the identification of parameters. In Raissi et al.34 the authors proposed an ANN-based algorithm to discover
nonlinear time-dependent models from a collection of snapshots of the state of the system, by minimizing the residual
of some given multi-step time-stepping scheme. In Zhu et al.35 the authors proposed an ANN-based method to build a
surrogate model, using the physical knowledge as a constraint. In Tartakovsky et al.36 the method of Raissi et al.31 has
been applied to the identification of the constitutive relationship underlying a PDE, starting from snapshots of the
solution.

1.2 | Accounting for inter-individual variability

The above mentioned methods seek a unique model capable of describing the evolution of some quantities, based on a
training set composed of observed trajectories. In many applications, however, each trajectory is referred to a different
individual of some group (e.g., human beings). Since each individual is different, one should thus look for a family of
models, rather than a unique model; or, from another perspective, for a single model dependent on some parameters,
accounting for inter-individual variability.

Whereas parametric models are widely used in traditional physics-based modeling, the introduction of parameters
raises conceptual difficulties when dealing with data-driven modeling since, in a black-box framework, parameters can-
not be measured. Moreover, assuming that the learning algorithm is capable of assigning to each training individual a
parameter value, then the problem of interpretability comes into play. What is the physical meaning of such learned
parameters? The lack of interpretability also hampers the use of the learned models for predictive purposes since, with-
out a clear physical meaning of the parameters, one cannot easily determine the parameters associated with an individ-
ual not included in the training set.

In this paper we show how a wise interplay between ML and DA techniques can help to deal with those issues. We
define in such a way a framework to perform data-driven modeling of phenomena featuring inter-individual variability,
without renouncing to interpretability and predictivity of the learned model.
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1.3 | A motivating example: arterial network remodeling

To motivate the approach and to help fix the ideas with the notation, we provide in this section an example that
can be treated with the framework proposed in this paper. In Section 3.4 we consider again this example, by show-
ing some numerical results. Specifically, we consider the slow development of diseases related to the remodeling of
the arterial network (such as hypertension). Even if the dynamics at the fast scale (order of seconds) of the circula-
tion of blood through the network has been deeply studied and relatively well understood (different mathematical
models, from lumped-parameters models37 to complex three-dimensional fluid–structure interaction models38,39 are
available), the mechanisms driving the long-term evolution of the arterial network are not fully elucidated. Indeed,
in spite of some important steps towards the understanding of the determinants of vascular remodeling,40,41 a com-
prehensive mathematical model capable of predicting the development and evolution of this phenomenon is still
missing.

For the sake of simplicity, we consider a simple model to describe the evolution in the fast-scale dynamics, namely
the two-stage Windkessel model (see Figure 1), which reads37

d
dt
Pp tð Þ¼ Pd tð Þ�Pp tð Þ

RpCp
þQ tð Þ

Cp
t∈ 0,Tð �,

d
dt
Pd tð Þ¼ Pp tð Þ�Pd tð Þ

RpCd
þPvs�Pd tð Þ

RdCd
t∈ 0,Tð �,

Pp 0ð Þ¼Pp,0,

Pd 0ð Þ¼Pd,0,

8>>>>>>>><
>>>>>>>>:

ð1Þ

where we denote by x(t) = (Pp(t), Pd(t)) the state of the model, given by the proximal and distal pressures; we
denote the parameters of the fast-scale model by θ = (Rp,Cp, Rd,Cd), respectively, the proximal and distal resis-
tance and compliance; Q(t) is the blood flux. We suppose then to be able to measure the proximal pressure at
a collection of time instants (t1,…, tK) and we collect all the measurements into the observation vector
z = (Pp(t1),…, Pp(tK)).

When considering the fast time scale (i.e., the typical time scale of a heartbeat), the value of θ, describing the
properties of the arterial network, is fixed. However, if we consider a longer time scale (days and above), θ may
evolve, possibly associated with some disease. For instance, hypertension is linked to an increase of the arterial
resistance Rd, which requires a higher systolic pressure to preserve the cardiac output. We thus introduce a slow
time variable τ and we write θ(τ), assuming that the fast-scale parameters are in fact functions of the slow-scale
time variable.

We consider the following scenario. Suppose that we have a set of NP patients, periodically monitored over the long-
term horizon at times τ1 < τ2 <…< τNSð Þ. At each time τj (for j = 1, …, NS), the arterial pressure of the i-th patient (for
i = 1, …, NP) is measured for a few seconds, collecting the observation vector zij. More precisely, we denote the measured
observation vector by ~zij ¼ zijþ χij , where χij is the measurement error. The measurement ~zij reflects the value of the fast-

scale parameters of the i-th patient at the slow-scale time τj, which we define as θij ≔ θi τj
� �

, where θi(τ) denotes the

slowly evolving i-th patient's parameters of the fast-scale model.

The goal is to learn a model for the slow-scale evolution of θ(τ) from the collection of noisy measurements

~zij
n oi¼1,…,NP

j¼1,…,NS

. As mentioned before, all patients are different, and thus inter-individual variability must be taken into

account.

FIGURE 1 Visual representation of the two-stage Windkessel model of

Equation (1). In this electrical analogy, current represents blood flux, while voltage

represents blood pressure. The heart is represented as a current generator, while the

arterial network comprises dissipative and compliant elements, represented by

resistances and capacitors, respectively
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1.4 | Paper outline

The paper is organized as follows. In Section 2, we state in mathematical terms the problem that we deal with in this
paper and we introduce the associated notation. Then, we present the methods that we propose to solve such a prob-
lem, based on a decoupling of the time scales. In Section 3, we show the effectiveness and the noise-robustness of the
proposed methods by means of several numerical test cases. Finally, in Section 4, we critically discuss the results
obtained and we draw our conclusions.

2 | PROBLEM STATEMENT AND PROPOSED METHODS

In this section, motivated by the example of Section 1.3, we state the setting of the problem that we consider in this
paper, in which the example of Section 1.3 can be recast, before introducing and analyzing our proposed methods.

We consider a collection of NP individuals, such that the i-th individual is associated with θi τð Þ∈P �ℝNθ , which
evolves with a slow dynamics driven by an equation of the form

d
dτ

θi τð Þ¼ g θi τð Þ,αi
� �

τ∈ 0,Tð �,

θi 0ð Þ¼ θi0,

8<
: ð2Þ

where αi∈A�ℝNα are parameters characterizing the i-th individual at the slow-scale, accounting for inter-individual
variability. In this paper, we always assume that

g∈G≔ g∈C0 ℝNθ�Nα ;ℝNθ
� �

,Lipschitz continuous in θ
� �

,

so that the models admit a unique solution for each initial state and parameter.
This slow-scale model is coupled with a fast-scale dynamics, for which θi(τ) can be considered as a constant. Specifi-

cally, we consider a collection of times τ1 < τ2 <…< τNSð Þ over the long-term horizon, and we write θij ≔ θi τj
� �

, for j = 1,
…, NS and i = 1, …, NP. We consider a model for the fast-scale dynamics with the following form

d
dt
xij tð Þ¼ f xij tð Þ,θij, t

� �
t∈ 0,Tð Þ,

xij 0ð Þ¼ xij,0,

8<
: ð3Þ

where xij tð Þ∈X �ℝNx is the fast-scale state. We recall that θij are considered as constant parameters at this scale
(we assume T� τj� τj� 1). On this system, we consider an observation process given at the fast scale, namely

zij ¼
ðT
0
h xij, t
� �

dt, ð4Þ

where zij∈Z�ℝNz and we define the measured observations as ~zij ¼ zijþ χij , where χij �N 0,Wð Þ are the measurement
errors that we assume to be i.i.d. and Gaussian with covariance matrix W. In the example of Section 1.3, the observation
vector contains direct measurements of the first entry of the state x at a collection of discrete times tk, for k = 1, …, K.
This can be written in the form of Equation (4) by defining the observation map as h x, tð Þ≔

PK
k¼1x�e1δ t� tkð Þek , where

ek denotes the k-th element of the canonical basis of ℝn and where δ denotes the Dirac delta function (in fact, given a
function f(t), we have

Ð T
0 f tð Þδ t� tkð Þdt¼ f tkð Þ).

We assume that we have perfect knowledge about the equation driving the fast-scale evolution and that we want to
identify a model to describe the slow-scale evolution. Specifically, we assume that we know:

(K1): f, h: the fast-scale evolution and observation laws.

(K2): ~zij
n oi¼1,…,NP

j¼1,…,NS

: the fast-scale measurements.

Whereas we do not know:
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(U1): g: the slow-scale evolution law.
(U2): αif gi¼1,…,NP : the slow-scale parameters of individuals.
(U3): θi0

� �i¼1,…,NP : the slow-scale initial states of individuals, for which we assume a prior distribution N �θ,Πθð Þ.

(U4): xij,0
n oi¼1,…,NP

j¼1,…,NS

: the fast-scale initial states of individuals, for which we assume a prior distribution N �x,Πxð Þ.

The goal is to identify the unknown objects (U1)–(U4) from the known ones (K1)–(K2). We notice that this task
is situated in an intermediate position between the fields of DA, as we here seek to identify the parameters and the
state for a known dynamics, and ML, as we seek to discover the law driving the slow-scale (unknown) dynamics.
We remark that the setting considered in this paper differs from that of a standard parameters identification prob-
lem, in which one aims to identify unknown parameters of a known model from time series data (see, e.g., Yu
et al.3,4,42), for two main reasons. First, the observations ~zij are taken at the fast-scale, while we are interested in infer-
ring knowledge at the slow-scale. Secondly, we assume that we are agnostic of the model whose parameters we aim to
identify. As a matter of fact, we aim at simultaneously learning the parameters αi and the differential Equation (2).

2.1 | General strategy

In this paper we propose to combine ML and DA concepts in order to address the problem presented above.

Specifically, concerning the task of learning the law g given the measurements ~zij
n oi¼1,…,NP

j¼1,…,NS

, we extend the strategy

proposed in Regazzoni et al.26 Hence, we select a set of candidate laws Gn (where n indicates that the set is parameter-
ized by a finite number of parameters), such that Gn �G, and we look for the model, inside the family Gn , that best fits
the available data. This can be interpreted, by assuming Gaussian distribution of the measurement errors, as the
maximum-likelihood estimation of the evolution law g inside the family Gn. This formalism allows to write the problem
of identifying/learning the objects (U1)–(U4) in a unified minimization framework, as we show in the next section.

2.1.1 | A unified minimization framework

The maximum likelihood estimation of the unknown objects is found by minimizing the negative log-likelihood

ĝ, α̂i
� �i

, θ̂
i
0

n oi
, x̂ij,0
n oi

j

� 	
¼ argmin

g∈Gn

αif gi
∈ANP

θi0f gi
∈PNP

xij,0f gi

j
∈XNPNS

¼
XNP

i¼1

XNS

j¼1

1
2
zij�~zij




 


2
W�1

þ1
2
xij,0��x



 


2

Π�1
x

� 	
þ1
2
θi0��θ


 

2

Π�1
θ

 !
, ð5Þ

such that (2), (3) and (4) hold true. Here and in what follows, given a vector w∈ℝn and a symmetric positive-
definite matrix Q∈ℝn� n, we denote by jwjQ≔ (wTQw)1/2 the energy norm. Moreover, for the sake of brevity, we
denote by �f gij and {�}i sets indexed by j = 1, …, NS and i = 1, …, NP, where the values taken by the indexes j and i are left
implicit.

Problem (5) can be interpreted as that of finding the slow-scale law, the slow-scale parameter for each individual,
and the initial state at both scales such that the resulting outputs zij best approximate the measured outputs ~zij . The last
two terms of the loss functional can be regarded as regularization terms.

2.1.2 | Decoupling the two scales

Despite its solid foundation, the solution of Problem (5) may be unaffordable in practice, because of the huge number
of differential equations that serve as constraints for the minimization problem. Indeed, Problem (5) is constrained by
the NP slow-scale differential Equations (2) and the NP�NS differential Equations (3). Moreover, Problem (5) attempts
to simultaneously identify objects related to both the slow scale and the fast scale for each j = 1, …, NS and i = 1, …, NP.
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To lower the complexity of Problem (5), we propose to exploit the scale separation between the fast and the slow
dynamics, and to split the problem into two steps:

(P1): The first step consists in finding an estimate for θij , for each j = 1, …, NS and i = 1, …, NP, on the basis of the
measurements ~zij, by solving the problem

θ̂
i
j, x̂

i
j,0

� �
¼ argmin

θij∈P
xij,0∈X

1
2
zij�~zij




 


2
W�1

þ1
2
xij,0��x



 


2

Π�1
x

þ1
2
θij��θ



 


2

Π�1
θ

� 	
, ð6Þ

such that (3) and (4) hold true.
(P2): Once the estimates θ̂

i
j

n oi¼1,…,NP

j¼1,…,NS

are available, we consider the problem

ĝ, α̂i
� �i

, θ̂
i
0

n oi
� 	

¼ argmin
g∈Gn

αif gi
∈ANP

θi0f gi
∈PNP

XNP

i¼1

XNS

j¼1

1
2
θi τj
� �

� θ̂
i
j




 


2
Π�1

θ

, ð7Þ

such that (2) holds true.
We notice that (P1) involves only the fast-scale dynamics, whereas (P2) only the slow-dynamics. Indeed, the two

scales have been decoupled. As a consequence, in (P1), each individual and each slow-scale instant τj can be treated
separately; the problem can be solved for each j = 1, …, NS and i = 1, …, NP independently of each other. This allows
for a possibly parallel solution of (P1). Moreover, differently from Problem (5), in Problems (P1) and (P2) objects related
to the fast and slow scales are never simultaneously identified. In other words, the complex Problem (5) has been split
into (NPNS+ 1) simpler problems.

A further effect of splitting Problem (5) into two steps, is that Problems (P1) and (P2) feature different natures.
While the former is a purely DA problem, as it consists in the identification of the state and the parameters for System
(3), the latter is a learning problem, as the laws governing the slow-scale dynamics need to be discovered. This is a con-
sequence of the decoupling between the fast-scale, driven by a known dynamics, from the slow-scale, whose dynamics
is governed by unknown laws.

Several identifications procedures are available in the literature for the solution of problems written in the form
of (P1) (see, e.g., Yu et al.3,4,5,6). In this paper, we restrict our scope to measurements sampled in time, instead of
continuous signals, and we consider a state and parameter sequential estimation strategy2,6,43 based on the
extended Kalman filter (EKF), an extension of the Kalman filter (KF) algorithm to nonlinear systems, performed at
each step, of Equation (3).7,43 We recall that whereas KF is equivalent to least square estimation for linear dynam-
ics, EKF only gives an approximation of the least square estimation (P1) with, however, the benefit of being “on
the fly.” This is particularly adapted to the fast-scale dynamics where we can typically face real-time monitoring
constraints.

2.1.3 | Interpretation of the learned model

Before presenting an algorithm for the solution of Problem (P2) (which is treated in Section 2.2), we deal with the prob-
lem of interpreting the solution of Problem (P2) itself. This is instrumental to the presentation of the proposed methods.
Therefore, in this section we assume the existence of an algorithm capable of solving Problem (P2) and we speculate
about the interpretation of its solution. Solving Problem (P2) serves indeed different purposes, which we list in what
follows.

Understanding
First, the function ĝ provides insight into the phenomenon under exam. Indeed, ĝ yields a description of the underlying
laws written in mathematical terms and as such it can provide understanding of the phenomenology. Moreover, an
analysis of the features of the function ĝ may reveal properties such as states of equilibrium, symmetry properties and
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relationships among the variables that may not be immediately identifiable from the observation of the
experimental data.

Classification of training individuals
By solving Problem (P2), a (possibly vector-valued) parameter α̂i is assigned to each individual. However, the
physical meaning of such parameters is not clear, as they are learned in a black-box manner. Moreover, the value
of such parameters in the solution of Problem (P2) is not unique: given a solution of Problem (P2), one can always
find an equivalent solution with different values of the parameters (we will deal extensively with this issue in
Section 2.3).

Nonetheless, even if we cannot interpret such parameters in physical terms, we know that they characterize the var-
iability among the individuals. Indeed, one may be tempted to conclude that similar parameters reveal similarities
among individuals (that is to say, if α̂i ’ α̂k , then the i-th and the k-th individuals are similar). In Section 2.3 we will
show under which conditions this conclusion is licit. In that case, the learned parameters α̂i

� �i
allow to classify the

individuals.
For instance, in the example of Section 1.3, the parameter α may describe how the arterial network of a given

patient remodels in time, and thus it can be regarded as an indication of the severity of related pathologies.

Predictions
The ultimate aim of mathematical models is making predictions. However, the lack of physical meaning of the parame-
ter α apparently undermines this possibility for the learned model ĝ. In fact, let us consider a new individual (i.e. not
employed to train the model), which we denote as the (NP+ 1)� th individual; to solve Problem (P2) with the learned
model ĝ , in order to predict the evolution of θNPþ1 τð Þ , one needs to know αNPþ1 . However, unlike the parameters of
physics-based models that, having a physical meaning, can be measured in practice, the parameters of data-driven
models cannot be measured.

This inconvenience can be overcome by combining once again ML with DA (the latter acting this time at the slow-
scale). All we need is to observe the (NP+ 1)� th individual for a (short) interval of time, on the slow-scale, τ∈ 0,T obs� �

,
with T obs < T . During this observation time interval, we collect the observations ~zNPþ1

j , associated with the slow-scale
time instants 0¼ τ1 < τ2 <… τNobs

S
¼T obs, and we find the estimates, by solving (P1), for the associated fast-scale parame-

ters θ̂
NPþ1
j . Then, by the slow-scale evolution of such parameters, we estimate the value of α̂NPþ1, by solving the follow-

ing DA problem

α̂NPþ1, θ̂
NPþ1
0

� �
¼ argmin

αNPþ1∈A
θ
NPþ1
0 ∈P

XNobs
S

j¼1

1
2
θNPþ1 τj

� �
� θ̂

NPþ1
j




 


2
U�1

þ1
2
θNPþ1
0 ��θ



 

2
Π�1

θ
þ1
2
αNPþ1� �α


 

2

Π�1
α

0
@

1
A, ð8Þ

subject to the constraint

d
dτ

θNPþ1 τð Þ¼ ĝ θNPþ1 τð Þ,αNPþ1
� �

, τ∈ 0,T obs� �
θNPþ1 0ð Þ¼ θNPþ1

0 :

8<
: ð9Þ

In Equation (8), U denotes the covariance matrix associated with the error introduced during the resolution of the DA
Problem (P1). We remark that U can be estimated whenever Problem (P1) is solved, for example, by an algorithm of
the Kalman Filter family. Alternatively, assuming that the error introduced by the DA algorithm can be considered as a
white noise of magnitude σ dB τð Þ

dτ (B(τ) being a Wiener process), we set U = σ2/Δτ I, where I is the Nθ�Nθ identity
matrix. On the other hand, �α and Πα respectively denote the expected value and the covariance matrix associated with

the slow-scale parameter α, estimated from the parameters αif gi¼1,…,NP learned during the step (P2). Specifically, we set
�α equal to the arithmetic mean of these parameters and Πα equal to their sample covariance.

We can finally employ the estimated slow-scale parameter α̂NPþ1 to predict the evolution of θNPþ1 τð Þ in the time
interval T obs,T

� �
, by solving
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d
dτ

θ̂
NPþ1

τð Þ¼ ĝ θNPþ1 τð Þ, α̂NPþ1� �
, τ∈ T obs,T

� �
θ̂
NPþ1 T obs� �

¼ θ̂
NPþ1
Nobs

S
:

8><
>: ð10Þ

To summarize, in a preliminary offline phase, we learn Model (2) from the observation of a set of training individuals,
by combining DA at the fast-scale with ML at the slow-scale. Then, in the online phase, we employ DA on both the
fast-scale and, for a short interval, on the slow-scale 0,T obs� �

to characterize the features of a new individual, so that
the previously learned model can be used to predict the evolution of this individual. The interplay that takes place, at
different levels, between DA and ML is summarized in Figure 2.

2.2 | Learning a differential equation from data

In this section we present an algorithm to numerically solve Problem (P2). The algorithm presented in this paper
represents an extension of the algorithm presented in Regazzoni et al.,26 whose goal is learning a (possibly para-
metric) time-dependent differential equation from a collection of input–output time-series. However, in Regazzoni
et al.,26 the parameters associated with the training data are assumed to be known, while in this paper we need to
learn them simultaneously to learning the model. The backbone of the algorithm proposed in this paper is based
on that presented in Regazzoni et al.26 Therefore we recall here the main ideas and we highlight the differences,
while we refer to Regazzoni et al.26 for the details common to both algorithms. The algorithm is based on a ANN-
based representation of the function g, which is trained by computing sensitivities through the adjoint method.44 A
similar approach is presented in Chen et al.28 under the name of Neural ODEs, in which the state equation is dis-
cretized by means of a Runge–Kutta method.45 Our algorithm represents a generalization of this method to some
extent, as it learns a parametric differential equation with unknown parameters, rather than assuming that all the
samples share the same dynamics.

FIGURE 2 Interplay between ML (green arrow) and DA (blue arrows)
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2.2.1 | Solution strategy

Following,26 we parameterize g by a finite number of real parameters μ∈ℝn and we define the set of candidate laws as
Gn ¼ θ,αð Þ7!g θ,α;μð Þ : μ∈ℝnf g. For the moment, we do not detail how this parameterization is performed, in order to
not restrict ourselves to a specific case. To fix ideas, the reader can think of g as a polynomial in θ and α, where μ are
the coefficients of the polynomial.

Problem (P2) can thus be rewritten as the following discrete constrained optimization problem

min
μ∈ℝn

αif gi
∈ANP

θi0f gi
∈PNP

PNP

i¼1

PNS

j¼1

1
2
θi τj
� �

� θ̂
i
j




 


2
Π�1

θ

s:t:
d
dτ

θi τð Þ¼ g θi τð Þ,αi;μ
� �

, τ∈ 0,Tð �, i¼ 1,…,NP

θi 0ð Þ¼ θi0, i¼ 1,…,NP,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð11Þ

where θ̂
i
j

n oi¼1,…,NP

j¼1,…,NS

are given. To derive the gradient of the cost functional J ¼
PNP

i¼1

PNS
j¼1

1
2 θi τj
� �

� θ̂
i
j




 


2
Π�1

θ

under the

constraint given by Equation (2), we introduce a family of Lagrange multipliers σi∈C0 0,T½ �;Pð Þ and we write the
Lagrangian associated with Problem (11).

ℒ μ, αi
� �i

, θi0
� �i

, θi
� �i

, σi
� �i� �

¼
XNP

i¼1

XNS

j¼1

1
2
θi τj
� �

� θ̂
i
j




 


2
Π�1

θ

�
XNP

i¼1

ðT
0

d
dτ

θi τð Þ�gðθi τð Þ,αi;μÞ
� 	

�σi τð Þdτ�
XNP

i¼1

θi 0ð Þ�θi0
� �

�σi 0ð Þ

¼
XNP

i¼1

XNS

j¼1

1
2
θi τj
� �

� θ̂
i
j




 


2
Π�1

θ

þ
XNP

i¼1

ðT
0
θi τð Þ� d

dτ
σi τð Þdτþ

XNP

i¼1

ðT
0
g θi τð Þ,αi;μ
� �

�σi τð Þdτ�
XNP

i¼1

θi Tð Þ�σi Tð Þþ
XNP

i¼1

θi0�σi 0ð Þ,

where the last inequality is obtained by integrating by parts the time integral. By setting to zero the variation of the
Lagrangian with respect to the variables {θi}i we get the adjoint equations, valid for i = 1, …, NP

� d
dτ

σi τð Þ¼rT
θ g θi τð Þ,αi;μ
� �

þ
XNS

j¼1

Π�1
θ θ̂

i
j�θi τð Þ

� �
δτj τð Þ, τ∈ 0,T½ Þ

σi Tð Þ¼ 0,

8><
>: ð12Þ

Finally, by computing the variation of the Lagrangian with respect to the design variables we get the gradient of the cost
functional with respect to the design variables themselves

rμJ ¼
XNP

i¼1

ðT
0

rT
μ g θi τð Þ,αi;μ
� �

σi τð Þdτ; rαiJ ¼
ðT
0

rT
α g θi τð Þ,αi;μ
� �

σi τð Þdτ; rθi0
J ¼ σi 0ð Þ: ð13Þ

Given the gradient of the cost functional, any gradient-based optimization (or training) algorithm can be used to find
an approximate solution of Problem (11). To produce the results shown in this paper, we employed the Levenberg–
Marquardt algorithm (see, e.g., Nocedal and Wright46), which is specifically designed for least-squares problems,
coupled with a line-search for the step length, as illustrated in Regazzoni et al.26

Following,26 we discretize the state equations in (11) by means of the Forward Euler scheme. The choice of an
explicit scheme is aimed at lowering the computational cost of the training phase. To find the discrete version of the
adjoint Equations (12), we write the Lagrangian associated with the fully discretized version of Problem (11) and we
proceed as above (see Regazzoni et al.26 for further details).
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2.2.2 | Choice of the space of candidate models

The only missing ingredient to define the algorithm for the numerical solution of Problem (P2) is the definition of the
set of candidate laws Gn. This choice is driven by the trade-off between two different desired features: on the one hand,
the space Gn should be rich enough to contain a law that can accurately explain the training data; on the other hand, a
too rich space would lead to overfitting, that is to say the learned law would fit very accurately the training data, while
featuring bad generalization properties in new cases (see Regazzoni et al.26 for a detailed discussion on this topic).

A class of function approximators that accomplishes a good trade-off between the accuracy in fitting data and the
generalization capability is that of ANNs.47 As a matter of fact, ANNs are universal approximators in several function
spaces, including that of continuous functions (see, e.g., the density results contained in Cybenko48,49,50). Moreover,
ANNs provide an effective way of tuning the richness of the space Gn by suitably selecting the number of layers and of
neurons.

Hence, we define Gn ¼ θ,αð Þ7!g θ,α;μð Þ : μ∈ℝnf g where g(θ, α; μ) denotes an ANN where the input is given by (θ, α)
and μ∈ℝn represents the vector of ANN parameters, that is, weights and biases.47 The gradients rθg(θ, α; μ), rαg(θ, α;
μ) and rμg(θ, α; μ), needed in Equations (12) and (13), are computed through the backward-propagation formulas, as
given in Yegnanarayana.47

2.3 | Learning an interpretable slow-scale dynamics

In Section 2.2 we have presented an algorithm for the solution of Problem (P2). In this section, we discuss the interpre-
tation of the solution of such a problem. We recall that, as mentioned Section 2.1.3, the solution of Problem (P2) serves
three different purposes, namely understanding the phenomenon though its mathematical description, classifying indi-
viduals and predicting the evolution of new (not yet observed) individuals. The discussion is conducted through two test
cases. In all the tests presented in this paper, fully connected ANNs with hyperbolic tangent activation functions are
employed.

2.3.1 | Test Case 1: Non-uniqueness of representation of models

In order to assess the possibility of accomplishing the above mentioned purposes, we consider the following idealized
situation. We consider only the slow-scale equation, given by

d
dτ

θ τð Þ¼ g θ τð Þ,αð Þ τ∈ 0,Tð �,

θ 0ð Þ¼ θ0:

8<
: ð14Þ

Hence, in this section we will simply denote θ as the state and α as the parameter, without specifying the scale on which
the dynamics occur. Moreover, we assume that we are in a maximal information situation: namely, we assume that we
have a population of individuals (that we denote by Ω) such that all the possible values of initial condition and parame-
ter are covered (i.e., θ0 ωð Þ,α ωð Þð Þf gω∈Ω ¼P�A ) and that we observe the evolution of θ(τ,ω) for each ω∈Ω and
τ∈ 0,T½ �, without noise (we denote the observed data as θobs(τ,ω)). Finally, we assume that we are able to solve the fol-
lowing problem

ĝ, α̂ ωð Þf gω∈Ω, θ̂0 ωð Þ
� �

ω∈Ω

� �
¼ argmin

g∈G
α ωð Þf gω∈A

Ω

θ0 ωð Þf gω∈PΩ

ðT
0

ð
ω∈Ω

1
2
θ τ,ωð Þ�θobsðτ,ωÞ


 

2

Π�1
θ
dωdτ, ð15Þ

subject to
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d
dτ

θ τ,ωð Þ¼ g θ τ,ωð Þ,α ωð Þð Þ τ∈ 0,Tð �,ω∈Ω

θ 0,ωð Þ¼ θ0 ωð Þ:

8<
: ð16Þ

More precisely, we assume that we are able to find a triplet ĝ, α̂ ωð Þf gω∈Ω, θ̂0 ωð Þ
� �

ω∈Ω

� �
that is a global minimum of

the loss functional of Problem (15). We notice that, indeed, this problem admits global minimizers, as the loss func-
tional is bounded from below by the value zero, which is attained by the triplet (g, {α(ω)}ω∈Ω, {θ0(ω)}ω∈Ω) itself
(namely, the exact solution).

The idealized situation above described is visually represented in Figure 3. The triplet (g, {α(ω)}ω∈Ω, {θ0(ω)}ω∈Ω)

generates the collection of data θobs τ,ωð Þ
� �

τ∈ 0,T½ �,ω∈Ω , from which the triplet ĝ, α̂ ωð Þf gω∈Ω, θ̂0 ωð Þ
� �

ω∈Ω

� �
is inferred.

Hence, one may tempted to conclude that we have g	 ĝ, α ωð Þ	 α̂ ωð Þ, θ0 ωð Þ	 θ̂0 ωð Þ for any ω∈Ω. However, while the
latter conclusion is clearly true (since θ0(ω) = θ(0,ω) is part of the training dataset), the first two conclusions may be
wrong. Consider, for instance, the following toy model

d
dτ

θ τð Þ¼ αθ τð Þ τ∈ 0,Tð �,

θ 0ð Þ¼ θ0,

8<
: ð17Þ

where we have g(θ, α) = α θ and we set P ¼A¼ℝ . The data generated by Model (17) are given by θobs(τ,ω) = θ0(ω)
eα(ω)τ for any ω and τ. Consider now the following model

d
dτ

θ τð Þ¼ 1
2
~αθ τð Þ τ∈ 0,Tð �,

θ 0ð Þ¼ ~θ0,

8<
: ð18Þ

where we have ~g θ,~αð Þ¼ 1
2~αθ and ~α∈ ~A¼ℝ. If we set ~α ωð Þ¼ 2α ωð Þ and ~θ0 ωð Þ¼ θ0 ωð Þ for any ω∈Ω, then the data gener-

ated by Model (18) are given by θobs τ,ωð Þ¼ ~θ0 ωð Þe12~α ωð Þτ ¼ θ0 ωð Þeα ωð Þτ for any ω and τ. Therefore, the triplet
~g, ~α ωð Þf gω∈Ω, ~θ0 ωð Þ

� �
ω∈Ω

� �
and the triplet (g, {α(ω)}ω∈Ω, {θ0(ω)}ω∈Ω) generate the same data.

More generally, given any invertible and sufficiently regular function ψ :A! ~A , and by setting ~g θ,~αð Þ¼
g θ,ψ�1 ~αð Þð Þ, ~α ωð Þ¼ψ α ωð Þð Þ and ~θ0 ωð Þ¼ θ0 ωð Þ for any ω∈Ω, the two triplets generate the same data. Hence, the two
models g and ~g are indistinguishable solely on the basis on their output. This entails that Problem (15) (and, thus, Prob-
lem (P2)) is intrinsically ill-posed, as it features many solutions. In other terms, even in the idealized case considered in
this section, we do not have any guarantee that the learned model ~g and the learned parameters ~α ωð Þ coincide with the
original ones (g and α(ω)). We remark that this is a more subtle issue than the case when different combinations of
parameters lead to the same dynamics, which makes the parameters identification problem ill-posed. In the case con-
sidered here, indeed, different combinations of models and parameters lead to the same dynamics. This makes the prob-
lem of learning the model itself ill-posed.

Nonetheless, we remark that, in the previous example, Model (17) and Model (18) are both valid mathematical
descriptions of the phenomenon and there is no apparent reason why the former should be preferable to the latter. As a
matter of fact, due to the black-box nature of Problem (15), the solution is totally transparent to the specific

FIGURE 3 Visual representation of the idealized situation

considered in Section 2.3
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representation of the parameters α. Indeed, the reformulation obtained through the invertible map ψ is associated with
a mere change of variables and the underlying model is essentially the same. Hence, we say that model ~g is a trivial
reformulation of model g, as it does not represent a substantially different model. In Section 2.3.3, we will give a more
rigorous definition of this concept.

To illustrate the practical implications of the existence of trivial reformulations, we consider again the Problem (17),
which we denote as Test Case 1. We consider NP = 20 training individuals, for which we randomly generate an initial
state θi0∈ 1,1:1ð Þ and a parameter αi∈ (0, 1) by sampling from the two intervals with uniform probability, for i = 1, …,
NP. Then, for each individual, we synthetically generate the evolution θi(τ) for τ∈ 0,Tð � (with T ¼ 1), by numerically

FIGURE 4 Test Case 1: training data. Each plot represents a training individual, characterized by a given pair (θ0, α)

(A) (B)

FIGURE 5 Test Case 1. In (A), the colored circles represent the original parameters αi plotted against the corresponding learned

parameters α̂i for the training individuals (i = 1, …, NP). Conversely, the black crosses represent the original parameters αNPþk plotted against

the corresponding estimated parameters α̂NPþk for the testing individuals. In the first row of (B) we show the evolution of θNPþ1 τð Þ (blue
solid line), while the black dashed line represent the value of θ̂

NPþ1
τð Þ estimated by means of the EKF algorithm (for τ� 0,T obs� �

) and its

predicted value (for τ� T obs,T
� �

). In the second row of (B), we show the evolution of the estimation of the value of α̂NPþ1, with the ±3σ

bands, where σ denotes the standard deviation of the estimate
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approximating the solution of (17). The obtained transients are represented in Figure 4. Then, we subdivide the time
interval 0,T½ � into equally distributed time instants τ1 < τ2 <…< τNSð Þ with a time step of Δτ = 1e� 2, and we apply the
algorithm of Section 2.2 in order to solve Problem (P2), where we set θ̂

i
j ¼ θi τj

� �
(i.e., we assume, for simplicity, that the -

slow-scale states can be estimated without error). Specifically, we train an ANN (endowed with a single hidden layer

with three neurons) starting from the collection of observations θ̂
i
j

n oi¼1,…,NP

j¼1,…,NS

, which, in this case, are not affected by

noise. In this manner, we obtain a model ĝ and a parameter α̂i for each of the training individuals. We remark that the
proposed method is not restricted to single-layer ANNs, but more complex ANN architectures can be employed.

In Figure 5(A) we plot the value of the original parameter αi against the value of the corresponding learned parame-
ter α̂i , for each of the NP = 20 training individuals (colored circles). We notice that, even if we do not have α̂i ¼ αi , a
one-to-one relationship between the two classes of parameters is easily detectable. Hence, we can conclude that the
ANN-based model, learned from the data, is based on a different (but, possibly, equivalent) parameterization of
the space of parameters.

In order to test the capabilities of the learned model to be used for classification and prediction purposes, we
apply the procedure introduced in Section 2.1.3. Specifically, we consider a new individual, for which we randomly
generate an initial state θNPþ1

0 and a parameter αNPþ1. Similarly to what was done for the training individuals, we syn-
thetically generate the evolution of the state θNPþ1 τð Þ, for τ∈ 0,Tð � by means of the original model (17). Then, we intro-
duce an intermediate time instant T obs ¼ 0:5 s and we imagine to observe the evolution of the new individual in the
interval 0,T obs� �

. In this time interval, we apply the EKF algorithm through the learned model ĝ: more precisely, we
solve Problem (8), in order to estimate the value of the parameter α̂NPþ1 and of the state θNPþ1 τð Þ (see Figure 5(B)). We
repeat the same protocol multiple times: we generate a random initial state θNPþk

0 and a random parameter αNPþk , for
k = 1, …, we generate the corresponding synthetic data, from which, by means of DA, we estimate the values of α̂NPþk .
In Figure 5(A), we plot the obtained pairs α̂NPþk,αNPþk

� �
. We notice that the estimated values of α̂ are compliant with

the one-to-one relationship between the parameters α and the parameters α̂ that emerged in the training phase. There-
fore, since in practical applications one cannot observe αNPþk , while α̂NPþk can be estimated, this provides a way of clas-
sifying the new individual. Indeed, the mere observation α̂NPþk allows to conclude that the (NP+ k)-th individual
features characteristics similar to those of the individuals with a similar α̂.

As mentioned in Section 2.1.3, by exploiting the estimated value of α̂NPþ1 , the model ĝ can be exploited to predict
the evolution of θNPþ1 τð Þ for τ∈ T obs,T

� �
. In Figure 5(B) we report the prediction of θNPþ1 τð Þ obtained by numerically

approximating the solution of Problem (10). We repeat the same protocol for 1000 synthetically generated testing indi-
viduals, obtaining an overall normalized L2 error between the prediction and the exact solutions of 3.8e� 3.

In conclusion, even if the learned model does not coincide with the original one (it is indeed a trivial
reformulation of it), thanks to the interplay between ML and DA, it can still be employed to classify individuals
and to make predictions. In Section 2.3.4 we will deal with the problem of unequivocally selecting a unique repre-
sentative model within a class of trivially reformulations of the same underlying model. However, before dealing
with this topic, we show that something more subtle than a trivial reformulation may hinder the interpretability of
the results.

2.3.2 | Test Case 2: Non-trivial reformulations

Let us consider the following model, which we denote as Test Case 2, where the state is given by the two-dimensional
vector θ = (θ1, θ2)∈ℝ2, while the parameter is one-dimensional

d
dτ

θ1 τð Þ¼ αθ1 τð Þ τ∈ 0,Tð �,
d
dτ

θ2 τð Þ¼ 0 τ∈ 0,Tð �,

θ1 0ð Þ¼ θ1,0,θ2 0ð Þ¼ θ2,0:

8>>>><
>>>>:

ð19Þ

Test Case 2 is obtained from Test Case 1 by introducing a further state variable, with a trivial dynamics (θ2 is clearly
constant in τ). However, even if the modification is only minimal, the results (shown in Figure 6(A)) are significantly
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different from those obtained for the Test Case 1 (see Figure 5(A)). Indeed, for Test Case 2 the parameters of the origi-
nal model g are not related with those of the learned one ĝ by a one-to-one relationship.

At first sight, we are tempted to conclude that the algorithm of Section 2.2 failed its goal of finding a good
description of the training individuals. However, if we employ the learned model, as for Test Case 1, to predict the
evolution of a new individual (by observing it over the time interval 0,T obs� �

, where T obs ¼ 0:5, and by estimating
the parameter α̂NPþ1 through the EKF algorithm), we still obtain good results (see Figure 6(B)). As a matter of fact, by
repeating the above mentioned protocol for 1000 synthetically generated individuals, we obtain an overall relative error
of 3.7� 10�3.

Since the obtained error is similar to that obtained for Test Case 1, we conclude that also for Test Case 2 the learned
model is a faithful mathematical description of the original one. However, the model learned in Test Case 2 cannot be
obtained from the original one simply by a change of variable in α. Hence, we say that model ~g is a non-trivial
reformulation of model g.

To provide an example that shows how a non-trivial reformulation of Model (19) can be obtained, we consider the
following model

d
dτ

θ1 τð Þ¼ ~αþθ2 τð Þð Þθ1 τð Þ τ∈ 0,Tð �,

d
dτ

θ2 τð Þ¼ 0 τ∈ 0,Tð �,

θ1 0ð Þ¼ ~θ1,0,θ2 0ð Þ¼ ~θ2,0:

8>>>><
>>>>:

ð20Þ

If we set ~α ωð Þ¼ α ωð Þ�θ2,0 ωð Þ , ~θ1,0 ωð Þ¼ θ1,0 ωð Þ and ~θ2,0 ωð Þ¼ θ2,0 ωð Þ for any ω∈Ω, then it follows that Models (19)
and (20) generate the same data (i.e., θ1(τ,ω) = θ1,0(ω)e

α(ω)τ and θ1(τ,ω) = 0).
A less trivial example, where we do not have a constant state as in Model (19), is given by the following model

d
dτ

θ1 τð Þ¼ αθ1 τð Þ τ∈ 0,Tð �,

d
dτ

θ2 τð Þ¼�αθ2 τð Þ τ∈ 0,Tð �,

θ1 0ð Þ¼ θ1,0,θ2 0ð Þ¼ θ2,0:

8>>>><
>>>>:

ð21Þ

A non-trivial reformulation of Model (21) is given by

(A) (B)

FIGURE 6 Test Case 2: (A) original parameters αi plotted against the corresponding learned parameters α̂i and (B) evolution of θNPþ1 τð Þ,
of θ̂

NPþ1
τð Þ and of the estimation of α̂NPþ1. See caption of Figure 5 for the notation
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d
dτ

θ1 τð Þ¼ ~αþθ1 τð Þθ2 τð Þð Þθ1 τð Þ τ∈ 0,Tð �,
d
dτ

θ2 τð Þ¼� ~αþθ1 τð Þθ2 τð Þð Þθ2 τð Þ τ∈ 0,Tð �,

θ1 0ð Þ¼ ~θ1,0,θ2 0ð Þ¼ ~θ2,0,

8>>>><
>>>>:

ð22Þ

and by setting ~α ωð Þ¼ α ωð Þ�θ1,0 ωð Þθ2,0 ωð Þ, ~θ1,0 ωð Þ¼ θ1,0 ωð Þ and ~θ2,0 ωð Þ¼ θ2,0 ωð Þ for any ω∈Ω. It easy to check that,
due to the fact that the product θ1(τ)θ2(τ) is constant in time, the two models produce the same data.

We notice that in both cases (Models (19) and (21)) there is a quantity C(θ) that is constant in time (we have C
(θ) = θ2 and C(θ) = θ1θ2, respectively). This quantity is a constant value characterizing individuals, as much as the
parameters α: in both the above considered examples, indeed, the map between (α,C(θ0)) and ~α,C ~θ0

� �� �
is one-to-one.

Conversely, in the formulations considered above, the constant C(θ) is embedded into the state, which could be reduced
to a single variable. In other words, we are trying to model more than necessary: the state could be reduced to the first
variable θ1(τ), and the second variable θ2(τ) can be obtained by solving C(θ(τ)) = C(θ0). For this reason, we say that a
model that admits (respectively, does not admit) a non-trivial reformulation is non-minimal (respectively, minimal). In
Section 2.3.3 we state rigorous definitions of these concepts.

To motivate the importance of model minimality, we recall that the parameter α̂NPþ1 estimated through a non-trivial
reformulation g of a model ĝ is not related to the original parameter αNPþ1 by a one-to-one relationship. Hence, it can-
not be employed to infer knowledge on the NP+ 1 individual (classification purposes) and it hampers the interpretabil-
ity of the learned model.

2.3.3 | Definition of reformulation

In what follows, we identify a model written in the form of Equation (14) with the triplet g,P,Að Þ. Moreover, we denote
the solution map associated with such a model as sg :P�A� 0,þ∞½ Þ!P , defined as sg(θ0, α, τ) = θ(τ), where θ(τ) is
the solution of Equation (14). We introduce the following definitions.

Definition 1. We say that a function ~A :P�A! ~A is:

• trivial, if it is constant in its first argument; non-trivial, otherwise;
• non-pathological, if ~A θ0,αð Þ : α∈A

� �
¼ ~A for any θ0∈P; pathological, otherwise.

Definition 2. We say that ~g,P, ~A
� �

is a reformulation of g,P,Að Þ if there exists a non-pathological function ~A :

P�A! ~A such that:

g sg θ0,α,τð Þ,α
� �

¼~g sg θ0,α,τð Þ, ~A θ0,αð Þ
� �

8θ0∈P,α∈A,τ≥ 0: ð23Þ

Moreover, we say that ~g,P, ~A
� �

is a

• non-trivial reformulation of g,P,Að Þ, if (23) holds for some non-trivial non-pathological function ~A;
• trivial reformulation if all the non-pathological functions ~A satisfying (23) are trivial.

Definition 3. A model g,P,Að Þ is minimal if it does not admit any non-trivial reformulation.

We remark that the hypothesis that the function ~A be non-pathological is needed to avoid pathological situa-
tions, such as the case when a reformulation if obtained by a mere piece-wise redefinition of the coefficient.
Moreover, we remark that the definition of reformulation is motivated by the following result, for which the
proof is given in A.
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Proposition 1. Let ~g,P, ~A
� �

be a reformulation of g,P,Að Þ through the map ~A :P�A! ~A. Then we have

sg θ0,α,τð Þ¼ s~g θ0, ~A θ0,αð Þ,τ
� �

8θ0∈P,α∈A,τ≥ 0: ð24Þ

We remark that minimality is an intrinsic property of models: it is not affected, for instance, by invertible
transformations of either the inputs, the outputs or the parameters (such as scaling or nondimensionalization).
Even if, as shown in Test Case 2, the methods proposed in this paper can be applied to any model (minimal
and non-minimal ones), working with minimal models enhances the quantity of information that can be
extracted from the learned model. This leads to the issue of devising tests to check minimality of models.
Clearly, since the original model is not known in practical applications, the minimality of the model to be
learned cannot in practice be analytically checked through the Definition 3. In the case that some a priori
knowledge about the physical phenomenon is available, minimality could be deduced by means of physics-
based considerations. The development of a posteriori numerical tests aimed at checking model minimality will
be the subject of future works.

We recall an important concept, that is identifiability of models.51,52

Definition 4. Two parameters α1,α2∈A are said indistinguishable for the model g,P,Að Þ if

9θ0∈P 8τ≥ 0 sg θ0,α1,τð Þ¼ sg θ0,α2,τð Þ: ð25Þ

Moreover, we define I(α) = {α* s. t. α and α * are indistinguishable}.

Definition 5. We say that a model g,P,Að Þ is identifiable if I(α) = {α} for any α∈A, that is

8θ0∈P,α1 ≠ α2∈A 9τ
 >0 sg θ0,α1,τ
ð Þ≠ sg θ0,α2,τ
ð Þ ð26Þ

In fact, if a model is identifiable, then the map from the parameter-trajectory map α 7! {sg(θ0, α, τ)}τ≥ 0 is one-to-one,
for each θ0∈P . Conversely, if a model is not identifiable, then, for some choices of the initial condition θ0∈P the DA
assimilation problem of identifying the parameter α from the trajectory {sg(θ0, α, τ)}τ≥ 0 is ill-posed. Hence, in this paper
we assume that we work with identifiable models. We remark that for linear models identifiability can be assessed by
standard criteria (e.g., by studying the spectral properties of the observability matrix43). Nonetheless, in this paper we
consider the more general case of nonlinear parametric dynamical models.

2.3.4 | Uniqueness of representation of models

Clearly, every model (even the minimal ones) admit trivial reformulations. Indeed, the parameter α is never measured
and so it is subject to changes of variables. This is linked to the black-box structure of the model learning Problem (P2).
As a consequence, the solution of Problem (P2) is not unique. In order to transform such a problem into a problem with
a unique solution, we need to select a representative model inside each class of trivial reformulations. In this section,
we suggest a strategy to accomplish this goal. Specifically, we restrict the space of candidate models Gn by imposing
some a priori constraints on the dependence of g on α.

Let us suppose that there exists a function, Γ{g(�, α)}(α), expressed as a combination of g and of its derivatives in θ
(of any order) evaluated at some given points of P , invertible in α. Then, we perform learning by restricting the search
space to functions g satisfying the constraint Γ{g}(α) = α. In what follows we will show that, in this way, the solution of
the model learning problem is unique.

This strategy can be interpreted as that of giving a physical meaning to the parameter α, which would be otherwise
a black-box object. As a matter of fact, the constraint Γ{g}(α) = α provides a definition of the parameter α. Let us con-
sider the following example.
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Example 1. Select some θ
∈P , and set Γ{g}(α) = g(θ*, α). In this case, performing optimization under the constraint g
(θ*, α) = α is equivalent to defining the parameter as the time rate of change of the state at θ*.

The effectiveness of the proposed strategy is supported by the following proposition (the proof is given in A).

Proposition 2. Let g,P,Að Þ be an identifiable model. Suppose that there exists an operator Γ{g(�, α)}(α), which acts on
g as a function of θ, which is injective in α. Then, there exists a unique trivial reformulation of g,P,Að Þ (that we
denote by ~g,P, ~A

� �
) such that Γ ~gf g ~αð Þ¼ ~α for any ~α∈ ~A.

From an implementative viewpoint, the constraint can be imposed in two alternative ways. The first (that we denote
as weak constraint) consists in adding to the loss function of Problem (P2) the following penalization term

w2

2

ð
A
α�Γ gf g αð Þj j2dα, ð27Þ

where w denotes a weighting constant. From a numerical viewpoint, we evaluate the integral by Latin Hypercube Sam-
pling53 of the parameters space A. When computing the gradients of the loss function (see Equation 13), the gradient of
the penalization term with respect to μ is added to rμJ .

The second strategy (that we denote as strong constraint) consists in a manipulation of the ANN architecture, such
that the constraint is exactly satisfied. Let us consider for instance Example 1. In this case, we define the space Gn as

Gn ¼ θ,αð Þ7!ℋ θ,α;μð Þ�ℋ θ
,α;μð Þþα : μ∈ℝnf g,

where ℋ(θ, α; μ) denotes an ANN, whose input is given by (θ, α) and where μ∈ℝn represents the vector of ANN
weights and biases. In this manner, the constraint α = Γ{g}(α) = g(θ*, α) for any α∈A is automatically satisfied by any
function g∈Gn. We notice that, in this case, the last layer of biases can be removed from the ANN since its action in can-
celed by construction.

We remark that, while the weak constraint strategy is always feasible, the strong constraint feasibility depends on
the specific form of the function Γ.

3 | NUMERICAL ILLUSTRATIONS

In this section, we present the results of several numerical test cases, showing the effectiveness and the noise-robustness
of the proposed methods. All the results shown in this paper were produced within the MATLAB library model-learn-
ing (publicly available in a GitHub repository1), which was suitably extended with the implementation of the methods
proposed here.

3.1 | Test Case 1: Gaining a unique solution

In order to assess the effectiveness of the strategy proposed in Section 2.3.4 to identify a unique representative model
among a class of trivial reformulations, we consider again Test Case 1, already considered in Section 2.3.1 (see Equa-
tion (17)). Since this model is minimal (in the sense of Definition 3), when learning from its data we obtain one of its
infinitely many trivial reformulations. As a matter of fact, by running the learning algorithm several times, with differ-
ent random initialization of the ANN parameters, we obtain a different model every time, as testified by Figure 7(A)–
(C), which show, for three different models learned from the same dataset, the values of the original parameters αi

against the value of the corresponding learned parameters α̂i . Even if in each case an underlying one-to-one relation-
ship linking α to α̂ can be easily detected, this relationship is different in each case.

In order to obtain a unique solution, we consider the constraint Γ ~gf g ~αð Þ¼ ~α for Γ ~gf g ~αð Þ¼~g θ
,~αð Þ , by setting
θ* = 1.1. By Proposition 2, we know that there is a unique model ~g,P, ~A

� �
, trivial reformulation of the model of Equa-

tion (17), such that ~g θ
,~αð Þ¼ ~α. It is easy to check that this model has a right-hand side defined as ~g θ,~αð Þ¼ ~αθ=θ
 and
that the parameters of such model are related to those of the original one by the relationship ~α ωð Þ¼ψ α ωð Þð Þ¼ θ
α ωð Þ.
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We perform several runs of the learning algorithm of Section 2.2 with different random initialization of the ANN
parameters, both with the weak and with the strong constraint approach. Unlike the non-constrained case, this time (with
both approaches) we obtain the same model in every run (up to numerical errors). In Figure 7(D),(E) we show the αi ver-
sus α̂i plot obtained with the weak and the strong constraint strategies, respectively. In both figures we superimpose
(black line) the relationship α¼ψ�1 ~αð Þ¼ ~α=θ
 , corresponding to the analytical exact solution of the learning problem.
The remarkably good agreement between the analytical solution and the learned parameters demonstrates the perfor-
mance of the learning algorithm and of the strategy proposed in Section 2.3.4 to select a unique representative model.

As noticed in Section 2.3.1, the original and the learned model right-hand sides are related by the relationship
g θ,αð Þ¼~g θ,Γ gf g αð Þð Þ¼~g θ,θ
αð Þ for any θ∈P and α∈A. In order to check that the learned models are consistent with
this relationship, we show in Figure 8 a comparison between the functions g(θ, α) and ĝ θ,Γ gf g αð Þð Þ (where ĝ denotes
the learned model) in the portion of the state-parameter plane P�A spanned by the training dataset. We can see that,
with both the weak and the strong constraint strategies, the results are consistent with the analytical solution, except
for the region of the state-parameter plane corresponding to low α and large θ. The reason for this discrepancy lies in
the fact that, when αi is low, the state of the i-th individual never reaches the region where θi is large. Hence, the train-
ing dataset does not contain any information about the behavior of the phenomenon in this region of the state-
parameter plane and we cannot expect the data-driven apparatus to learn anything that is associated with this region
(extrapolation effect). Nonetheless, if the training dataset contains a sufficiently representative collection of the possible
behaviors of the phenomenon to be modeled, spanning the values of parameters and initial conditions of interest and
the time horizon of interest, even if the learned model is not reliable outside the state-parameter region spanned by the
training dataset, in practical applications the complementary of this region is never reached. Hence, in this case,
the risks associated with extrapolation do not represent a threat. However, it is important to be aware of this limitation.
A good practice would be to check a posteriori, when the learned model is used for prediction purposes, that the state-

parameter pair does not move “too far” from the region spanned by the training dataset (i.e., θ̂
i
j, α̂

i
� �n oi¼1,…,NP

j¼1,…,NS

).

(A)

(D) (E)

(B) (C)

FIGURE 7 Test Case 1: original parameters αi plotted against the corresponding learned parameters α̂i for the training individuals

(i = 1, …, NP). The models considered in (A), (B) and (C) are obtained with the non-constrained strategy, the model of (D) and (E) are

obtained with the weak and the strong strategies, respectively. In (D) and (E), the black line represents the analytical solution α¼ψ�1 ~αð Þ
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3.2 | Test Case 1: Noise robustness of the learning algorithm

In the numerical tests considered so far, we have considered the case when measurements of the variables θi(τ) are
available without error. However, in practical applications, measurements are never error-free. Moreover, in case the
variables θ̂

i
j are obtained as results of a DA algorithm (as in the framework proposed in Section 2.1), their values are

affected by the error introduced by the DA procedure. Hence, it is of utmost importance to investigate how much the
proposed learning algorithm is robust to noise.

With this aim, we consider again Test Case 1, this time by assuming that the available measurements are affected
by noise. Specifically, we set θ̂

i
j ¼ θi τj

� �
þ εij , where the observation errors εij �N 0,Uð Þ are independent and identically

distributed. By assuming that the stochastic variables εij are the result of a discrete sampling of the white noise σ dB τð Þ
dτ

(where B(τ) is a Wiener process and σ is the noise magnitude), we set U = σ2/Δτ. In particular, we set σ = σoffline to gen-
erate the training data (offline noise) and σ = σonline to generate the data to test the learned model (online noise). In all
the test cases presented in this paper, we assumed the noise magnitude as given. A possible future development could
be using suitable algorithms to automatically estimate the noise magnitude (see, e.g., Bavdekar et al.54).

We add a random noise to the dataset used in Sections 2.3.1 and 3.1 for Test Case 1, with different magnitudes of
σoffline, and we run the learning algorithm. For the sake of brevity in this section we only consider the strong constraint
strategy, but similar results are obtained with the weak constraint strategy too. In Figure 9(A) we show the αi versus α̂i

plot obtained for σoffline ranging between 10�2s1/2 and 10�5s1/2. We notice that, as the noise decreases, the accuracy in
the attribution of the parameters α̂i increases.

To quantitatively assess the noise-robustness of the method, we generate 1000 random test individuals and we add a
random noise (with different levels of magnitude σonline), we apply the EKF algorithm in the time interval 0,T obs� �

, in

(A)

(B)

FIGURE 8 Test Case 1: comparison between the original model right-hand side g(θ, α) with the learned model right-hand side, mapped

back to the state-parameter plane of the original model (i.e., ~g θ,Γ gf g αð Þð Þ). The last column shows the absolute error between the two

functions. (A) Weak constraint. (B) Strong constraint
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order to estimate the parameters α̂i associated with those individuals, and finally we predict their evolution in the inter-
val T obs,T
� �

. In Figure 8 we show the overall normalized L2 error between the predictions and the exact solutions, for
the different values of σoffline and σonline. We notice that, when σonline is large compared to σoffline, the prediction error
has a trend which is proportional to σonline. However, for low values of σonline, the prediction error saturates to a level
that depends on σoffline. Indeed, the learned model ĝ is an approximate surrogate for the laws governing the phenome-
non (represented in this example by the original model g). As such, the learned model is affected by a model error, that
is to say it is endowed with a limited capability of describing and predicting the behavior of the phenomenon. In con-
clusion, when σonline� σoffline, the error introduced by the online noise prevails over the model error, which explains
the linear trend between σonline and the prediction error. Conversely, when σonline < σoffline, the model error comes into
play and the decreasing trend of the prediction error ends.

We notice that in most practical applications, measurements are available with the same quality in the online
and the offline stage. Hence, we repeat the test performed in Figure 9(B), by setting σonline = σoffline, that is by
simultaneously decreasing the offline and the online error. In order to provide a benchmark value for the errors
obtained in this manner, we perform the same test, this time by employing the original model g itself in the DA
and in the prediction stage. The prediction errors so obtained are reported in Figure 10. Such errors represent the
minimum error that can be attained for a given level of noise. Indeed, they are obtained in the idealized case of
absence of any model error (they are only affected by the online noise). In Figure 9 we also report the prediction
errors obtained by replacing the ground-truth model g with its data-driven surrogates. The closeness of the error
curve obtained with the ANN-based model to that obtained with the original one demonstrates that the effect of
the model error introduced by replacing the original model with its surrogate is small compared to the error due to
the noise. Hence, we conclude that the learned model can be reliably used to interpret data and to make predic-
tions for the phenomenon.

(A)

(B)

FIGURE 9 Test Case 1: (A) original parameters αi plotted against the corresponding learned parameters α̂i for the training individuals

(i = 1, …, NP), for different noise magnitudes σoffline and (B) overall L2 relative prediction errors obtained for different values of σoffline and

σonline. In (B), each black cross represent a testing individual, the blue curve represent the arithmetic mean, the red curve the

geometric mean
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3.3 | Test Case 3: Nonlinear second-order dynamics

In order to test the capabilities of the proposed method to deal with more complex test cases than the linear first-order
dynamics considered in the previous sections, we consider the following second-order nonlinear model

d2

dτ2
ω τð Þþβsin ω τð Þ�α1ð Þþα2

d
dτ

ω τð Þ¼ 0 τ∈ 0,Tð �,

ω 0ð Þ¼ω0,
d
dτ

ω 0ð Þ¼ψ0,

8>>>><
>>>>:

ð28Þ

describing the dynamics of a nonlinear oscillator. The state of the model is given by θ τð Þ¼ ω τð Þ, ddτω τð Þ
� �

. The two
parameters α1 and α2 represent the steady-state value of the variable ω and the damping coefficient, respectively, while
β = 5 s�2 is a constant. We generate NP = 20 training samples, by randomly sampling the state space θ0∈ [�1,
1]� [�0.1 s�1,0.1 s�1] and the parameters space α∈ [�0.2,0.2]� [0.5 s�1,1.5 s�1] and by setting T ¼ 10 s. For the time
discretization we set Δτ = 1 � 10�2 s.

As in Section 3.2, we build several data-driven models with different values of σoffline. For each model, we set a sin-
gle hidden layer with eight neurons. Then, we randomly generate several test samples; we add noise to the model out-
put; we perform DA in the time interval 0,T obs� �

, for T obs ¼ 4 s; finally, we predict the evolution in the time interval
T obs,T
� �

, for T ¼ 10 s.

FIGURE 10 Test Case 1: overall L2 relative prediction errors for different values of σonline obtained by employing the original model

(left) and the learned models (center), by setting σoffline = σonline (we use the same conventions of Figure 9(B)). Finally, we show a

comparison of the arithmetic and the geometric means of the prediction errors, for the original and the learned models (right)

FIGURE 11 Test Case 3: evolution of θNPþ1 τð Þ, of θ̂NPþ1
τð Þ and

of the estimation of α̂NPþ1. See caption of Figure 5 for the notation
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We report in Figure 11 the predicted evolution of the system state for a random sample, in the case
σoffline = σonline = 10�4 s1/2. Then, in Figure 12, we compare the overall L2 relative prediction errors obtained, for differ-
ent noise levels, by employing the data-driven models and the exact model of Equation (28). Even if the errors obtained
with the data-driven models are larger than those obtained with the exact model, compared to Test Case 1, the error
still converges to zero when the noise decreases.

3.4 | Test Case 4: A synthetic test case of hypertension evolution

As a final test case (Test Case 3) we consider the example introduced in Section 1.3 as a motivation for the methods pro-
posed in this paper. In this test case, the fast-scale phenomenon is the blood circulation, which we here describe by
means of the two-stage Windkessel model of Equation (1). The evolution of the fast-scale variables x(t) = (Pp(t), Pd(t)) is
conditioned by the four parameters θ = (Rp,Cp,Rd,Cd), which evolve on a slower time scale τ. In order to test the pro-
posed methods, we synthetically generate data that we use in place of experimental measurements. With this aim, we
consider the following model for the slow scale evolution of the parameters θ

d
dτ

Rp τð Þ¼ 0 τ∈ 0,Tð �,
d
dτ

Cp τð Þ¼ 0 τ∈ 0,Tð �,
d
dτ

Rd τð Þ¼ αRd τ∈ 0,Tð �,
d
dτ

Cd τð Þ¼�αCd τ∈ 0,Tð �,

Rp 0ð Þ¼Rp,0,Cp 0ð Þ¼Cp,0,Rd 0ð Þ¼Rd,0,Cd 0ð Þ¼Cd,0:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð29Þ

Model (29) describes the evolution of hypertension due to a progressive increase of the distal arterial resistance Rd,
while the distal arterial capacitance Cd accordingly decreases so that the characteristic time constant of the arterial
system (corresponding to the product RdCd) is preserved. On the other hand, the properties of the proximal arterial
system (i.e., Rp and Cp) are not subject to long-term variations. The slow-scale coefficient
α∈A≔ 0,1�10�2week�1� �

represents the disease severity (more precisely, we have α¼ log 2ð Þ=T double, where T double is
the doubling time of Rd).

FIGURE 12 Test Case 3: overall L2 relative prediction errors for different values of σonline obtained by employing the original model

(left) and the learned models (center), by setting σoffline = σonline (we use the same conventions of Figure 9(B)). Finally, we show a

comparison of the arithmetic and the geometric means of the prediction errors, for the original and the learned models (right)
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3.4.1 | Synthetic data generation

We generate the data needed to test the methods proposed in this paper alongside the following steps, visually represen-
ted in Figure 13.

1. We generate 100 synthetic patients, each one characterized by an initial state θ0 = (Rp,0,Cp,0,Rd,0,Cd,0) and by a
degree of disease severity α. Specifically, the i-th patient initial state θi0 and αi are randomly selected by sampling
with uniform probability the sets Rmin

p ,Rmax
p

h i
� Cmin

p ,Cmax
p

h i
� Rmin

d ,Rmax
d

� �
� Cmin

d ,Cmax
d

� �
(see Table 1) and A.

2. For each patient, we solve the slow-time model of Equation (29), obtaining θi(τ) for τ∈ 0,Tð �, with T ¼ 50 weeks.
3. We suppose that we monitor each patient with a period of Δτ = 1 week. Hence, we subdivide the interval 0,Tð � into

the time instants 0¼ τ1 < τ2 <…< τNS ¼T , such that τj+ 1 = τj+Δτ.
4. At each time τj (for j = 1, …, NS) and for each patient i, we simulate the fast-scale patient circulation, by solving the

Windkessel model (1) by setting θ = θi(τj). We simulate 10 heartbeats, in order to let the dynamical system reach a
limit cycle, and then we record the result of the following 10 heartbeats. In this manner, we obtain zij , namely the
observation associated with the i-th patient at the j-th discrete slow-time. We recall that, in this test case, the obser-
vation vector z collects the measurements of the proximal arterial pressure at a discrete collection of time instants
(t1,…, tK), with tk+ 1� tk = Δt = 1e� 2 (i.e., we have z = (Pp(t1),…, Pp(tK)).

5. In order to mimic the measurement error that unavoidably comes with any experimental measurement, we define
the measured observation as ~zij ¼ zijþ χij, where χ

i
j �N 0,Wð Þ are independent and identically distributed observation

errors. Similarly to what we have done in Section 3.2, we assume that the observation errors derive from a white

FIGURE 13 Test Case 4: visual representation of the five steps followed to generate synthetic data (see Section 3.4.1)

TABLE 1 Test Case 4: Lower and

upper bounds of the initial values of the

slow-scale variables

Parameter Value Parameter Value Units

Rmin
p

8.1757� 10�2 Rmax
p 1.7326� 10�1 mmHg s mL�1

Cmin
p

3.1197� 10�2 Cmax
p 3.1464� 10�2 mL mmHg�1

Rmin
d

6.9006� 10�1 Rmax
d 1.1599 mmHg s mL�1

Cmin
d

1.1851 Cmax
d 2.1731 mL mmHg�1
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noise of magnitude ρ = 0.75mmHgs�1/2. Hence, we set W = ρ2/Δt = (7.5mmHg)2. This means that any pointwise
measurement is affected by a relative error of the order of 10%.

Among the quantities generated through the above mentioned steps, the unique information available to the learning
algorithm consists in the noisy observations ~zij

n oi

j
. The goal is that of climbing back those steps, in order to obtain the

initial state of each patient, their degree of disease severity, and the laws governing the slow-scale arterial network rem-
odeling. Although the data employed for this test case are synthetically generated, the assumptions made here are con-
sistent with an hypothetical clinical use of the proposed procedure; indeed this type of measurements can be available,
for patients with specific indications, with the accuracy assumed above.55

FIGURE 14 Test Case 4: visual representation of the procedure followed to generate a data-driven model for hypertension development

(see Section 3.4.2). In the top part of the figure we represent in black the noisy measurement of Pp associated with a given patient i and a to

given slow-time instant τj. The colored line represent the time evolution of estimated values of the system state (Pp and Pd) and of the four

parameters (Rp, Cp, Rd and Cd). The shadowed areas represent the ±3σ bands, where σ denotes the standard deviation of the estimate. By

combining the estimated values of the parameters obtained for all patients and for all the slow-time instants, we obtain an estimate of their

slow-scale evolution, represented in the bottom-right part of the figure
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3.4.2 | Data-driven model for hypertension development

Starting from the noisy observation ~zij
n oi

j
, we build a data-driven model by following the procedure proposed

in Section 2.1 and visually represented in Figure 14.

Specifically, we select NP = 25 training patients. For each of them and for each slow-scale time instant τj, we con-
sider the noisy observation ~zij , collecting the proximal arterial pressure measurements along 10 heartbeats. By solving
Problem (P1) by means of the EKF algorithm, we obtain an estimate of the slow-scale parameter vector for the i-th
patient at time τj, denoted by θ̂

i
j. By collecting the estimated parameters for all i and j, we obtain the slow-scale training

dataset, a subset of which is displayed in Figure 14.
Next, we employ this dataset to train a data-driven model. Specifically, since hypertension is related to an increase

of the peripheral system resistance, we focus on the variable Rd. Hence, we solve Problem (P2) for θ(τ)≔Rd(τ) by means
of the algorithm proposed in Section 2.2. In order to guarantee the uniqueness of the solution for Problem (P2) and to
enhance the interpretability of the results, we adopt the constraint of Example 1, for θ
 ¼R


d ≔ 0:75 mmHg smL�1 , by
following the strong constraint strategy. We set Nα = 1, and we train an ANN with a single three-neurons hidden layer.
In this manner, we obtain the data-driven model ĝ and the slow-scale parameters α̂i

� �i
.

In order to a posteriori check the quality of the obtained results, in Figure 15 we show the learned parameters α̂i ,
plotted against the ground-truth parameters of the original model αi, used to the generate the data. We can see that,
thanks to the proposed methodologies, we have successfully classified patients, by ranking them according to the dis-
ease severity.

Then, we consider the 75 synthetic patients generated in Section 3.4.1 but not included in the training set, in order
to check the capability of the learned model to interpret unseen data and to make predictions. Hence, we apply the
EKF algorithm in the time interval 0,T obs� �

, with T obs ¼ 25 weeks, to estimate the value of the parameter α̂ for the test-
ing patients. Then, we use the estimated parameter to predict the future evolution of the patient state in the time inter-
val T obs,T

� �
. In this manner, we obtain an overall relative L2 error between the prediction and the exact solutions

equal to 1.06� 10�2.
The computations were run on a standard laptop (single core Intel i7-6500U). The execution of the EKF algorithm

took nearly 140 ms for each run, for a total of nearly 7 s for each patient (as we have NS = 50 checkpoints per patient).
Therefore, preprocessing the 25 patients used to train the ANN required less than 3 min. The ANN training took instead
160 s. In conclusion, the whole offline phase took nearly 5 min. Concerning the online phase, for each patient the EKF
algorithm needs to be run on the fast scale model up to T obs, taking nearly 3.5 s; then the EKF algorithm is run on the
slow scale model, which is then used to forecast the evolution of the patient. These steps only took 20ms for each
patient.

Finally, we notice that thanks to the application of the constraint of Example 1, the otherwise black-box parameter
α̂ is endowed with a physical meaning. In particular, it owns a measure unit (arterial resistance per time unit) and it
corresponds to the time rate of change of arterial resistance when its value is equal to R


d. This allows to provide a prac-
tical definition of the parameter: its numerical value (expressed as mmHg s mL�1 week�1) can be estimated as the

FIGURE 15 Test Case 4: original parameters αi plotted against

the corresponding learned parameters α̂i for the training individuals

(i = 1, …, NP)
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increase of arterial resistance occurring in 1 week, when the patient has resistance equal to R

d. Thanks to the enhanced

interpretability, this will facilitate the use of such data-driven models in clinical practice.

4 | CONCLUSIONS

In this paper we considered the problem of discovering differential equations describing the long-term evolution of phe-
nomena featuring two temporal scales, starting from experimental measurements related to the fast-scale dynamics.
We proposed to split the problem into two steps. The first step deals uniquely with the fast scale, and consists in esti-
mating the fast-scale parameters by means of DA methods. Then, in the second step, we employ the reconstructed
slow-scale evolution of these parameters to build a data-driven model for the dynamics occurring at this slow time
scale.

With this aim, we proposed a ML algorithm that builds a data-driven model starting from time series data of a phe-
nomenon featuring inter-individual variability. In practice, this algorithm discovers a differential equation, depending
on one parameter or more, that approximates the time evolution of the individuals belonging to the training set. More-
over, this algorithm also learns the most likely value of such parameters for each of the training individual. We remark
that this algorithm can be easily generalized to the case when the slow-scale phenomenon features a time-dependent
input, similarly to what was done in Regazzoni et al.26

Then, we investigated the issue of interpretability of the learned model. In particular, we have highlighted that the
problem of learning from time series a differential equation featuring one parameter or more never has a unique solu-
tion. Indeed, since the parameters are not directly measured, each model is associated with an equivalence class of
models that can be obtained from the original one by an invertible transformation of the parameters into a new param-
eterization of the parameters themselves (we call such models trivial reformulations of the original one). Motivated by
this, we have proposed a strategy to select a unique representative model inside each class of trivial reformulations of a
given model. This is obtained by adding a constraint to the candidate class of models, either in weak or in strong form.

Moreover, we have shown that models can be split into two categories: minimal and non-minimal. Models belong-
ing to the second class feature a disadvantage when one tries to build a data-driven model for the underlying phenome-
non. In fact, non-minimal models admit, besides trivial reformulations, what we call non-trivial reformulations.
Non-trivial reformulations are mathematical models, written as parametric differential equations, that can produce the
same output of the original model, but that cannot be obtained from it simply by an invertible transformation of the
parameters. For this reason, it is preferable to work with minimal models. Although minimality is an intrinsic property
of a model, we recall that a non-minimal model can typically be reduced to a minimal one by removing variables that
can be obtained as a combination of other variables. In other words, one should try not to learn a model with more vari-
ables than necessary; otherwise the dynamics would occur on trivial manifolds in the state space, leading to the exis-
tence of non-trivial reformulations. The development of criteria that allow to check the minimality of a model will be
the subject of future works.

Once the training phase (offline phase) is accomplished, the learned model serves multiple purposes. First, it pro-
vides understanding of the phenomenon to be modeled. Secondly, by performing DA through the learned model, one
can estimate the values of the parameters associated with an individual not included in the training set (online phase).
In case the model is minimal, then the parameters obtained in this manner allow to classify the individual, as their
values may be used to detect patients that have similar features. Thirdly, once an estimate of the parameters associated
with an unseen individual is available, then the learned model can be used to predict the future evolution of such indi-
vidual. We remark that, while classification is only possible when working with minimal models, the learned model
can be employed to predict the future evolution of unseen individuals both when working with minimal and with non-
minimal models.

Finally, we considered several test cases to show the effectiveness of the proposed methods and algorithms. Specifi-
cally, we synthetically generated time series by numerically approximating the solution of various differential models,
including linear and nonlinear, first-order and second-order dynamics. Then, we employed our algorithm to learn para-
metric differential equations describing the measured data. We showed that, by suitably employing DA on the learned
models in order to estimate the associated parameters, the future evolution of individuals not included in the training
set can be accurately predicted. Moreover, numerical tests demonstrate that, when the noise added in the online and in
the offline phases decreases, the prediction accuracy increases. Finally, we have shown that the strategy proposed to
make the model learning problem well-posed succeeds in selecting a unique model among the equivalence class of
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trivial reformulations of the original model, thus enhancing the interpretability of the learned model. Moreover, this
strategy also provides a physical meaning to the parameters associated with the learned model, which would otherwise
be a black-box object without any clear physical interpretation.

ORCID
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ENDNOTE
1 https://github.com/FrancescoRegazzoni/model-learning.
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APPENDIX: A PROOFS OF THE PRESENTED RESULTS

We give in this appendix the Proofs of Propositions 1 and 2.

Proof of Proposition 1. Let us consider a generic θ0∈P and α∈A . Let us denote θ(τ)≔ sg(θ0, α, τ). In virtue of Equa-
tion (23), we have
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d
dτ

θ τð Þ¼ g θ τð Þ,αð Þ¼~g θ τð Þ, ~A θ0,αð Þ
� �

, τ≥ 0: ðA1Þ

By the uniqueness of the solution of this ODE system, if follows that s~g θ0, ~A θ0,αð Þ,τ
� �

¼ θ τð Þ for any τ≥ 0.

Proof of Proposition 2. Let us define

~A θ0,αð Þ≔Γ gf g αð Þ, ~g θ,~αð Þ≔ g θ,Γ gf g�1 ~αð Þ
� �

8θ∈P,α∈A ðA2Þ

and let ~A be the image of ~A. Clearly, the model ~g,P, ~A
� �

is a trivial reformulation of g,P,Að Þ.
Let us suppose that g,P,Að Þ admits another trivial reformulation, which we denote by �g,P, �A

� �
, satisfying

Γ �gf g �αð Þ¼ �α for any �α∈ �A. Then, by Equation (23), there exists a function B :A! �A such that

g θ,αð Þ¼�g θ,B αð Þð Þ 8θ∈P,α∈A: ðA3Þ

By definition of identifiability, there exists a function h such that, for any θ0∈P and α∈A

α¼ h sg θ0,α,τð Þ
� �

τ≥ 0

� �
¼ h s�g θ0,B αð Þ,τð Þ

� �
τ≥ 0

� �
,

where the second equality follows from Proposition 1. The function B is thus invertible (in particular, we have B�1 �αð Þ¼
h s�g θ0,�α,τð Þ
� �

τ≥ 0

� �
).

By combining Equation (A2) with Equation (A3), we obtain

~g θ,~αð Þ¼�g θ,B Γ gf g�1 ~αð Þ
� �� �

8θ∈P,~α∈ ~A: ðA4Þ

Therefore, we have ~α¼Γ ~gf g ~αð Þ¼Γ �gf g B Γ gf g�1 ~αð Þ
� �� �

¼B Γ gf g�1 ~αð Þ
� �

, for each ~α∈ ~A. By applying the function B�1(�)
at both sides, we get B�1 ~αð Þ¼Γ gf g�1 ~αð Þ , which entails B(�)≡Γ{g}(�). Moreover, the sets �A and ~A coincide, being
defined as the image of the maps B(�) and Γ{g}(�), respectively. Finally, by setting B Γ gf g�1 ~αð Þ

� �
¼ ~α in Equation (A4),

we get ~g	�g.
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