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Abstract: Mesenchymal stem cells (MSCs), the cells distributed in the stromas of the body, are known
for various properties including replication, the potential of various differentiations, the immune-
related processes including inflammation. About two decades ago, these cells were shown to play
relevant roles in the therapy of numerous diseases, dependent on their immune regulation and their
release of cytokines and growth factors, with ensuing activation of favorable enzymes and processes.
Such discovery induced great increase of their investigation. Soon thereafter, however, it became
clear that therapeutic actions of MSCs are risky, accompanied by serious drawbacks and defects. MSC
therapy has been therefore reduced to a few diseases, replaced for the others by their extracellular
vesicles, the MSC-EVs. The latter vesicles recapitulate most therapeutic actions of MSCs, with equal
or even better efficacies and without the serious drawbacks of the parent cells. In addition, MSC-EVs
are characterized by many advantages, among which are their heterogeneities dependent on the
stromas of origin, the alleviation of cell aging, the regulation of immune responses and inflammation.
Here we illustrate the MSC-EV therapeutic effects, largely mediated by specific miRNAs, covering
various diseases and pathological processes occurring in the bones, heart and vessels, kidney, and
brain. MSC-EVs operate also on the development of cancers and on COVID-19, where they alleviate
the organ lesions induced by the virus. Therapy by MSC-EVs can be improved by combination of
their innate potential to engineering processes inducing precise targeting and transfer of drugs. The
unique properties of MSC-EVs explain their intense studies, carried out with extraordinary success.
Although not yet developed to clinical practice, the perspectives for proximal future are encouraging.

Keywords: clinical developments; clinical trials; engineering; ectosome and exosome; heterogeneity;
immune reactions; inflammation; luminal cargo; miRNA; miR-; protection of organs; senescence;
regenerative medicine; stromas employed: from bone marrow; adipose tissue; umbilical cord; blood

1. Introduction

All types of cells are known to express a peculiar form of secretion consisting in the
release of two types of vesicles, the small exosomes (diameter between 50 and 150 nm)
and the larger ectosomes (called also microvesicles, diameter between 100 and 400 nm).
Exosomes are generated and accumulated within specialized endosomal vacuoles, the
multi-vesicular bodies (MVB). The release of exosomes occurs upon exocytosis of the latter
vacuoles Ectosomes are assembled at plasma membrane rafts, which undergo pinching
off and then shedding for secretion [1–4] (Figure 1). Successful procedures for separation
of the two, small and large vacuoles have become widely available at the beginning of
our century. Therefore, exosomes and ectosomes can be investigated separately. For this
they are often named small and large extracellular vesicles (sEVs and lEVs) [5,6]. In other
cases, the studies are being made on the two types of vesicles isolated together, which
are usually named extracellular vesicles, EVs. The present review deals with the mixed
vesicles specified according to the nomenclature [3–7].
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Figure 1. Comparison of MSC cells and their EVs. To the left an MSC cell illustrates its secretion of EVs. The small exosomes,
generated and accumulated within endosomal vacuoles, the multi vesicular bodies (MVBs), are released upon exocytosis of
the latter. The ectosomes, assembled in direct contact to the cytosolic surface of specialized rafts in the plasma membrane,
undergo pinching off and then shedding to the extracellular space. A list of the MSC properties is shown to the left, over
the cell cytoplasm (yellow). The first two, self-replication and differentiation, are typical of many types of cells active as
MSCs. These two activities open the cells to many risks including cancers and immune rejections. The main property of
MSCs is natural therapy against many diseases based, among others, on the properties of immunology manipulation and
attenuation of inflammation. However, due to the dangers of accompanying risks, the therapeutic approach of MSCs in
humans is limited to a few types of cells and diseases. The MSC-EVs, shown to the right, are the model of therapy alternative
to MSCs. MSC-EVs recapitulate many properties analogous, and some time even better than those of the parental cells,
including those in immunology and inflammation. Due to their different strategy, MSC-EVs do not express many properties
related to the structure and function of their parental cells. In fact, they show no replication, no differentiation and no few
other properties. Increased safety in the extracellular space, faster transport and good tissue penetration are advantages
of MSC-EVs, especially when administered in vivo. Finally, the MSC-EVs are more appropriate for GOP engineering
(see Section 5—Diseases: Mechanisms of Protection by MSC-EV). The ensuing, technical therapy can be combined to the
natural forms expressed by the vesicles. The properties of MSC-EVs, illustrated here, together with others reported and
discussed in this review, explain the extraordinary success of the intense studies dedicated to these vesicles, especially those
about therapy.

Both exosomes and ectosomes are composed by two structures: a membrane delim-
iting their lumen, with proteins often exposed at both its external and internal surfaces;
and the luminal cargoes, composed by various proteins, lipids, coding and non-coding
RNAs, accompanied, in some cases, by DNA sequences [1–3]. In term of composition, exo-
somes and ectosomes include, together with some specific molecules, also many common
membrane and cargo molecules often present also in vesicles secreted by different parental
cells. The largely common molecules may explain the general similarity of the two types of
vesicle from various cell origin, while the specific molecules may account for their differ-
ences. The latter may include molecules that govern at least some EV specificities, such
as the direct binding to their target cells. The dependence of some specific EV properties
on their parental cells has been demonstrated in many cases. For example, in the brain a
few specific properties have been found to differentially characterize the EVs secreted by
neurons, astrocytes and microglia [8].
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Upon their secretion and some navigation in the extracellular space, EVs often estab-
lish specific autocrine or paracrine interactions, the latter to their target cells, mediated
by the binding to receptor/surface or endosomal proteins, followed by fusion. At various
steps of their pathways, EVs contribute to the molecular specificity of their interacting cells:
of parental cells by their secretion; of target cells by their fusion and ensuing discharge
of cargo components [1,2]. Alternatively to fusion with target cells, EVs can move to
external fluids, such as the cerebrospinal fluid and the blood serum. Such fluid targeting is
important for the identification and analysis of specific biomarker molecules, and also for
various EV functions [9]. Since the role of EVs in external fluids is not critical in this review,
it is not going to be mentioned any more.

The functional activity of many EVs has been compared to the overall activity of
their parental cells. Often the EV activity, although relevant, is only partial, in the sense
that many functions of parental cells do not appear in their EVs. Such conclusion is valid
for many, but not for all types of cells. The family of mesenchymal stem cells (MSCs),
generated and resident in the stroma of all organs, have been shown to secrete EVs, the
MSC-EVs, playing key roles in most of their functions. Interestingly, among the common
functions of MSCs and MSC-EVs is the well known therapy of many diseases, relevant not
only for the pathology but also for future medical developments. This review is focused on
MSC-EVs, illustrated for many of their functions, in particular for those recognized during
the last few years, including their therapy for 7many diseases.

2. Mesenchymal Stem Cells and Their Extracellular Vesicles

MSCs, the cells of the stroma in all body tissues, had been discovered a few decades
ago. Since then they have been isolated and progressively investigated. Their functions
include self-replication and multidirectional differentiation, participation in physiology and
in pathology of diseases, with manipulation of immunological processes and attenuation
of inflammatory processes. Moreover, since over two decades MSCs are known to play a
role in the therapy of many diseases, envisaged also for possible developments in clinical
medicine [10,11]. Initially, MSCs where shown to play the role of recombinant proteins
in bone and cartilage healing [12]. Shortly thereafter they were recognized as progenitors
of osteoblasts, chondroblasts and fibroblasts, a series of cells that “hold us together” [13].
Somewhat later, analogous results were obtained, concerning however local processes
such as self renewal and repair, followed by therapeutic effects on several organ diseases:
of lung, heart, kidney, brain, cancers, and others [10,11,14–16]. Such therapeutic effects
were thought started by paracrine fusions of MSCs with their target cells. Such fusions,
however, were not dependent on MSC alone. They are reinforced by soluble and bioactive
factors, such as cytokines and growth factors, released by the cells in parallel to their
fusions [17,18]. The identification, around 2010, of the MSC-EV secretion suggested their
possible participation in the MSC effects, a cooperation confirmed by experiments in
which cells and vesicles were administered together [19]. In most initial experiments,
carried out in animals, MSCs were shown to induce positive results in various types of
cell therapy. The extension to pathology and therapy of human diseases was therefore
envisaged and intensely investigated. Yet, despite the encouraging preclinical outcomes
in animal models, the risk of human MSC infusion and transplantation therapies turned
out to be considerable, including immune rejections and various types of cancer initiation
and promotion [20]. Because of the negative results, the enthusiasm of MSC decreased
rapidly, with ensuing reduction of its employment in therapy. In parallel, the majority of
registered clinical trials applying MSC therapy to diverse human diseases did fall short
of expectations. At present, therefore, the study of these therapies remains of interest,
however with clinical perspectives limited to only a few types of diseases [21–23].

The problems recognized to MSC employment, especially in human therapies, has
opened the way to corresponding studies about vesicles. MSC-EVs recapitulated many of
the therapeutic effects of MSCs, with improvements of considerable importance. Emerging
evidence has shown that, in many kinds of diseases, MSC-EV treatments have equal or
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even better efficacies than MSCs, with a considerable decrease of risks. For many therapies,
therefore, EVs replaced their parental cells. Such demonstrations have opened the chance
to a new type of therapy, widely known as cell-free therapy, based on the use of MSC-
EVs [24]. The advantages of such development are considerable, including increased
safety and faster tissue penetration. In addition, the inability of MSC-EVs to self-replicate
greatly reduces the risk of tumors and expansions, typical of MSCs; the limited potential
to trigger the immune system prevents disappointments even in the course of allo- and
xeno-grafts; and easier transport and storage makes the potential of EV therapy optimal
when compared to standard cell-based approaches (Figure 1) [19,20,22,24–26]. These results
have contributed to the development of some clinical studies. Applications of MSC-derived
EVs have gained increasing interest, as many risks of the MSC-based therapy are avoided.
Clinical studies, however, are still early, meaning that the work is encouraged but not
yet carried out in detail. The discovered MSC-EV properties, confirmed in a variety of
experimental conditions, have lead to an explosion of interest about these vesicles. At
present the number of published articles is over 1000, grown from a few tens in 2015 to
over 350 in 2020.

A critical property of MSC-EVs is heterogeneity. As already mentioned, their parental
cells are generated in the stroma of tissues, which may be variable. However, the EVs
employed for investigation do not come from all stromas but concentrate on only four of
them, chosen based on their accessibility and personal preference: bone marrow, adipose
tissue, umbilical cord and blood from that cord. Variability reported among these EVs is
significant, concerning components such as proteins and, especially, non-coding RNAs
that participate in the generation of properties such as potency, inflammatory resolution
and tissue regeneration [27–29]. Diseases differentially affected by various MSC-EVs are
numerous. For example the vesicles of the umbilical cord affect more acute diseases and
operate well in damage repair; while those from adipose tissue are more active against
prolonged diseases and immune responses, including Alzheimer’s disease and multiple
sclerosis; those from bone marrow are especially active in tissue regeneration [28,30]. The
relation with diseases, useful also for preclinical analyses, stimulated the use of MSC-EVs
as therapeutic tools of translational potential [30–32].

An unexpected but critical role of MSC-EVs concerns cell aging. Senescence is char-
acterized by loss of proliferative potential, resistance to cell death by apoptosis, and ex-
pression of a secretory phenotype including pro-inflammatory cytokines and chemokines,
tissue-damaging proteases and growth factors, all contributing to tissue alteration and loss
of homeostasis [33]. Treatment with MSC-EVs reduces senescence, in culture and in vivo,
and improves health span, an effective and safe approach conferring effects of adult stem
cells, avoiding the risks of tumor development and donor cell rejection [34]. The mecha-
nism of such protection includes down-regulation of superoxide dismutases with elevation
of reactive oxygen species [35]. Cell rejuvenation has been confirmed in various cell types
including endothelial and muscle cells of arteries with decreased hypertension [36,37],
bone marrows [38], and others.

3. MSC-EVs Express Also Functions Shared by EVs from Other Parental Cells

Although peculiar in many respects, MSC-EVs are EVs. Therefore, their properties
shared by the other types of EVs, in particular those dependent on paracrine fusions
with target cells, cannot be a surprise. Such fusions include the transfer of molecules
concentrated in their cargos, including several bioactive molecules, transcription factors
and enzymes. Additional transferred molecules of importance are the non-coding miRNAs,
essential for many therapies (Table 1), which will be mentioned in following Sections.
The cell free transfer can induce comprehensive effects including the in vivo expansion of
target cells, such as the hematopoietic stem cells [39]. These expansions and other effects
contribute to the development of translational medicine [40].

Transfer, however, can contribute also to the distribution and function of organelles,
for example mitochondria. The mechanism involved can be various. Some evidence
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supports the direct transfer of the organelles, accumulated together with molecules during
the assembly of vesicles, ultimately discharged into the cytoplasm of target cells. Such an
effect, conditioned by the MSC environment, suppresses other functions of EVs such as
oxidative stress and apoptosis. In other cells the effect of MSC-EVs on mitochondria is
indirect, dependent on a reinforcement of the mitochondrial transcription factor TFAM,
with ensuing stabilization of mitochondrial DNA, attenuation of the mitochondrial damage
and of inflammation [41–43]. A consequence of these events is an improvement of the
barrier integrity with protection of cells from excess cytokines, which in turn can induce a
severe in vivo danger, the acute respiratory distress syndrome (ARDS l [44]).

4. Immunity

To start our presentation about processes of physiology and pathology we focused on
immunity, a preliminary field of great interest. Experience with MSC-EVs has demonstrated
that the use of these vesicles is much safer and more effective than that of MSCs themselves.
Among their functions, MSC-EVs modulate immune responses. Recruitment in their
proximity of needed cells may result in boosting immune responses, associated in many
cases to protective roles in infectious diseases. These actions have offered appreciable
advantages [45] in the differentiation, activation, and proliferation processes of immune
cells [25,46,47]. Immune-modulatory and regenerative functions are induced in the course
of both the innate and adaptive immune reactions. The cells involved include T and B
lymphocytes, natural killers, dendritic cells, and macrophages, modifying their polarization.
The effects induced by MSC-EVs, including anti-inflammatory, anti-aging and wound
healing, play critical roles in a variety of diseases [47–49].

As far as the mechanisms, MSC-EV immunomodulation is governed by proteins,
including growth factors, interleukins, and also miRNAs, such as miR-21-5p, miR-223,
miR-146a and miR-199a, whose expression is increased [45,49,50]. In a mouse model,
treatment with MSC-EVs ameliorated significantly the immune destructions and confirmed
the importance of the non-coding miRNAs also in the clinical developments [50]. Other
treatments exacerbate various aspects of neuropathology. The therapeutic potential of
MSC-EVs towards the alleviation of pathological (trained) immunity is mediated by the
factors already mentioned. Also in the brain, accessed immunity is often mitigated by
MSC-EV-based regenerative actions [51]. The use of MSC-EVs for therapy of diseases
has become relevant in many cases including encephalomyelitis and multiple sclerosis
of the brain. The same vesicles also provide more potent therapeutic strategies for other
immune-related disorders [50,52,53].

5. Diseases: Mechanisms of Protection by MSC-EV

Many of the immunological events mentioned in the previous Section have role in
diseases and in their protection by MSC-EVs. It is clear, therefore, that MSC-EVs modulate
a large number of signaling pathways in many tissues. For example, they prevent delayed
injury, enhance parenchymal remodeling and make tissue recovery possible [54,55]. Ideally,
such effects should be based on the mechanisms of action of the vesicles. This, however, is
a challenge because the efficacy of the vesicles is considerable and occurs against multiple
diseases with various types of pathology. We conclude that the action of MSC-EVs is
complex, different for each disease and difficult to elucidate [55].

At this point we will start presenting the diseases affected by MSC-EVs, relevant
by their cell-free action. The diseases are quite different from each other, also in terms
of their active drugs. The therapeutic effects of the various EVs greatly depend on their
cargo components. The commonalities of their MSC-EV therapy can be explained by their
specific drugs, strengthened by the vesicles via the activation or the depression of various
biomedical protein factors and, even more, of specific miRNAs (Table 1). In this Section
we will illustrate the state of numerous diseases in which the MSC-EV therapy has been
demonstrated [56–58].
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The diseases of several organs and processes: bones, heart and vessels, kidneys, brain,
cancers and COVID-19, are discussed here in some detail. Additional diseases, such as
cutaneous wounds, digestive diseases, acute/mature lung injuries, diabetes, depression
and others, also affected by MSC-EVs, have not been included here. The same has been
decided for cancers, intensively investigated inducing excellent results, that will be reported
elsewhere. The data missing here can be found in other reviews of the literature [47,56,57].

5.1. Bones

Bones are the organs for which regulatory control by MSC had been among the
first reported at the beginning of 2000 [15]. Progress of knowledge has emphasized the
role of MSC-EVs. Osteoblastogenesis stimulation depends on miRNAs such as 133-3p
for EVs from bone marrow stem cells (Table 1), 125b-2-3p for those from adipose stem
cells [59]. MSC-EVs have been identified for their cell-free therapy of rheumatic diseases,
including arthritis and osteoarthritis, dependent on their low immunogenicity and control
of inflammatory factors (miR-483-5p, Table 1). The enormous potential of EVs for treatment
of rheumatism is still to be investigated for clinical application [60]. Finally local bone
diseases, including inflammation, influence bone regeneration (miR-378, Table 1). In this
case the MSC-EVs protection is mediated by their interaction with macrophages regulated
by miRNAs active in positive and negative immunity regulation [61].

5.2. Heart and Vessels

Cardiovascular diseases are a leading cause of morbidity and mortality, accounting
for approximately one third of deaths every year, caused mostly by myocardial infarction
induced by ischemia followed by reperfusion. Studies of the last few years demonstrated
that two distinct miRNAs, miR-125b and miR-182 (Table 1), are both protective, working
the first on protein induction of inflammasome activation, the second by alleviating in-
flammation and inducing polarization of macrophages [62,63]. A careful analysis of many
studies concluded that MSCs and their EVs protect not only infarcts but also other types of
heart diseases [64]. Subsequent studies carried out on both cord blood and adipose tissue
MSC-EVs demonstrated that cardio-protective miRNAs, such as miR-22-3p (Table 1), are
numerous, however they operate in parallel to miRNAs of different function. This could be
a mechanism governing the multiple effects induced by EVs when administered to distinct
types of cells [65].

Analysis was extended also to EVs involved in angiogenesis, which were found to
contain many miRNAs. Two such miRNAs were found to induce an efficient stimulation
of migration and invasion of endosomal cells, followed by growth of vessels [66]. Another
miRNA, miR221 (Table 1), when administered to mature mice was found to affect the
structure of vessels preventing in particular their atherosclerotic plaque formation [67].
Additional EV miRNAs were connected not to the processes mentioned so far, but to other
processes. By the use of distinct miRNAs the EVs appear therefore to govern several
processes of various function.

5.3. Kidney

This organ is affected by various treatments inducing severe cell lesion. Without
therapy the affected kidney needs to be replaced by surgery. In various types of kidney
diseases treatment with MSC-EVs from a few stromas induce significant protective effects
sustained by various miRNAs. This has occurred in kidneys previously exposed to ischemia
in which administration of EVs from umbilical cord in the course of reperfusion was found
protective against apoptosis and inflammation, with ensuing reduction of tissue damages
combined to regeneration. In this case the critical miRNA has been reported to be miR-93-5p
(Table 1) [68,69].

During senescence MSCs are believed to play an important role in the prevention of
kidney tissue fibrosis. An attempt was made in old mice to establish whether MSC-EVs
induce a protective effect. The level of the vesicles and of their miRNAs, miR-294 and
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miR133b (Table 1), is low in the kidney of old mice. During treatment with MSC-EVs the
two miRNAs induce an important protective effect on renal fibrosis of old rats [70]. In
other prolonged kidney lesions the effects of the two miRNAs appear similar. However, in
the kidney form of diabetes the level of vesicles and its critical miRNA, miR-26a-5p, is low.
Upon treatment with adipose tissue MSC-EVs, miR-26a-5p increases its level (Table 1) and
is transferred to mouse glomerular podocytes, with ameliorated state of the kidney [71].
In conclusion, the kidney operates under the control of MSC and its EVs, which play
important roles on the state of the cells, both during short and long-term diseases.

5.4. Diseases and Other Lesions of the Brain

The long-term diseases of great importance to be considered are the Alzheimer’s
disease (AD) and the other neurodegenerative diseases for which therapy is a severe
problem [72]. NSCs, the neural cells of the MSC type, are generated and distributed in
the brain stromas. Their EVs have been shown to play local roles analogous to those of
MSCs outside the brain [73]. The changes induced in both AD and Parkinson’s mouse
models, initially reported several years ago with involvement of at least one miRNA,
miR-146 (Table 1), induce changes of various symptoms including astrocyte inflammation,
synaptogenesis, reduced Aβ/α-synuclein deposition and cognitive impairment [74–76].
Progress of translational applications based on these effects is still in a relative infancy.
However, its stem technologies hold considerable promise to combat neurodegenerative
diseases [72].

In addition to neurodegenerative diseases, MSC-EVs protect against a number of other
brain lesions. In the relapsing-remitting form of multiple sclerosis MSC-EVs (miR 467F
and 466q, Table 1), have been shown to suppress proliferation of activated macrophages,
contributing to the elimination of the episodes [77]. At present these studies are near to
evolve from preclinical to clinical levels [78]. Post-stroke neurodegeneration is reduced
by miRNAs even when administered after several days (miR-124, Table 1). Also post-
ischemic immunosuppression is attenuated by MSC-EDs administered for a few days.
All together the results provide evidence for future clinical studies in strokes of human
patients [79,80]. Analogously, EV miRNAs from bone marrow, adipocytes and other stroma
cells have been shown to protect spinal cord injuries [81], brain hemorrahagies [82], neuro-
inflammation [83], deep circulatory arrest (miR-214, Table 1) [84], and other brain lesions.

5.5. COVID-19 Disease

COVID-19, a viral disease rapidly evolved into a pandemia. For over a year a
main problem has been the lack of efficient drugs, a problem that now may move into
solution [85,86]. In the meantime several vaccines have been analyzed and made usable.
As long as vaccination is incomplete in the advanced countries and absent in the rest of
the world, treatment with cargo molecules from MSC-EVs is still needed. Such treatments,
inactive against the CAVID-19 virus SARS-CAV-2, are known to reduce the severe lesions
of lung (miR-20a-5p, Table 1) and other organs induced during the disease [87,88].

The severity of the COVID-19 disease is mostly dependent on the patient responses.
Over-activation of the immune system, developed in the attempt to kill the SARS-CAV-
2 virus, can cause a “cytokine storm” which in turn can induce an acute respiratory
distress syndrome (ARDS: [44,89]), a multi-organ damage, ultimately leading to death
(miR-258, miR-266, Table 1). In COVID-19 patients, the immunomodulatory properties of
MSCs ameliorate the cytokine storm by inhibiting or modulating the pathological events,
especially those of severe cases [87–89]. Protection by MSCs is due to the release of their
EVs, working via immunomodulatory effects, striking the COVID-19 balance by increased
cell safety and tissue penetration [89]. The result by MSC-EVs could thus modulate the
inflammatory responses of infected patients, promoting tissue-repair and regeneration of
damaged organs [87,90,91].



Biomedicines 2021, 9, 667 8 of 15

Table 1. MSC-EVs affecting diseases and processes in various organs by the action of specific
cargo mRNAs.

Organs (Years of the First
Report) Diseases & Processes Examples of Active miRNAs

within the MSC-EVs Involved

Bones (2011)
osteoblastogenesis miR-133-3p [59]
rheumatic diseases miR-483-5p [60]
bone regeneration miR-378 [61]

Heart & Vessels (2012)
infarction

cardio-protection
atheroslerosis

miR-125b [62]
miR-182 [63]

miR-22-3p [65]
miR-221 [67]

Kidney (2011)
ischemia miR-93-5p [69]

senescence miR-133b [70]
diabetes miR-26a-5p [71]

Brain (2013)

neurodegeneration
multiple sclerosis

stroke
circulation arrest

miR-146 [74]
miR-467f [83]
miR-466q [83]
miR-124 [79]
miR-214 [84]

Lung (COVID-19) (2020)
cytokine storm/ARDS miR-258 [87]

pneumonia miR-20a-5p *
cell death miR-266 [92]

The data shown about miRNAs were from the quoted articles, except for * = Li C.X. et al. Mediators Inflamm.
2021; 2021:6635925.

Among the molecules of the MSC-EV cargo inducing alleviations of inflammatory
responses there are several miRNAs. Some of them, known to exacerbate action of cytokines
and chemokines, are down-regulated by EVs, while others, that modulate the above
processes, tend to prevent tissue damage. The heterogeneity of EV cargo molecules is
therefore relevant for the survival of CAVID-19 patients [91,92]. In other studies, SARS-
CaV-2 is affected in the hippocampus by brain vesicles, the RSC-EVs. Such EVs have a
cell-free action in which viruses are degraded by an adaptive function [73]. In conclusion,
MSC-EVs have been recognized as the best among the EV attempts of COVID-19 protection,
however its practical employment should be delimited [93]. In the next Section of this
review we it will mentioned in terms of therapy [93,94].

6. Therapy

The high interest for MSC-EVs, documented in the presentation of diseases reported
in the previous Section, depends on their therapeutic potential [95], reported in many of the
articles quoted in this review. For many years therapy had been presented as an advantage
attributed to the parental cells. In patients, however, such advantage had been questioned.
In addition, it was accompanied by risks including toxicity and immunogenicity challenges,
immune rejections and cancers, as already mentioned [20–23]. At present, therefore,
therapies by MSCs are employed only in a few diseases for which advantageous alternatives
are not available (for examples see [18–20,88]). In most cases, however intense studies of
the last several years have lead to the demonstration that MSC-EVs are the advantageous
alternatives that were needed. On the one hand, in fact, they recapitulate all the properties
analogous, and some times even better than those of their parental cells; on the other hand,
the therapies by MSC-EVs are employed without association to negative risks related to
the structure and function of their parental cells (Figure 1) [24,54,55,95,96].

The properties of MSCs recapitulated by EVs include the regulations of immune
responses. Paracrine recruitment of MSC-EVs in the proximity of needed cells may result
in boosting immune responses, associated in many cases to protective roles in infectious
diseases [23,24,45–47,60,64,82,83]. Such properties are due to interaction of the vesicles
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with immune cells, such as T lymphocytes, B lymphocytes, natural killer cells, dendritic
cells, and macrophages. Among these cells the ones that play an essential role in innate
immunity, adaptive immunity, and homeostasis, are target macrophages. Recent studies
have demonstrated that MSC-EVs reduce their M1 reactive polarization and/or promote
their immunosuppressive M2 polarization in a variety of settings. The results of such
changes affect a number of cell-free therapies addressed to several diseases including
cardiovascular, pulmonary, digestive, renal, immunological, cancer and central nervous
system diseases [48,97–99].

So far we have considered the therapy produced by the general capacity of MSC-EVs.
In addition, a refined mechanism of therapy has been developed for cells and vesicles
decades ago according to engineering approaches. Such approaches are based on a good
manufacturing practice (GMP), relevant in the selection of materials, the manufacturing
and the quality assays employed [100–102]. By such approaches the cells/vesicles are
engineered by insertion of changes both at the surface and within the lumen, assuring
preloading of drugs followed by binding and fusion to appropriate target cells, with
discharge of drugs within their cytoplasm. In spite of the efforts made during the last
decades, the use of these artificial approaches in diseases has been limited. In contrast,
MSCs and, even better, the MSC-EVs have resulted much more successful due to the
combination of engineered and natural approaches, efficient especially in inflammation
treatments. For this the induced engineering changes need to be moderate, while the EV
properties need to be functional, competent for cell fusion and cargo diffusion, typical
processes by which key molecules flow from EVs to target cells [103,104]. The therapy
combination summarized so far is effective also for the lesions induced by COVID-19 in the
lung and other organs. In these cases MSC-EV operate in nano-platforms for therapeutics
and drug delivery to combat COVID-19.

7. Clinical Practice

While research with MSC-EVs has exploded during the last few years, its develop-
ment towards clinical practice [20,28,54] is still early. At present we intend to consider
the problem from two points of view: technical and operative properties of MSC-EVs
considered during the last few years for entrance in clinical practice; and the state of science
for MSC-EV therapy in various diseases.

In the first we summarize the requirements for manufacturing, safety and efficacy of
clinical practice by testing the sources of cell types and their target diseases. At present
the biotechnological and pharmaceutical companies are considering with interest the op-
portunity to invest in this type of initiatives. For such interest it will become important to
identify animal models appropriate for studies and operations. Preclinical work, already
considered in previously mentioned studies [30–32,80], is relevant for the choice of ap-
proaches, the toxicities to be considered, and the pharmacological properties to be obtained.
Manufacturing of the molecules will be started based on the diseases considered, keeping
in mind also the number of their potential patients. The size of EV planning will thus be
established. Upon their characterization EVs will be purified and analyzed, first for their
pharmacological consideration, and then for their production [105,106].

The form often employed to strengthen the early development of clinical practice is
regenerative medicine, based on the EV-dependent regeneration of affected tissues such as
the systems of brain, blood vessels and others [28,50,64,71,72,107–110]. Critical for these
processes, operative by cell-free strategy, is the successful translation of preclinical studies
into clinical platforms [21,32,45]. Aspects to carefully evaluate the findings concern qual-
ification, characterization and production of the methods employed; pharmacokinetics,
targeting and transfer of drugs to appropriate sites; assessment of safety profiles [108].
Regenerative medicine of various diseases often takes place by encapsulated drugs admin-
istered by various procedures including direct, intravenous and intraperitoneal injection as
well as oral and nasal delivery [96,102,104–109].
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8. Conclusions

The task of this review has been a comprehensive illustration of the present knowledge
about MSC-EVs, the extracellular vesicles known to express many important properties
of their parental cells, including their therapeutic activity. Based on the combination of
such properties to EV peculiarities, including their lack of self-replication, differentiation,
and risk factors, MSC-EVs are now widely recognized for the advantageous replacement
of their parental cells in the therapy of numerous diseases. Such unique role explains the
extraordinary success and the intense studies dedicated to these vesicles.

Many properties of MSC-EVs, including their therapy for diseases, have been already
illustrated in detail in the present review. In contrast, we have not mentioned a number of
other properties not unique to MSC-EVs but common to other vesicles, secreted by parental
cells different from MSCs. A recent study has emphasized many such properties, necessary
for all types of EVs to be distinguished from the other organelles of the cells [3]. Here
we will mention three of such properties: the long survival of EVs after their secretion;
their withstanding of harsh environmental conditions; their unique ability to cross the
blood-brain- barrier, and thus to move in and out the brain [3]. In our opinion these, and
possibly other properties we have no space to emphasize, establish general conditions
appropriate to the specific activities of MSC-EVs.

Another important aspect, mentioned repeatedly however without conclusion, con-
cerns the mechanisms of EV action, i.e., the processes that follow their binding to target
cells, including their following fusion with discharge of their luminal cargos into the
cytoplasm [2]. Many key agents of vesicle function are concentrated in their lumen. In
addition to proteins, lipids, coding RNAs and other agents, the vesicles contain miRNAs.
These non-coding nucleotides are often present in considerable number, larger than those
believed a few years ago. Many if not all such miRNAs are needed for the activation of
signaling cascades leading to the final responses of target cells. In some cases various
steps of whole cascades have been discovered. For example, increased miR-410 induces
inhibition of HDAC1, a modulator of negative gene transcription, and activation of an axis
containing EGR2, a transcription factor, and Bcl2, a protein that supports cell survival. By
impeding neuronal apoptosis, the axis appears to prevent a brain lesion of newborns, the
hypoxia-ischemia brain damage [111]. Identification of the three such steps looks valid,
however the cascade appears long and some possible likely steps remain unknown.

The previous paragraphs of this Conclusion have illustrated two fields in which MSC-
EV investigation appears oriented. Additional fields could be related to critical Sections
of our presentation: immunity, diseases, therapy. However, the main task will be the
expansion and strengthening of clinical practice, i.e., a successful conversion of knowledge
about MSC-EVs into various aspects of modern medicine. Development of knowledge
is already excellent, and important improvements are expected for the next future. The
potential development of clinical practice appears therefore highly promising.
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