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Abstract
We consider split panel design efficiency in analysis of variance models, that is, the determi-

nation of the cross-sections series optimal proportion in all samples, to minimize parametric

best linear unbiased estimators of linear combination variances. An orthogonal matrix is

constructed to obtain manageable expression of variances. On this basis, we derive a theo-

rem for analyzing split panel design efficiency irrespective of interest and budget parame-

ters. Additionally, relative estimator efficiency based on the split panel to an estimator

based on a pure panel or a pure cross-section is present. The analysis shows that the gains

from split panel can be quite substantial. We further consider the efficiency of split panel

design, given a budget, and transform it to a constrained nonlinear integer programming.

Specifically, an efficient algorithm is designed to solve the constrained nonlinear integer

programming. Moreover, we combine one at time designs and factorial designs to illustrate

the algorithm’s efficiency with an empirical example concerning monthly consumer expendi-

ture on food in 1985, in the Netherlands, and the efficient ranges of the algorithm parame-

ters are given to ensure a good solution.

Introduction
Split panel combines advantages of other sampling methods (including repeated, cross-sec-
tional, and rotating sample) and provides us with rich, convenient, and practical information,
being widely applied in many fields [1]. In experiments with economic principles survey,
researchers typically consider statistical models that allow complex relationships. Due to the
complex statistical model requirements, data should be collected to estimate the statistical
model parameters. Being a new sample type that combines the advantages of the other three
basic samples, split panel is used to provide rich data for complex statistical model. Since wide
application of micro-economic data, panel conditioning, and panel nonresponse become more
important in econometrics, as well documented in literature [1], split panel, as a combination
of a panel and a repeated or rotating panel, uses changing samples to recruit from replacements
for panel conditioning and panel nonresponse [2–3]. In most fields, such as finance, labor eco-
nomics, and political economy, the collection of data is characterized by high costs. Split panel
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has the advantages of the flexibility of the cross-section change sizes and continually updating
information [4–5]. Therefore, it is very important to use split panel and the optimal sample
design to obtain as much information as possible from a given budget. In recent years, the the-
ory of split panel sample has witnessed theoretical advances and applications across disciplines
of pure and applied sciences, and it will be widely used in the future [6–7]. However, limited
attention has been paid to the analysis of split panel design efficiency recently. In the early liter-
ature, the estimation of a time-dependent mean from several kinds of rotating samples, that is,
the special form of split panel and the resulting variances have been examined by Patterson [8]
and Eckler [9]. It has been documented that the optimal design of the sample depends on the
parameter of interest (see [10], pp. 152). On this basis, Nijman et al. [11] determined the opti-
mal split panel design, that is, how to choose the optimal proportion of a given budget that can
be spent on the collection of a series of cross-sections to minimize split panel design efficiency.
However, in sampling, we need to obtain the optimal proportion of a series of cross-sections in
all samples, and it cannot be obtained accurately by the proportion of the budget that can be
spent on the collection of a series of cross-sections [11]. Consequently, we cannot save sam-
pling costs according to [11]. On the other hand, the split panel design optimization algorithm
is not given in [11]. For researchers and practitioners to solve for the optimal split panel design,
they need to select or design the appropriate optimization algorithm and to calculate the opti-
mal proportion by the optimization theory. In sampling, this will decrease the efficiency of
calculating the optimal proportion and reduce the accuracy of the solution. Hence, it is not
attractive to design split panel in the research framework of [11].

In this paper, the goal is to minimize the efficiency of split panel design in the analysis-of-
variance model, when one needs to determine the optimal proportion of a series of cross-sec-
tions in all samples, when the optimal proportion of a series of cross-sections can be applied
directly in sampling. This is an extension of [11], and the main contributions can be summa-
rized as follows. First, we show how to choose the proportion of a series of cross-sections, in all
samples, to minimize the variances of estimators in the analysis-of-variance model, irrespective
of the parameters of interest and budget. In particular, we present the relative efficiency of esti-
mators, based on the split panel to an estimator based on a pure panel or a pure cross-section.
Second, we transform the efficiency of split panel design under a budget constraint for the non-
linear integer optimization (difficult to solve by mature optimal algorithms). The simulated
annealing algorithm has the advantages of guaranteeing global optimization, selecting the ini-
tial solution randomly, and being simple and practical [12]. However, when the simulated
annealing algorithm is used to solve the constrained nonlinear integer optimization associated
with the efficiency of split panel design under a budget constraint, it is difficult to combine
parameters, such as the inner iteration number, the initial temperature, and the temperature
decrease rate, in order to get the best performance of the algorithm. Hitherto, there is no theo-
retical method to solve this problem. Therefore, in this paper we design an efficient algorithm,
based on the simulated annealing algorithm, to solve the constrained nonlinear integer optimi-
zation of the split panel design efficiency under budget constraint. In the context of numerical
modeling, sensitivity analysis studies how different values of an independent variable impact a
particular dependent variable, under a given set of assumptions. It has been widely applied to
many fields such economics, engineering, ecology, etc. The modelers can determine, by sensi-
tivity analysis, whether the parameters of the model or algorithm give reliable predictions.
Hence, third, we introduce sensitivity analysis to appraise the parameters of the proposed algo-
rithm. The one-at-a-time design (OATD) method is one of the most common approaches for
the effect on the output [13–16] and it is frequently used as the modeler immediately knows
which input factor is responsible for the failure, in case of model failure [17]. Yet, the OATD
method cannot be used if two factors are interdependent, because it only studies the effect of
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one variable at a time. The factorial design (FD) method, which is used to study the effects sev-
eral factors have on a response, and the interactions between the factors for varying levels of all
factors at the same time, is different from the OATD method. As such, the OATD and FD
methods are chosen to analyze the effect of parameters and compensate the deficiency of a sin-
gle method [16]. On the other hand, the simulated annealing algorithm has no special require-
ment and its performance cannot be changed with different examples [12]. Hence, with an
empirical example concerning monthly consumer expenditure on food in 1985, in the Nether-
lands, we combine the OATD and FD methods to analyze the algorithm designed in this paper.
The result are the efficient ranges of the algorithm parameters are a good solution (i.e., the
accurate optimal proportion). Therefore, the research results in this paper would be useful to
both researchers and practitioners in sampling.

This paper is organized as follows: section 2, based on the analysis-of-variance model, trans-
forms the efficiency of split panel design into a nonlinear optimization; in section 3, the effi-
ciency of split panel design, irrespective of interest and budget, is discussed; in section 4, we
consider the efficiency of split panel design given a budget constraint and design an efficient
algorithm based on simulated annealing to solve the resulting constrained nonlinear integer
optimization; section 5 combines the OATD and FD methods to illustrate the algorithm’s effi-
ciency, with an empirical example of food monthly consumer expenditure in 1985, in the
Netherlands, and the efficient ranges of the algorithm parameters are given to ensure a good
solution; and section 6 concludes the paper.

Materials and Methods

Theoretical results of parameter estimators variances
In this paper, we consider the split panel design efficiency by minimizing the best linear estima-

tor variance of the linear combinations
PT

t¼1 �tb
_

t of the period means b
_

t in the analysis of the
variance model:

yit ¼ bt þ ai þ εit; ð1Þ

where i = 1,. . .,N, t = 1,. . .,T and ϕ0 = (ϕ1,ϕ2. . .,ϕT), the αi and εit are independent and identi-
cally distributed (i.i.d.) random variables with mean 0 and variances s2

a and s
2
ε, respectively,

which are mutually independent. Throughout this paper we assumed that the parameters s2
a

and s2
ε are a priori known, for simplicity. If these parameters are unknown, the consistent esti-

mators can be used in their place and the same results hold true asymptotically [18]. Important
special cases are the determination of the optimal design if the parameter of interest is the period
mean βt, if the parameter of interest is the change in two subsequent period means βt−βt−1, or if

the parameter of interest is the overall average of the period means
PT
t¼1

bt .

We denote the sample size in each wave by N and the proportion of cross-sections in all
samples by λN, while the remaining (1−λ)N individuals will be re-interviewed every period. In
order to determine the optimal value of λ (i.e., the proportion of cross-sections in all samples)
we first derive the efficient estimator and its variance. It is well known that the estimator of
β0 = (β1,β2,. . .,βT) in Eq (1), using only the information on individuals which are re-interviewed

every period, is the best linear unbiased estimator and regarded as b
_

p [11]. Analogously, the

estimator based on the cross-section information only is also the best linear unbiased estimator
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and regarded as b
_

cs [11], and that

varðb_tÞ ¼
1

J2
varð

XJ

i¼1

ai þ
XJ

i¼1

εitÞ ¼
s2
ε þ s2

a

J
; ð2Þ

covðb_t; b
_

sÞ ¼
1

J2
covð

XJ

i¼1

ai þ
XJ

i¼1

εit;
XJ

i¼1

ai þ
XJ

i¼1

εisÞ ¼
s2
a

J
; ðs 6¼ tÞ ð3Þ

where J denotes the number of observed individuals. Therefore

varðb_pÞ ¼
1

ð1� lÞN ðs2
εIT þ s2

alT lT
0Þ ¼ 1

ð1� lÞN Vp; ð4Þ

varðb_csÞ ¼
1

lN
ðs2

ε þ s2
aÞIT ¼ 1

lN
Vcs; ð5Þ

where lT = (1,. . .,1)T×10 and Vp ¼ s2
εIT þ s2

alT lT
0, Vcs ¼ ðs2

ε þ s2
aÞIT .

Since b
_

p and b
_

cs are independent, based on the relative theory of two sample estimation [10,

11], the best linear unbiased estimator which uses all the samples is given by

b
_ ¼ ð1� lÞNV�1

p þ lNV�1
cs

h i�1

ð1� lÞNV�1
p b

_

p þ lNV�1
cs b

_

cs

h i
: ð6Þ

For

var ð1� lÞNV�1
p b

_

p þ lNV�1
cs b

_

cs

h i
¼ ð1� lÞNV�1

p þ lNV�1
cs ; ð7Þ

it is easily verified that

varð�0b
_Þ ¼ N�1�0 lV�1

cs þ ð1� lÞV�1
p

n o�1

�: ð8Þ

Consequently, the efficiency of split panel design could be transformed into the following

nonlinear optimization by minimizing the variance of the best unbiased estimator of �0 b
_

min
N;l

N�1�0 lV�1
cs þ ð1� lÞV�1

p

n o�1

�: ð9Þ

In order to obtain the optimal solution for λ from Eq (9), the main steps are discussed in the

derivation of the manageable expression for the variance of the best unbiased estimator �0 b
_

in
Eq (1). First, V�1

p and V�1
cs can be written as

V�1
p ¼ 1

ðs2
ε þ s2

aÞ
V�1

p0
ð10Þ

and

V�1
cs ¼ 1

ðs2
ε þ s2

aÞ
IT ; ð11Þ
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where

V�1
p0

¼

ð2� TÞr� 1

ðr� 1Þ½1þ ðT� 1Þr�
r

ðr� 1Þ½1þ ðT� 1Þr� . . .
r

ðr� 1Þ½1þ ðT� 1Þr�
r

ðr� 1Þ½1þ ðT� 1Þr�
1þ ðT� 2Þr

ð1� rÞ½1þ ðT� 1Þr� . . .
r

ðr� 1Þ½1þ ðT� 1Þr�
..
. ..

. . .
. ..

.

r
ðr� 1Þ½1þ ðT� 1Þr�

r
ðr� 1Þ½1þ ðT� 1Þr� . . .

1þ ðT� 2Þr
ð1� rÞ½1þ ðT� 1Þr�

2
666666666664

3
777777777775
ð12Þ

and

r ¼ s2
a

ðs2
ε þ s2

aÞ
: ð13Þ

Since V�1
cs is a constant and multiple of the identity matrix, and V�1

p is symmetric, there

exists an orthogonal matrix Q such that QTV�1
p0
Q ¼ D and QTV�1

cs Q ¼ 1
ðs2εþs2aÞ

IT , where D is a

diagonal matrix and written as

D ¼

1

1þ ðT � 1Þr 0 � � � 0

0
1

1� r
� � � 0

..

. ..
. . .

.
0

0 0 0
1

1� r

2
666666666664

3
777777777775
; ð14Þ

and the orthogonal matrix Q can be written as

Q ¼

�1ffiffiffiffi
T

p �1ffiffiffiffi
T

p � � � �1ffiffiffiffi
T

p

�1ffiffiffiffi
T

p 1þ ffiffiffiffi
T

p � T

T � ffiffiffiffi
T

p � � � 1

T � ffiffiffiffi
T

p

..

. ..
. . .

. ..
.

�1ffiffiffiffi
T

p 1

T � ffiffiffiffi
T

p � � � 1þ ffiffiffiffi
T

p � T

T � ffiffiffiffi
T

p

2
6666666666664

3
7777777777775
: ð15Þ

The proof of constructing the orthogonal matrix Q is presented in the Appendix A1.

As such, the variance of the best unbiased estimator of �0 b
_

using all the samples is written
as

varð�0b
_Þ ¼¼ N�1ðs2

a þ s2
εÞ�0Q0flI þ ð1� lÞDg�1Q�; ð16Þ
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where

flI þ ð1� lÞDg�1 ¼

1þ ðT � 1Þr
1þ ðT � 1Þrl 0 � � � 0

0
1� r
1� lr

� � � 0

..

. ..
. . .

.
0

0 0 0
1� r
1� lr

2
666666666664

3
777777777775
: ð17Þ

We denote ϕ0Q = (δ1,. . .,δT) = δ0 to obtain the simple expression of Eq (16), and rewrite it as

varð�0b
_Þ ¼ N�1ðs2

a þ s2
εÞð

1þ ðT � 1Þr
1þ ðT � 1Þlr d

2

1 þ
XT
t¼2

ð 1� r
1� lr

Þd2

t Þ: ð18Þ

Consequently, the nonlinear optimization by minimizing the variance of the best unbiased

estimator of �0 b
_

can be rewritten as

min
N;l

N�1ðs2
a þ s2

εÞð
1þ ðT � 1Þr
1þ ðT � 1Þlr d

2

1 þ
XT
t¼2

ð 1� r
1� lr

Þd2t Þ: ð19Þ

Split panel design efficiency irrespective of the parameters of interest
and budget
By considering the linear combinations of vector β, we can then easily adapt the results to an
individual element, difference of elements, or overall average. As such, in this section, we will
derive a theorem for the split panel design efficiency, irrespective of the parameters of interest
and budget, using Eq (19).

Theorem 1 Pure panel (λ = 0) will minimize the variance of the best unbiased estimator of

�0 b
_

, irrespective of the choice of ϕ,

if

XT
t¼1

�t

 !2

XT
t¼1

�2
t

<
1� r

1þ Tr� 2r
; ð20Þ

pure series of cross-sections (λ = 1) will minimize the variance of the best unbiased estimator

of �0 b
_

, irrespective of the choice of ϕ,

if

XT
t¼1

�t

 !2

XT
t¼1

�2
t

> max
1� r

1þ Tr� 2r
; 1þ Tr� r

� �
; ð21Þ

split panel (λ = kr) will minimize the variance of the best unbiased estimator of �0 b
_

,

The Efficiency of Split Panel Designs

PLOS ONE | DOI:10.1371/journal.pone.0154913 May 10, 2016 6 / 20



irrespective of the choice of ϕ,

if
1� r

1þ Tr� 2r
<

XT
t¼1

�t

 !2

XT
t¼1

�2
t

< minfð1� rÞðT� 1Þ; 1þ Tr� rg; ð22Þ

split panel (λ = kl) will minimize the variance of the best unbiased estimator of �0 b
_

. irrespec-
tive of the choice of ϕ,

if ð1� rÞðT� 1Þ <

XT
t¼1

�t

 !2

XT
t¼1

�2
t

< 1þ Tr� r; ð23Þ

split panel (λ = λ0) will minimize the variance of the best unbiased estimator of �0 b
_

, irrespec-
tive of the choice of ϕ,

if

XT
t¼1

�t

 !2

XT
t¼1

�2
t

¼ ð1� rÞðT� 1Þ; ð24Þ

where kl is the left root of k(λ); kr is the right root of k(λ),

kðlÞ ¼ ð1� TÞrAð1� lrÞ2 þ Brð1þ ðT� 1ÞlrÞ2: ð25Þ

If

Mð� c
b
Þ < Mð1Þ; l0 ¼ � c

b
; ð26Þ

if

Mð� c
b
Þ > Mð1Þ; l0 ¼ 1; ð27Þ

And

b ¼ 2r2ðT� 1Þ ð1� rÞ
XT
t¼1

φ2
t þ rð

XT
t¼1

φtÞ2
" #

; ð28Þ

c ¼ ð1� rÞr
XT
t¼1

φ2
t þ rð2r� 1� rTÞð

XT
t¼1

φtÞ2: ð29Þ

MðlÞ ¼ ð1� lÞr
ð1þ ðT� 1ÞlrÞð1� lrÞ ð

XT
t¼1

φtÞ2 þ
1� r
1� lr

XT
t¼1

φ2
t : ð30Þ

The proof of theorem 1 is presented in Appendix 1B.
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From Theorem 1, it can be easily checked that b
_

t � b
_

t�1 has the smallest variance if a pure
panel (λ = 0) is used. Likewise, a pure series of cross-sections (λ = 1) will be optimal if the over-
all average of period means is to be estimated.

In order to illustrate that the split panel design will be preferable to pure panel or pure series
of cross-sections design in most cases, and how much efficiency will be lost if a suboptimal
choice is made when the period mean βt is the parameter of interest, we present in Table 1 the
relative efficiency of the estimator based on the split panel to an estimator based on a pure
series of cross-sections or pure panel (pure series of cross-sections and pure panel yield equally
efficient estimators in this case). Similar to [18], we assume the observation period
T = 3,6,12,20, the proportion of the component of variance ρ = 0.3,0.6,0.9, and the proportions
of a series of cross-sections in split panel λ = 1/2,1/3,1/4,1/8,1/12.

Split panel design efficiency with budget constraint and main algorithm
As opposed to the previous section, where we have analyzed split panel design efficiency, irre-
spective of the parameters of interest and budget, in this section, split panel design efficiency
with a given budget is considered. Let p1 denote the average cost of observing every individual
in cross-sections and p2 the average cost of observing every individual in panels. The cost of a
cross-sectional survey is 30% to 70% higher than an additional wave of the panel study of

income dynamics, as shown by Duncan et al. [19]. Therefore, we obtain 0:6 <
p2
p1

< 0:8. If

there is a budget,C, for all the periods, we can obtain the constrained nonlinear integer optimi-
zation (P1), as follows

min zðl;NÞ ¼ N�1�0flV�1
cs þ ð1� lÞV�1

p g�1
�; ð31Þ

s:t: lNp1 þ ð1� lÞNp2 � C�; ð32Þ

Table 1. The relative efficiency compared to pure cross-sections (or pure panel) for the estimator b
_

t.

ρ T = 3 T = 6 T = 12 T = 20

λ = 1/2 0.3 0.9593 0.9244 0.8901 0.8694

0.6 0.8393 0.7429 0.6711 0.6354
0.9 0.6124 0.4336 0.3193 0.2675

λ = 1/3 0.3 0.9630 0.9259 0.8836 0.8544
0.6 0.8571 0.7500 0.6563 0.6042

0.9 0.6786 0.4857 0.3422 0.2708
λ = 1/4 0.3 0.9683 0.9337 0.8900 0.8571

0.6 0.8778 0.7731 0.6704 0.6081
0.9 0.7297 0.5389 0.3797 0.2941

λ = 1/8 0.3 0.9810 0.9569 0.9204 0.8865
0.6 0.9260 0.8452 0.7434 0.6665

0.9 0.8370 0.6806 0.5092 0.3955
λ = 1/12 0.3 0.9866 0.9687 0.9392 0.9092

0.6 0.9474 0.8842 0.7946 0.7179
0.9 0.8837 0.7568 0.5968 0.4759

doi:10.1371/journal.pone.0154913.t001
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0 � l � 1; ð33Þ

lN;N 2 N�; ð34Þ

where C� ¼ C
T
.

Applying Eq (19) and λN = x, N = y, we obtain the constrained nonlinear integer optimiza-
tion (P2):

min
x;y

zðx; yÞ ¼ s2 � ð 1þ ðT � 1Þr
y þ ðT � 1Þxr d

2

1 þ
XT
t¼2

ð 1� r
y � xr

Þd2t Þ; ð35Þ

s:t: xðp1 � p2Þ þ yp2 � C�; ð36Þ

0 � x � y; ð37Þ

x; y 2 N�; ð38Þ

where C� ¼ C
T
.

Eq (35) is the objective function that minimizes the variance of the best linear unbiased esti-
mator of linear combinations of the period means, while Eq (36) satisfies the constraint of a
given budget.

Algorithm design. In section 4, we transformed the efficiency of split panel design into
the constrained nonlinear integer optimization (P2), which is, nonetheless, difficult to solve
with the current mature optimal algorithms. The simulated annealing algorithm has the advan-
tages of guaranteeing global optimization, selecting the initial solution randomly, while being
simple and practical. However, when it is used to solve the constrained nonlinear integer opti-
mization associated with the efficiency of split panel design, given a budget, it is difficult to
combine the parameters, such as the inner iteration number, the initial temperature, and the
temperature decrease rate, in order to get the best performance of the algorithm. Consequently,
in this paper, we design an efficient algorithm to solve the constrained nonlinear integer opti-
mization associated with split panel design efficiency of given a budget, based on the simulated
annealing algorithm.

The steps of the simulated annealing algorithm designed to solve (P2) are given as follows:

1. Choose the initial integer solution x0 2 D and the initial temperature value T0>0, where D
is a feasible region formed by Eqs (4) and (5); calculate f(x0) and let

X0 ¼ x0;Xmin ¼ X0; fmin ¼ f ðx0Þ;K ¼ 0; ð39Þ

2. Randomly generate the integer vector

ZK ¼ ðzK1 ; � � � ; zKn Þ; ð40Þ

where

zKi ¼ signðUiÞ � TK � ð 1

jUijm
� 1Þ

� �
; i ¼ 1; 2; � � � ; n; ð41Þ

and zKi is the ith component of the random vector ZK; U1,U2,. . .,Un is a group of random
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variables distributed uniformly over [−1,1], which are independent each other; sign(�) is the
sign function; and h�i is the symbol of rounding numbers.

3. Use the current iteration point xK and the random vector ZK to generate a new iteration
point YK that satisfies YK = XK+ZK. If YK2D, the next step is carried on, and if YK=2D, YK is
calculated by

YK ¼ XK þ ð�1

2
Þl � ZK

� �
ð42Þ

until YK2D and to the next step, where l = 1,2,. . .N1. If Y
K=2D in the N1 steps, let Y

K = XK

and move to the next step.

4. Generate a random number η distributed uniformly over [0,1] and calculate

PaðYK XK ;TKÞ ¼ min 1; expðf ðX
KÞ � f ðYKÞ
bTK

Þ
� ����� ð43Þ

using the current iteration point XK and a new iteration point, YK.

5. If

Z � PaðYK jXK ;TKÞ; ð44Þ

let

XKþ1 ¼ YK ; f ðXKþ1Þ ¼ f ðYKÞ ð45Þ

or let

XKþ1 ¼ XK ; f ðXKþ1Þ ¼ f ðXKÞ: ð46Þ

6. If

f ðXKþ1Þ < fmin; ð47Þ

let

Xmin ¼ XKþ1; fmin ¼ f ðXKþ1Þ: ð48Þ

7. If the stopping criterion satisfies

jf ðXKþ1Þ � f ðXKÞj < ε; ð49Þ

stop calculating and regard Xmin and fmin as the approximate global optimal solution and
the corresponding optimal value, respectively. If not, move to the next step.

8. Generate a new temperature TK+1 by using the given renewed function of temperature as
follows:

TKþ1 ¼
T0

ðK þ 1Þm ;K ¼ 0; 1; 2 � � � ð50Þ

and let K = K+1 and shift to the second step.

The detailed design process of simulated annealing algorithm is presented in Appendix 1C
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Results and Discussion
The example used in this study is the monthly consumer expenditure on food in 1985, in the
Netherlands, which is modeled using Model (1) and the so-called expenditure index panel con-
ducted by Infomart, a marketing research agency [11]. We restrict analysis to ξ1 = ξ2 = . . . = ξ12
(annual average). The maximum likelihood estimate of ρ in Eq (1) for food is 0.76, with stan-
dard error 0.005 [11]. From [19], the survey cost was estimated to be roughly USD 513,000.
The average cost of observing every individual in cross-section p1 and the average cost of
observing every individual in panels p2 were estimated to be roughly USD 125 and USD 75,
respectively. The following results are obtained using MATLAB.

OATDmethod
The benchmarking parameter combinations of the algorithm designed in this paper are set as
follows: the inner iteration number B = 2000, the initial temperature E0 = 10000, the tempera-
ture decrease ratem = 0.75 and the termination temperature ε = 0.0001. Subsequently, we ana-
lyze the effects of these parameters.

First, we set the inner iteration number B, the temperature decrease ratem, the termination
temperature ε, and the initial temperature E0 is changed from 1 to 1,000,000. The optimal pro-
portion values and the corresponding objective values are shown in Fig 1. From Fig 2, the
objective values fluctuate between 0.005 and 0.015 and, when the initial temperature is more
than 100,000, the optimal proportion values and the corresponding objective values can con-
verge to the optimal values of 0.2 and 0.005, respectively. Therefore, the initial temperature can
be chosen between 100,000 and 1,000,000.

Second, we set the initial temperature E0, the temperature decrease ratem, the termination

temperature ε, and the inner iteration number B �b�
ffiffiffiffiffiffiffiffiffi
b2�4ac

p
2a

are changed from 500 to 3,000 to

ensure that the algorithm reaches the balanced state. The optimal proportion values and the
corresponding objective values are shown in Fig 3. From Fig 3, the higher the inner iteration
number is, the more easily the algorithm moves from the local optimal value and converges to
the global optimal value. Conversely, the higher the inner iteration number is, the longer the
implementation time. In this study, the implementation time based on the set of parameters is
in 10 minutes. As such, we do not consider that the inner iteration numbers increases

Fig 1. The effect of initial temperature on the optimal proportion value.

doi:10.1371/journal.pone.0154913.g001
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implementation time. From Fig 4, when the inner iteration number is more than 2,000, the
objective values and the optimal proportion values converge to 0.007 and 0.2, respectively.
Therefore, the inner iteration number can be chosen between 2,000 and 2,500.

Subsequently, we set the initial temperature E0, the termination temperature ε, the inner
iteration number B, and the temperature decrease ratem is changed from 0.45 to 0.9. The opti-
mal proportion values and the corresponding objective values are shown in Fig 5. If the tem-
perature decrease rate is less than 0.6, the algorithm falls into the local optimal value. When the
temperature decrease rate is more than 0.6, the algorithm is above the local optimal value and
converges to the global optimal value. As is shown in Figs 5 and 6, the optimal proportion val-
ues and the corresponding objective values converge to 0.2 and 0.0046, respectively. The tem-
perature decrease rate determines the searching space and the larger the temperature decrease

Fig 2. The effect of initial temperature on the objective function value.

doi:10.1371/journal.pone.0154913.g002

Fig 3. The effect of inner iteration number on the optimal proportion value.

doi:10.1371/journal.pone.0154913.g003
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rate is, the greater the searching space. Consequently, we can choose the temperature decrease
rate between 0.75 and 0.9.

Finally, we set the initial temperature E0, the temperature decrease ratem, the inner itera-
tion number B, and the termination temperature ε is changed from 0.00001 to 1. Figs 7 and 8
show that when the termination temperature ε is near 0.0001, the optimal proportion values
and the corresponding objective values converge to 0.2 and 0.0043, respectively. The lower the

Fig 4. The effect of inner iteration number on the objective function value.

doi:10.1371/journal.pone.0154913.g004

Fig 5. The effect of temperature decrease on the optimal proportion value.

doi:10.1371/journal.pone.0154913.g005

The Efficiency of Split Panel Designs

PLOS ONE | DOI:10.1371/journal.pone.0154913 May 10, 2016 13 / 20



termination temperature is, the more adequate the time to converge to the optimal value.
Therefore, the termination temperature can be chosen between 0.0001 and 0.00001.

FDmethod
According to the above discussion, we separate the algorithm designed in this paper into two
cases to analyze, the best and worst case. Under the two different cases, the fields of parameters
based on the above OATD analysis can be separated into two levels (+ and -) as shown in
Table 2.

For each case, the temperature decrease ratem, the inner iteration number B and the termi-
nation temperature ε are chosen randomly from their two parameter levels, and there are six
values in all. Under each parameter combination, we take the optimal value 10 times the aver-
age value. The initial temperature is considered constant as compared to the whole field, since
the local optimal value because of the initial temperature is very small, and the resultant errors

Fig 6. The effect of temperature decrease on the objective function value.

doi:10.1371/journal.pone.0154913.g006

Fig 7. The effect of termination temperature on the optimal proportion value.

doi:10.1371/journal.pone.0154913.g007
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from the initial temperature are smaller than that from other parameters. Comparing to other
parameters, the initial temperature has a low quantitative influence on the algorithm designed
in this paper, and will not be analyzed as such.

It is found as per Table 3 that the effects of the temperature decrease ratem and the inner
iteration number B are clear, meaning that the choice of the two parameters decides whether
the algorithm can obtain the optimal value. In different cases, the temperature decrease rate
and the inner iteration number have different effects on the optimal value. In the best case, the
inner iteration number is large enough to guarantee the solutions are stable and, if it continues
to increase, the solutions do not improve much. In this case, the adjustment of temperature
decrease rate can continue to narrow the neighborhood range for more convergent results.
Therefore, the temperature decrease rate influences the best case. In the worst case, the inner
iteration number has a significant impact, since the lower inner iteration number causes a
wider searching range, which makes the process of searching far from the optimal solution.
This time, the result is easier to move to the local optimal solution with the adjustment of the
temperature decrease. Furthermore, Table 3 shows that the combination effect of the tempera-
ture decrease rate and the inner iteration number is also clear.

Fig 8. The effect of termination temperature on the objective function value.

doi:10.1371/journal.pone.0154913.g008

Table 2. Parameters levels.

Case Parameter level B ε m

The best + [100000,1000000] [0.00001,0.0001] [0.85,0.90]
- [10000,100000] [0.0001,0.001] [0.80,0.85]

The worst + [1000,10000] [0.001,0.1] [0.75,0.80]
- [100,1000] [0.01,0.1] [0.60,0.75]

doi:10.1371/journal.pone.0154913.t002
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Conclusions
In this paper, we discuss how to determine the optimal proportion of a series of cross-sections
in all samples to minimize survey design efficiency in the analysis-of-variance model, which
can be applied directly in sampling. First, we derive a theorem for choosing the optimal pro-
portion of a series of cross-sections in all samples, irrespective of the parameters of interest and
budget. In addition, our results show that, compared to a pure series of cross-sections or pure
panel, the gains from choosing split panel can be substantial. Second, the efficiency of split
panel design given a budget is considered and an efficient algorithm is designed to solve the
constrained nonlinear integer optimization associated with the efficiency of survey designs on
a budget. We further apply OATD and FD methods to analyze and compare the quantitative
influence of different selections of parameters in the implementation of the algorithm with an
empirical example concerning monthly consumer expenditure on food in 1985, in the Nether-
lands, and obtain the efficient ranges of the algorithm parameters to ensure a good solution.

For further research, we will extend the results to a more general analysis of the covariance
model and derive the expressions for the variances of efficient parameter estimators. At the
same time, other algorithms can be to solve the new nonlinear programming from the optimal
split design in the analysis of the covariance model.

Appendix 1

Appendix 1A. Proof of constructing the orthogonal matrixQ
Proof:

QTQ ¼ 1

ðB; BÞ � ðB; bÞ
� 	2

fðB� bÞðB� bÞTðB� bÞðB� bÞT

�2½ðB; BÞ � ðB; bÞ�ðB� bÞðB� bÞT þ ½ðB; BÞ � ðB; bÞ�2g ¼ I

ð51Þ

Therefore, matrix Q is an orthogonal matrix.
1

1�r is the n-repeated eigenvalue of real symmetric matrix V�1
p
0
, so

rankð 1

1� r
I � V�1

p0
Þ ¼ 1: ð52Þ

Table 3. Index effects on numerical results.

Parameters level The best The worse

Run B m ε (B,ε) (B,m) (m,ε) y y

1 - - - + + + 0.2100 0.2624

2 + - - - - + 0.1958 0.2518

3 - + - - + - 0.2020 0.2280

4 + + - + - - 0.2190 0.2308

5 - - + + - - 0.2030 0.2468

6 + - + - + - 0.1993 0.2217

7 - + + - - + 0.2315 0.2970

8 + + + + + + 0.2301 0.2860

-0.0260 -0.0393 -0.0120 0.0221 -0.0538 0.0112 The best Index

-0.0310 -0.0460 -0.0078 0.0230 -0.0760 0.0218 The worse

doi:10.1371/journal.pone.0154913.t003
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Let BT denote the nonzero row vector of 1
1�r I � V�1

p0
, so ð 1

1�r I � V�1
p0
ÞX ¼ 0 and BTX = 0

have the same solutions. Let B1 denote the matrix removing the first column of matrix Q,

BT ¼ ða1; a2; � � � ; anÞ ð53Þ

and

B1
T ¼ ða2; a3; � � � ; anÞ: ð54Þ

Subsequently,

B1 ¼
1

ðB; BÞ � ðB; bÞ fðB� bÞBT1 � ½ðB; BÞ � ðB; bÞ�BT

0 0 � � � 0

1 0 � � � 0

..

. ..
.

0 1

2
666664

3
777775; ð55Þ

BTB1 ¼
1

ðB; BÞ � ðB; bÞ fB
TðB� bÞBT1 � ½ðB; BÞ � ðB; bÞ�BT

0 0 � � � 0

1 0 � � � 0

..

. ..
.

0 1

2
66666664

3
77777775

¼ 1

ðB; BÞ � ðB; bÞ fB
TðB� bÞBT1 � ½ðB; BÞ � ðB; bÞ�BT1g

¼ 1

ðB; BÞ � ðB; bÞ fB
TðB� bÞBT1 � BTðB� bÞBT1 g ¼ 01�n�1

: ð56Þ

As such, the bottom n−1 column vectors of matrix Q are the solutions of BTX = 0. MatrixQ
is an orthogonal matrix and it is impossible for all the column vectors of matrix Q to be zero,
therefore, the bottom n−1 column vectors of matrix Q are eigenvectors belonging to eigenvalue
1

1�r of matrix V�1
p0
. The n column vectors of the orthogonal matrix constitute a unit orthogonal

vector group, and the bottom n−1 column vectors are unit orthogonal vector group constituted
of n−1 eigenvectors belonging to eigenvalue 1

1�r of matrix V�1
p0
. The first column vector of matrix

Q is a unit eigenvector belonging to eigenvalue 1
1þðT�1Þr of matrix V�1

p0
. Moreover, different eigen-

vectors belonging to different eigenvalues are orthogonal, and the unit vector that is orthogonal
with the bottom n−1 column vectors of matrix Q is unit eigenvector belonging to eigenvalue

1
1þðT�1Þr of matrix V�1

p0
. Additionally, matrixQ is an orthogonal matrix, and the first column vec-

tor of matrixQ is the unit eigenvector belonging to eigenvalue 1
1þðT�1Þr of matrix V�1

p0
.

Appendix 1B. Proof of theorem 1
Proof:

Let

MðlÞ ¼ 1þ ðT� 1Þr
1þ ðT� 1Þlr d

2

1 þ
1� r
1� lr

XT
t¼2

d2t ; ð57Þ

A ¼ ½1þ ðT� 1Þr�d21; ð58Þ
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and

B ¼ ð1� rÞ
XT
t¼2

d2

t : ð59Þ

Subsequently,

MðlÞ ¼ A
1þ ðT� 1Þlrþ B

1� lr
: ð60Þ

Therefore,

M0
lðlÞ ¼

ð1� TÞrAð1� lrÞ2 þ Brð1þ ðT� 1ÞlrÞ2
ð1þ ðT� 1ÞlrÞ2ð1� lrÞ2 : ð61Þ

Let

kðlÞ ¼ ð1� TÞrAð1� lrÞ2 þ Brð1þ ðT� 1ÞlrÞ2; ð62Þ

thus

k0lðlÞ ¼ 2r2ðT� 1Þð1� lrÞAþ 2Br2ðT� 1Þð1þ ðT� 1ÞlrÞ; ð63Þ

when λ2[0,1],k0l 	 0.
In detail,

kðlÞ ¼ ðð1� TÞr3Aþ Bð1� TÞ2r3Þl2 þ ð2Br2ðT� 1Þ
� 2ð1� TÞr2AÞlþ ð1� TÞrAþ Br: ð64Þ

Let

a ¼ ð1� TÞr3Aþ Bð1� TÞ2r3; ð65Þ

b ¼ 2Br2ðT� 1Þ � 2ð1� TÞr2A; ð66Þ

c ¼ ð1� TÞrAþ Br: ð67Þ

Subsequently,

kðlÞ ¼ al2 þ blþ c: ð68Þ

Let Δk = b2−4ac, and as a result

Dk ¼ 4ð1� rÞ
XT
t¼2

d2

t ð1þ ðT� 1ÞrÞd21r4ðT � 1ÞT2	 0; ðl 2 ½0; 1�Þ: ð69Þ

From the above results,
When λ2[0,1], c<0 and k(1)<0, M(1) is the minimum value of M(λ).
When λ2[0,1] and c>0,M(0) is the minimum value of M(λ).
When λ2[0,1], a<0, c<0, and k(1)>0,M(kr) is the minimum value ofM(λ), where kr is the

right root of k(λ).
When λ2[0,1], a>0, c<0, and k(1)>0,M(kl) is the minimum value ofM(λ), where kl is the

left root of k(λ).

When a = 0, and then c<0 and b<0, min Mð� c
b
Þ;Mð1Þ
 �

is the minimum value ofM(λ).
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Appendix 1C. Detailed design process of proposed algorithm
Simulated annealing begins with an initial solution, and then randomly generates a neighbor-
ing solution or by using a pre-specified rule. It is the process when a state moves from the initial
solution to a candidate solution in which the energy is minimized based on the Metropolis
acceptance criterion. As such, we can accept the candidate solution based on the acceptance
probability. We consider a number of conditions, and, subsequently, the steps of the proposed
algorithm are shown.

In order to converge to the global optimal solution, we choose

Z � PaðYK jXK ;TKÞ ð70Þ

as the acceptance criterion, which is called Metropolis criterion, where n is a random number
distributed uniformly over [0,1] and the state acceptance function is denoted by

PaðYK jXK ;TKÞ ¼ min 1; expðf ðX
KÞ � f ðYKÞ
bTK

Þ
� �

; ð71Þ

f is the objective function of (P2); XK and YK are the current iteration point and the new itera-
tion point, respectively; TK is the k time algorithm stage temperature, which is obtained from
the cooling schedule presented in Eq (50); β is a positive constant. In order to guarantee the
integer optimal solution, the new iteration point YK is generated by the following process:

YK ¼ XK þ ð�1

2
Þl � ZK

� �
; l ¼ 1; 2; � � � ;N1; ð72Þ

where

zKi ¼ signðUiÞ � TK � ð 1

jUijm
� 1Þ

� �
; i ¼ 1; 2; � � � ; n; ð73Þ

and zKi is the ith component of the random vector ZK; U1,U2,. . .,Un is a group of random vari-
ables distributed uniformly over [−1,1], which are independent of each other; sign(�) is the sign
function; h�i shows the symbol of rounding numbers.

The performance and convergence of simulated annealing are crucial, and are affected by
the cooling schedule. If T decreases fast, a fast convergence can be obtained. However, the sim-
ulated annealing reaches the global optimal solution with difficulty if T decreases fast. There-
fore, the following cooling schedule guarantees the global optimal solution by the above theory:

TKþ1 ¼
T0

ðK þ 1Þm ;K ¼ 0; 1; 2 � � � ; ð74Þ

where T0 is an initial temperature;m	1 andm is an integer constant, which determines the
speed of the decreasing temperature. The choice of T0 may be crucial, the sophisticated tech-
niques being discussed by Van Laarhoven and Aarts [12].

In conclusion, the stopping criterion for the simulated annealing algorithm is given by

jf ðXKþ1Þ � f ðXKÞj < ε; ð75Þ
where ε denotes any small number.
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