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Obesity has become a global epidemic, and it is a major risk factor for other metabolic
disorders such as type 2 diabetes and cardiometabolic disease. Accumulating evidence
indicates that there is sex-specific metabolic protection and disease susceptibility. For
instance, in both clinical and experimental studies, males are more likely to develop
obesity, insulin resistance, and diabetes. In line with this, males tend to have more visceral
white adipose tissue (WAT) and less brown adipose tissue (BAT) thermogenic activity,
both leading to an increased incidence of metabolic disorders. This female-specific fat
distribution is partially mediated by sex hormone estrogens. Specifically, hypothalamic
estrogen signaling plays a vital role in regulating WAT distribution, WAT beiging, and BAT
thermogenesis. These regulatory effects on adipose tissue metabolism are primarily
mediated by the activation of estrogen receptor alpha (ERa) in neurons, which interacts
with hormones and adipokines such as leptin, ghrelin, and insulin. This review discusses
the contribution of adipose tissue dysfunction to obesity and the role of hypothalamic
estrogen signaling in preventing metabolic diseases with a particular focus on the VMH,
the central regulator of energy expenditure and glucose homeostasis.
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INTRODUCTION

Obesity is a health condition characterized by excessive accumulation of body fat and has become a
global epidemic (1). Obesity is associated with numerous metabolic complications such as insulin
resistance, glucose intolerance, and hyperlipidemia (2–4). Up to date, therapeutic strategies often
include changes in diet and exercise. However, these interventions exhibit little long-term impact.
Therefore, there is a critical need to understand the influencing factors that regulate fat expansion
and identify alternative long-lasting solutions.

Notably, sex plays a key role in adipose tissue distribution and energy balance regulation.
Abundant clinical and epidemiological studies show that men and women differ in body fat
accumulation and distribution (5–8). Women have more fat accumulated in subcutaneous white
adipose tissue (WAT) (8) and have greater metabolic activity in brown adipose tissue (BAT) when
compared to men (9). In contrast, males tend to accumulate visceral fat, which promotes metabolic
disorders. This sex-specific fat storage is presumed to implicate evolutionary pressures. Women are
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adapted to store fat with a low lipolytic rate to respond to chronic
energetic challenges such as gestation and lactation (10),
protecting them against metabolic diseases (11). In contrast,
men have evolved to store metabolically active visceral fat depots
as energy fuel under short-term energetic challenges such as
hunting (10). However, the sex-specific mechanisms that
regulate adipose tissue metabolism are not fully understood.

One of the sex steroids accounting for these sex differences is
estrogen. Accumulating evidence suggests that estrogen plays a
vital role in sex dimorphic control of metabolic diseases and
adipose tissue metabolism (12–14). More specifically, brain
estrogen signaling has been shown to enhance sympathetic
nervous system (SNS) output, promote thermogenesis in BAT,
prevent hyperplasia and hypertrophy in WAT, and regulate WAT
distribution (15–20). However, the underlying mechanisms by
which central estrogen modulates adipose tissue metabolism are
not well characterized. Previous studies were mainly focused on
the local effects of estrogen in the brain or adipose tissue (21, 22),
but the roles of estrogen-initiated crosstalk between brain and fat
in determining sex- and depot-specific adipose tissue function
have not been well investigated. This review will summarize the
existing evidence regarding brain estrogen-initiated inputs
regulating adipose tissue metabolism.
OBESITY AND METABOLIC SYNDROME

Individuals are considered obese when their Body mass index
(BMI) is higher than 30kg/m2 (23). Obesity occurs as the result of
energy imbalance when the caloric intake surpasses energy
expenditure, which is influenced by diverse behavioral,
socioeconomic, and genetic factors (24). Examples of these
factors are sedentary lifestyles or limited physical activity, and
excessive caloric intake. Improvement of lifestyle by engaging in
activities that require physical exercise and reducing the
consumption of high fat/carbohydrate foods can positively
impact obesity and metabolic syndrome (25–27). Genetic factors
also play a crucial role in energy imbalance and excessive adiposity.
Genome-wide associated studies (GWAS) had successfully
identified 445 single nucleotide polymorphisms (SNPs) and 389
genes associated with obesity (28). Moreover, several SNPs were
found to target miRNAs linked with adipogenesis and lipid
metabolism (28). Clinical studies in patients with obesity have
revealed that mutations in leptin, pro-opiomelanocortin
(POMC), and melanocortin 4 receptor (MC4R) are positively
associated with hyperphagia, hyperinsulinemia, and excessive
adiposity (29–34). Accordingly, several research efforts have
focused on developing therapies against obesity by targeting these
genes, mainly to enhance satiety and reduce energy intake.
ADIPOSE TISSUE FUNCTION

To better understand the pathogenesis of obesity, it is crucial to
define adipose tissue function. Adipose tissue is no longer
considered only a storage depot for excess energy. This tissue
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also acts as a regulator of numerous metabolic and endocrine
responses. For instance, adipose tissue regulates appetite,
thermogenesis, lipid metabolism, sexual reproduction,
immunological responses, insulin signaling, and glucose
homeostasis. Moreover, adipose tissue is a highly dynamic
organ that consists of numerous cell types, including
adipocytes, fibroblasts, endothelial cells, immune cells, and
adipocyte progenitor cells. These progenitor cells can undergo
adipogenesis to create new adipocytes (35). There are two major
types of adipose tissue, white adipose tissue (WAT) and brown
adipose tissue (BAT). As detailed below, the excessive adiposity
observed in obesity results from the dysregulation of both WAT
and BAT metabolic function.

White Adipose Tissue
In living organisms, energy consumption and storage are
essential to ensure survival in times of energetic challenges and
limited caloric availability. WAT functions as an energy reservoir
to store lipids in the form of triglycerides. WAT is mainly
composed of white adipocytes, unilocular cells with one large
lipid droplet where free fatty acids (FFA) are stored in the form
of triglycerides (Figure 1). When there is an energy demand for
example, after physical activity or under food scarcity, white
adipocytes release energy by undergoing lipolysis, a process
orchestrated by hormone-sensitive lipase (HSL) and adipose
triglyceride lipase (ATGL), where triglycerides are catabolized
into FFAs that enter circulation and are delivered to energy-
demanding organs such as muscle and liver (35, 37). In addition
to its energy storage function, WAT is also an endocrine organ
that secrets adipokines such as leptin, adiponectin, and resistin,
all of which contribute to food intake and energy balance
regulation (38–41)

WAT depots can be further categorized based on their
anatomical distribution. Subcutaneous WAT (sWAT) is mainly
located in gluteal and femoral regions, whereas visceral/omental
adipose tissue (vWAT) is primarily accumulated in the abdomen
and internal organs (42, 43). sWAT is associated with optimal
metabolic health, whereas vWAT contributes to metabolic
dysregulation. For instance, in humans, sWAT expansion is
linked to improvement in insulin sensitivity, diminished lipolysis
rate, decreased circulation of cytokines, and augmented levels of
adipokines (44). In contrast, vWAT expansion is associated with
increased insulin resistance, systemic inflammation, and other
metabolic syndrome features (45–47). However, it is not clear why
vWAT is more metabolically detrimental. It is likely attributed to
the anatomical location of vWAT, which is surrounding internal
organs within the body cavity. Moreover, vWAT appears to be a
highly metabolically active depot, which constantly mobilizes
lipids and increases circulating FFA levels. In addition to gender
difference, adipose tissue expansion is dependent on genetic
components and diet (48). White adipocytes can increase in
number (hyperplasia) or size (hypertrophy) in response to
excessive energy intake (48, 49). While WAT is highly plastic
that can expand from 4% to 50-70% of an individual’s body
composition, the total capacity is limited. When WAT expansion
goes beyond its capacity, excess fat begins to accumulate in tissues,
such as skeletal muscle, liver, heart, and pancreas, ultimately
June 2022 | Volume 13 | Article 898139
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leading to lipotoxicity, systemic inflammation, insulin resistance,
and metabolic disorders (50–52)

Brown and Beige Adipose Tissue
In contrast to WAT, BAT is a highly vascularized organ mainly
composed of brown adipocytes. Brown adipocytes have small lipid
droplets and are rich in mitochondrial content, which contributes to
their brown appearance (Figure 1) (53, 54). The primary function
of BAT is thermogenesis, a process by which the uncoupling protein
1 (UCP1, expressed in the inner mitochondrial membrane)
uncouples oxidative phosphorylation to dissipate energy as heat
(54–56). In both humans and rodents, BAT thermogenesis is
mainly dependent on the sympathetic nervous system (SNS)
activation (55–59). Activation of SNS drives the release of
norepinephrine (NE) which activates b3-adrenoceptors (b3-AR)
expressed in brown adipocytes. Mitochondria typically generate
energy by synthesizing ATP via oxidative phosphorylation.
However, b3-AR activates the cyclic AMP/Protein kinase A
pathway to release FFA, which will be used as fuel by UCP1 to
uncouple ATP synthesis and release the produced energy in the
form of heat (55, 58). BAT thermogenesis can be induced by
multiple factors such as diet, cold exposure, and b-adrenoceptors
agonists (53, 57, 58, 60–63). In addition to UCP1, other important
thermogenic and BAT markers have been identified including
peroxisome proliferator-activated receptor gamma coactivator 1-
alpha (PGC1a), PR domain containing 16 (PRDM16), cell death-
inducing DFFA-like effector A (CIDEA), and type II iodothyronine
deiodinase (DIO2) (20, 57, 59, 64). It was once thought that BAT
was absent in adulthood. However, positron emission tomography-
computed tomography (PET/CT) scanning technologies with 18F-
fluorodeoxyglucose (18FDG) have revealed that adult humans have
metabolically active BAT depots (9, 56, 61, 62). BAT content in
humans can be found in cervical supra-clavicular, axillary, and
paraspinal regions, accounting for approximately 2% of total fat
depots (Figure 1) (9, 61). As an endocrine organ, BAT secretes
batokines as well as cytokines such as fibroblast growth factor 21
(FGF21) and interleukin 6 (IL-6) (65, 66). However, the endocrine
Frontiers in Endocrinology | www.frontiersin.org 3
functions of BAT in physiological and pathological conditions still
need to be fully explored.

In addition to its thermogenic and endocrine function, BAT
also plays an essential role in glucose homeostasis. BAT glucose
uptake can be stimulated by SNS-activated thermogenesis or
insulin signaling (67). BAT expresses insulin receptors that allow
translocation of GLUT4 into the plasma membrane, thus
facilitating glucose clearance (35, 67). Studies have shown that
human-to-mice BAT transplantation results in increased insulin
sensitivity, decreased body weight gain, and attenuated high fat
diet (HFD)-induced insulin resistance (66). In line with this,
fasting-induced insulin resistance is accompanied by decreased
BAT glucose uptake and thermogenic activity in humans (68).
These findings provide additional potential connection between
BAT dysfunction and metabolic syndrome.

Under specific physiological stressors, brown-like adipocytes
can arise from white adipocytes or adipocyte progenitor cells.
These cells are termed beige/brite adipocytes and the process by
which they emerge is called WAT browning or beiging. Beige
adipocytes share morphological features with both white and
brown adipocytes. Beige adipocytes have larger lipid droplets for
fat storage, and although they have less mitochondrial density,
they are UCP1 positive cells and they possess thermogenic
capacity (69, 70). Similar to BAT activation, WAT beiging can
be induced by cold exposure, physical activity, and b-adrenergic
receptors (Figure 1) (57, 63, 71). BAT thermogenesis and WAT
browning are potential therapeutic targets to treat obesity and
metabolic syndrome because they can consume glucose and fatty
acid. Cold exposure in humans results in increases in BAT
content, thermogenic activity, and energy expenditure,
accompanied by lower BMI and body fat content (61, 72, 73).
Conversely, BAT content was lower in individuals with higher
visceral fat deposition and BMI (72). Additionally, individuals
with detectable active BAT depots display lower circulating
cholesterol and glucose levels (74). In rodents, UCP1 ablation
leads to body weight gain, increased food intake, and decreased
diet-induced thermogenesis, phenotypes that are exacerbated by
FIGURE 1 | Adipose tissue distribution in humans and mice. White adipose tissue (WAT) is composed of unilocular white adipocytes characterized by a single large
lipid droplet. Brown adipose tissue (BAT) consists of brown adipocytes with small lipid droplets and high mitochondrial density. White adipocytes can adopt brown-
like morphology under cold exposure, increased SNS activity and b3-agonism, a process called WAT beiging. Adapted from (36). Figure 1 license number:
XB23OHGTZA, Figure 2 license number: OZ23OHGU1X
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HFD (75). Activation of b3-AR using CL316,243 agonist
remodeled white adipocytes into more multilocular structures
and smaller lipid droplets, associated with increased expression
of brown adipocyte markers and UCP1 protein (57). Murano
et al. reported an increase in noradrenergic fiber density in BAT
and WAT following 10 day-cold exposure in adult female mice
(63). The abundant evidence from the animal and clinical studies
strongly support that increasing BAT activity and inducingWAT
beiging represent viable strategies to prevent and treat obesity
and its related comorbidities.

However, clinical evidence on BAT activation contribution to
body weight loss is scarce. To this date, there are more than 40
ongoing clinical trials aiming to better understand chronic BAT
activity in humans and test potential therapeutic approaches. In
healthy males, long-term cold exposure (17°C, 2 hours/day for 6
weeks) stimulated BAT activity, increased energy expenditure,
and significantly reduced body fat mass (76). Recently,
mirabegron, a pharmacological agent and b3-adrenergic
receptor agonist, has been tested in both men (NCT01783470)
and women (NCT03049462). Healthy men receiving 200 mg
mirabegron (3 interventions within 28 days) showed increased
acute BAT activation and resting metabolic rate (RMR) (77). On
the other hand, healthy women received daily 200 mg
mirabegron for 28 days, resulting in enhanced BAT metabolic
activity, increased resting energy expenditure, and improved
insulin sensitivity. However, no changes in body weight mass
were detected in these women (78). These findings position
mirabegron as a promising therapeutic agent to stimulate
endogenous BAT thermogenic activity in patients with
metabolic syndrome. Further research is needed to identify the
cellular, molecular, and transcriptional mechanisms governing
the BAT/beige development and function.
SEXUAL DIMORPHISM IN
ADIPOSE TISSUE

Sex-specific distribution of adipose tissue has been described in
humans and animal models. Females are more abundant in
sWAT, while males tend to have more abdominal-visceral depots
(79, 80). Males have evolved to store highly metabolically active
visceral fat depots that can be quickly mobilized and used as
energy fuel under short-term energetic challenges such as
hunting. On the other hand, females might have evolved to
store fat subcutaneously with low lipolytic rates, which would
store the energy for long-term challenges such as pregnancy and
lactation (10). This evolutionary adaptation might confer
protection against obesity and metabolic syndrome. Indeed, in
studies using mice exposed to HFD for twelve weeks, males tend
to gain more body weight and have higher expression of pro-
inflammatory genes in the adipose tissue when compared to
females (81). In contrast, women with vWAT accumulation are
at higher risk of developing impaired glucose and lipid
metabolism and cardiovascular complications when compared
to men (7, 8). Clinical studies have shown that catecholamine-
Frontiers in Endocrinology | www.frontiersin.org 4
induced lipolysis is predominant in female but not male
abdominal adipocytes (82). Additionally, during fasting, while
FFA increases in the blood from both sexes, women have lower
levels of circulating glucose when compared to men. This
diminished glucose production is speculated to protect women
from FFA-induced insulin resistance (83). Interestingly, a study
addressing sex-specific responses to exercise revealed that
women derived more energy expenditure from fat oxidation.
In contrast, men utilized carbohydrates as the primary fuel
during the exercise sessions (84). Taken together, these studies
suggest that a higher lipolytic rate in women is possible because
they are more dependent on fat as an energy source.

Importantly, the protective role of sWAT in females seems to
be age-dependent, as postmenopausal women suffer fat
redistribution. Fat depots from subcutaneous regions are
transferred to visceral regions (85). This has led to the
conclusion that sex hormones might play a critical role in
gender-specific fat distribution and overall metabolic health.
Particular attention has been given to estrogen as it has been
shown that the decreased circulation of estrogen contributes to
increased adiposity, insulin resistance, low metabolic rate, and
adipose tissue inflammation (59, 86, 87).

One proposed mechanism for gender-specific fat distribution
is the estrogens-mediated modulation of sympathetic inputs and
lipolytic/lipogenic rates in adipose tissues. In human WAT,
adrenergic activation of b-adrenergic receptor (AR) promotes
lipolysis, whereas adrenergic stimulation of a2A-AR inhibits
lipolysis (88, 89). As discussed earlier, sWAT in women is
characterized by a lower lipolytic rate to ensure energy
preservation. In line with this, healthy women under long-term
estradiol (E2) treatment have increased a2A-AR mRNA levels
and protein binding capacity in subcutaneous depots compared
to placebo-treated individuals. E2 did not affect the a2A-AR
mRNA profile in vWAT (88). In vitro studies with cultured
adipose tissue fragments consistently show that E2 treatment
exerts anti-lipolytic effects in subcutaneous adipocytes (88). This
suggests that estrogens modulate female WAT distribution in
part by upregulating a2A-AR signaling in sWAT while
stimulating b-AR-mediated high lipolytic rate in vWAT, thus
promoting subcutaneous energy storage.

Moreover, these previous findings were associated with
estrogen receptor alpha (ERa), which has been evidenced to be
the main target for estrogen’s anti-obesity effects (further
discussed below) (88). In line with this, mutations in ERa are
linked with higher BMI, waist circumference, and increased fat
mass in middle-aged women (90). In rodents, central E2/ERa
signaling has been shown to contribute to changes in fat
distribution. Deletion of ERa in the VMH SF1 neurons leads
to increased body weight, massive gonadal WAT (gWAT, rodent
visceral adipose depot) expansion, increased lipogenesis, and
decreased sympathetic tone (20). The role of estrogen in the
regulation of energy balance will be discussed in more detail in
the following section.

Similar to WAT, sex differences in BAT have also been
described. The volume of BAT depots between the sexes is
similar. However, women have higher BAT mass in the
June 2022 | Volume 13 | Article 898139
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cervical-supraclavicular region when compared to men, and
female BAT is metabolically more active than males (9, 61, 91).
Cold exposure results in significantly higher energy expenditure
in women (61). Interestingly, the higher prevalence of
metabolically active BAT in women is positively correlated
with plasma estradiol levels (92, 93). Treatment of b3-
adrenergic receptor agonist CL316,243 (CL) upregulates
thermogenic markers and mitochondrial respiratory chain
proteins in gWAT of female mice but not in males, indicating
sex-specific WAT browning phenotypes (57). Female rats have
higher BAT activity and oxygen consumption than males under
ad libitum conditions. However, under caloric restriction, these
phenotypes are reversed, as indicated by diminished
mitochondrial density and downregulation of thermogenic
genes in females (94).

A recent report by MacCannell et al. used high-resolution
respirometry to assess sex-specific mitochondrial function and
metabolic flexibility in mice challenged with HFD. HFD-fed
females show increases in electron transport chain (ETC)
components, specifically Complex I and II respiration, in BAT
mitochondria compared to females fed a standard diet,
suggesting adaptive mitochondrial BAT respiration. Notably,
HFD-fed males did not exhibit this phenotype. In addition,
improved mitochondrial respiration is accompanied by
upregulation of BAT-associated genes. These findings show
that under HFD condition, female mice have greater metabolic
flexibility and adapt to nutritional challenges by maximizing the
activity of ETC complexes to modulate energy expenditure and
restore energy balance (95). Altogether, these findings provide
evidence for sex-specific regulation of BAT metabolism and
suggest mitochondrial metabolic flexibility as a potential
mechanism underlying the physiological relevance of BAT
function in women.
ESTROGEN

Estrogen is a sex hormone mainly produced in the ovaries,
corpus luteum, placenta, and other non-gonad regions like the
heart, liver, and brain (96). In females, the three types of estrogen
present are estrone (E1), estradiol (E2/17b-estradiol), and estriol
(E3). Estrogen biosynthesis initiates with cholesterol. A series of
chemical reactions result in the synthesis of testosterone. The
action of aromatase mediates the conversion from testosterone to
estradiol (96). E2 or 17b-estradiol is the most active form of
estrogen in premenopausal women. The levels of estrogen are
decreased post-menopause, which is associated with a higher risk
of metabolic complications and body weight gain. The anti-
obesity effects of estrogen and its role in energy homeostasis are
well evidenced. For instance, Hong et al. demonstrated that
compared to females, male mice were more susceptible to
increased body fat. However, women begin to experience body
weight gain after menopause (97). Importantly, ovarian hormone
depletion by OVX removed female mice protection against body
weight gain (86). In line with this, hormone replacement therapy
in postmenopausal women or E2 replenishment in OVX mice
reverts the obesogenic phenotypes (97, 98). It has also been
Frontiers in Endocrinology | www.frontiersin.org 5
reported that food intake and body weight gain in rats varies
depending on the estrous cycle stage, pregnancy, or lactation
(59). In female mice, disrupted estrogen signaling leads to
obesity, decreased locomotion, and reduced heat production
and energy expenditure (19), demonstrating estrogen’s impact
on thermogenesis. Estrogen signaling is mediated by its
receptors, Estrogen receptor alpha (ERa), Estrogen receptor
beta (ERb), G protein-coupled receptor 30 (GPR30) and Gq
protein-coupled receptor (Gq-mER), all of which are expressed
in the brain and adipose tissue (96).

ERa
From all the estrogen receptors, ERa is the most extensively
studied in the context of energy homeostasis, given the abundant
evidence suggesting that ERa mediates estrogen’s anti-obesity
effects. ERa is expressed in gonadal organs, liver, adipose tissue,
and brain. In the brain, ERa expression predominates in the bed
nucleus of the stria terminalis, the nucleus tractus solitarius
(NTS), amygdala, hypothalamus, periaqueductal gray and
dorsal raphe nucleus (DRN) (99). Specific hypothalamic
regions that express ERa include POMC neurons and
neuropeptide Y (NPY)/agouti-related protein (AgRP) neurons,
which are found in the arcuate hypothalamic nucleus (ARH),
ventromedial hypothalamic nucleus (VMH) and medial preoptic
area (MPOA) (99). All these brain regions are implicated in food
intake and thermoregulation. Mutations in ESR1, the gene that
encodes ERa, have been associated with higher BMI and
increased fat mass in women (90). In rodents, ERa congenital
global KO results in increased adiposity and elevated serum
glucose and insulin in both male and female mice (100).
Consistently, a point mutation of the palmitoylation site of
ERa (C451A-ERa), which results in membrane-specific loss of
function, impaired glucose sensing in female mice (101), and
disturbed sexual differentiation in the perinatal programming of
the male brain (102). Depletion of ERa in the mouse brain
abolishes the beneficial metabolic effects of estrogen, resulting in
hyperphagia, body weight gain, increased visceral adiposity, and
impaired energy expenditure (17, 20, 59, 103). In human adipose
tissue, expression of ERa is positively associated with UCP1
protein density (80). Similarly, adipose tissue ERa expression in
mouse is correlated with lower adiposity, higher UCP1 content,
optimal BAT thermogenic function, and insulin sensitivity (104).
Activation of ERa with synthetic agonist propylpyrazoletriol
(PPT) upregulates UCP1 and causes WAT beiging both in
vitro and in vivo (103).

ERb
The role of ERb in adipose tissue function is more controversial.
This receptor is primarily expressed in bone marrow,
endothelium, lungs, adipose tissue, and the brain. In the brain,
ERb is most abundant in the hippocampus, bed nucleus of the
stria terminalis, amygdala, DRN, and very limited in the
hypothalamus (99). ERb has not been paid as much interest as
ERa, not only because of the evidence discussed earlier favoring
ERa as the principal mediator of estrogen signaling, but also
because most studies targeting ERb have concluded that it does
not affect energy homeostasis. For example, depletion of ERb in
June 2022 | Volume 13 | Article 898139
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animals has no effect on total adiposity in mice (105). In OVX
rats, activation of ERa by its agonist propylpyrazole triol (PPT)
causes body weight loss and hypophagia associated with a
reduction in meal size. However, using diarylpropionitrile
(DPN) to activate ERb does not influence body weight and
food intake (98, 106). In contrast, recent reports have shown that
ERb might have a beneficial impact on metabolic health and
potentially a protective function. González-Granillo et al.
recently demonstrated that subcutaneous injection of ERb
agonist 4-(2-(3,5-dimethylisoxazol-4-yl)-1H-indol-3-yl)phenol
(DIP) induces fat redistribution from visceral to subcutaneous
depots, elevates heat production, and stimulates WAT browning
in male mice (107). Similarly, activation of ERb using a synthetic
agonist (b-LGND2) decreases body weight and fat mass in WT
mice. Deletion of ERb reversed these phenotypes (108).

It has also been reported that ERb is more abundant in
healthy females when compared to men. Recently Porter and
colleagues studied the transcriptional and protein content of
estrogen receptors in obese individuals, including men,
premenopausal and postmenopausal women. They report that
ERa and ERb protein expression in adipose tissue was positively
correlated with UCP1 content, further evidencing the role of
ERa in BAT thermogenesis and suggesting that ERb may also
play an important part. Importantly, they showed that ERb gene
expression was higher in adipose tissue of women when
compared to men (80). It has been suggested that in the
absence of ERa, the available estrogen (produced in adipose
tissue, the second primary source of estrogen after ovaries) is
forced to activate ERb as compensatory mechanism, indicating
that ERb may have a protective metabolic role in the absence of
estrogen or ERa (109). However, further studies are required to
clarify the discrepancies in the field and elucidate the potential
role of ERb in metabolic health.

GPR30
Although ERa and ERb are the most studied ERs in the context of
energy homeostasis, there are other novel receptors that represent a
promising therapeutic target for metabolic syndrome. The GPR30
or G protein-coupled estrogen receptor 1 (GPER1) is expressed in
reproductive organs, adipose tissue, pancreas, bone tissue, and
brain, including the hypothalamus (110–114). The binding of
estrogen to GPR30 initiates a signaling cascade that activates the
protein kinase A (PKA)/ERK pathway (113).

Although GPR30 has a lower binding affinity to estradiol
when compared to ERa (113), various reports employing a
whole-body deletion model (GPR30 KO) suggest that this
receptor is essential for the maintenance of glucose and energy
balance. Deletion of GPR30 in mice leads to increased body
weight attributed to increased fat mass, augmented circulating
levels of cholesterol and triglycerides, glucose intolerance,
impaired insulin sensitivity, and elevation of proinflammatory
cytokines (115). Consistent with these findings, Davis et al.
reported that whole-body GPR30 KO mice show elevated body
weight, increased adipocyte size, BAT remodeling, and decreased
UCP1 gene expression and energy expenditure (112).

Interestingly, male mice exhibit more susceptibility to GPR30
deletion when compared to females, as male GPR30 KO mice
Frontiers in Endocrinology | www.frontiersin.org 6
show significant changes in body weight as early as 8 weeks of
age, but GPR30 KO females begin to significantly gain weight at
13 weeks of age. In addition, adipocyte area and UCP1 levels are
not significantly changed in female GPR30 KO mice as opposed
to male mice. In the same study, GPR30 KO females were
ovariectomized and treated with E2. Estradiol supplementation
did not affect body weight changes, glucose tolerance, and
adipocyte morphology in these GPR30 KO OVX mice. These
findings imply that GPR30 in males is required to maintain
optimal body weight and energy expenditure, and in females, it
confers protection against adipose tissue remodeling and glucose
imbalance (112).

It is important to note that in female mice, deletion of GPR30
decreased hypothalamic ERa and increased ERb gene
expression, suggesting that GPR30 may regulate the expression
of classical ERs in the hypothalamus (112). Female mice lacking
GPR30 also show hyperglycemia and decreased insulin
expression and release from the pancreas (114). In contrast to
these findings, another report indicates that GPR30 KO female
mice fed an HFD exhibit decreased body fat mass, improved
glucose balance and insulin sensitivity, reduced adipocyte size
and adipogenesis, indicating that in HFD-fed females, GPR30
contributes to adipose tissue expansion and energy imbalance
(110). Recently, Sharma et al. reported that GPR30 agonism with
GPR30-selective small-molecule agonist G-1 reverses OVX-
induced obesity by decreasing body weight and fat mass,
increasing energy expenditure, promoting BAT remodeling,
improving glucose homeostasis , and lowering pro-
inflammatory responses. These phenotypes persisted in OVX
mice challenged with HFD, demonstrating that GPR30
activation exerts anti-obesity effects in female mice (116).

Gq-mER
The Gq protein-coupled receptor (Gq-mER) has gained
attention over the past years, but limited evidence links this
membrane ER with energy balance. Gq-mER is mainly expressed
in the hypothalamus, including both NPY/AgRP and POMC
neurons in ARH, the paraventricular nucleus (PVN), and the
MPOA (117–122). Early studies demonstrate the expression and
activation of hypothalamic Gq-mER, as administration of STX
(Gq-mER selective ligand) induces POMC neural responses in
ERaKO, ERbKO, and GPR30KO mice (117, 122). In addition,
STX mimics the effect of E2 replacement in OVX guinea pigs by
decreasing body weight and uterine weight (122). The suggested
mechanism by which Gq-mER regulates neural responses in
ARH is through GABAB receptors expressed in NPY/AgRP and
POMC neurons. Gq-mER activation desensitizes GABAB

receptors, increasing membrane excitability in POMC neurons,
while in NPY/AgRP neurons, it enhances GABAB inhibitory
effects, indicating that Gq-mER agonism triggers anorexigenic
signals (118, 123). In line with this, daily subcutaneous injection
of STX results in decreased food intake in gonadectomized male
and female guinea pigs (118). Gq-mER signaling has also been
associated with the regulation of body temperature. Treating
OVX guinea pigs with STX results in reduced core body
temperature accompanied by decreased fat pad weight and
body weight and reductions in food intake and meal
June 2022 | Volume 13 | Article 898139

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Torres Irizarry et al. Hypothalamic Estrogen in Energy Homeostasis
frequency (121). In summary, Gq-mER has been shown to play
an essential role in estrogenic regulation of energy balance.
Further research is required to identify the potential
therapeutic applications of these ERs.
ESTROGEN IN THE BRAIN

In 2011, we provided genetic evidence that brain ERa signaling is
vital for body weight control. In this study, we crossed ERaflox/flox

with Nestin-Cre mice to selectively delete ERa from CNS
(ERaCNS-KO). We found that compared to their littermate
controls, both male and female ERaCNS-KO mice have
increased body weight, which is solely reflected by an increase
in fat mass, but not lean mass. In addition, we found these mice
eat more and have decreased energy expenditure accompanied
by reduced physical activity. Importantly, we showed that
ERaCNS-KO mice have a larger visceral fat depot than the
controls, which in other words, they have abdominal obesity.
Finally, we found that ERaCNS-KO females have increased E2 in
the blood (20). This is important when put in a broader
perspective, as it indicates that increased peripheral estrogen
signaling does not rescue obesity induced by brain-specific KO of
ERa, suggesting an essential role of brain ERa in body fat
distribution and energy expenditure.

ARH
Fluctuations in feeding behavior are estrous cycle-dependent in
female rodents. Specifically, food intake elevates during the
metestrous-diestrous phase, when estrogen levels are at the lowest.
Conversely, food intake decreases to the lowest point during the
proestrus-estrous stage, in which estrogen levels are high (124–126).
Notably, the reduced food intake and body weight during the
proestrus phase is associated with decreased NPY/AgRP and
increased POMC mRNA expression, suggesting a potential role of
ARH appetite-regulating neuropeptides in estrogenic regulation of
food intake (125). Consistently, POMC excitatory synapses are
enhanced during the proestrus phase (126). E2 supplementation
in OVX mice decreases appetite and adiposity, associated with
enhanced POMC neuronal activity, as indicated by increases in
POMC excitatory synapses and c-fos expression (126). ERa
congenital globe KO lowers POMC immunoreactivity, which was
not reversed by E2 replenishment, suggesting that POMC synaptic
plasticity is mediated by E2/ERa signaling. These findings support a
model that estrogens modulate food intake by inhibiting AgRP
neurons and activating POMC neurons, resulting in an
anorexigenic response (126).

In supporting this point, administration of E2 directly into
the ARH fails to decrease food intake in mice lacking AgRP/NPY
neurons (121), suggesting a vital role of AgRP/NPY neurons.
However, although ERa is the primary mediating receptor for
anorexigenic effects of estrogens, ERa does not express in AgRP/
NPY neurons (121). These findings indicate that estrogens may
act through ERa expressed by presynaptic neurons to regulate
AgRP/NPY neurons. Consistently, the following study
demonstrated that the anorexigenic effects of E2 are blocked in
female ERaflox/flox/POMC-Cre mice with ERa selectively deleted
Frontiers in Endocrinology | www.frontiersin.org 7
from POMC progenitor neurons (120), implying a mediating
role of ERa expressed by POMC progenitor neurons.
Mechanistically, phosphatidylinositol 3-kinase (PI3K) has been
suggested to mediate the metabolic functions of ERa signals.
Specifically, estrous cycle-dependent fluctuations in food intake
are blunted in female mice with PI3K genetically inhibited in the
POMC progenitor neurons (124). These results indicate that an
ERa-PI3K cascade in POMC progenitor neurons mediates
estrogenic actions to suppress food intake.

In line with this, ablation of ERa, specifically in POMC
progenitor neurons, leads to chronic hyperphagia, decreased
leptin sensitivity, and body weight gain in female mice (20).
Interestingly, a recent study showed that region-specific deletion
of ERa in the ARH of ERaflox/flox mice by stereotaxic delivery of
AAV virus has no effect on food intake, suggesting that estrogen
may exert its anorexic effects by targeting other brain sites rather
than the ARH (16). This discrepancy could be due to the non-
ARH deletion of ERa in the ERaflox/flox/POMC-Cre model. The
recombination in off-target sites could contribute to
physiological phenotypes of POMC-Cre transgenics (127). It is
possible that ERa deleted in NTS POMC neurons led to changes
in food intake.

NTS
The NTS is a brainstem region that regulates satiety (128). E2
treatment has been shown to increase neuronal activity (as
measured by c-fos expression) in the NTS of OVX rats.
Moreover, c-fos expression colocalized with ERa in the NTS of
E2-treated rats (129). Expression of ERs in the NTS of OVX rats
is increased following 48-hour fasting (130). It has also been
demonstrated that ERa mRNA expression in the NTS of OVX
rats fluctuates with the estrous cycle, showing higher expression
during estrous and lower expression during proestrus. OVX rats
exhibit reduced ERa NTS mRNA expression compared to sham-
operated rats (131).

DRN
The DRN is the primary site for 5-hydroxytryptamine (5-HT,
serotonin) synthesis in the brain. Interestingly, 90% of the
serotonergic neurons in the DRN (5-HTDRN) coexpress ERa
(132). Ovarian hormone depletion in female rats results in
decreased c-fos expression in 5-HTDRN neurons. Conversely,
E2 replenishment increases serotonergic neural activity in the
DRN (133). Specific deletion of ERa in the DRN of OVX mice
results in binge-like eating behavior, and estrogen replacement
fails to reverse this phenotype. Moreover, activation of 5-HT by
either E2 or PPT suppresses binge-like eating (132). A study in
OVX rats by Santollo et al. reported that food intake was
significantly decreased within 24 hours after specific E2
microinfusion in ARH, DRN, and the MPOA (134).

MPOA
The MPOA has been identified as a major thermoregulatory
hypothalamic region. MPOA subregions show either cold-
sensing or warm-sensing properties in sham female rats.
However, after estrogen depletion by OVX, c-fos signaling is
significantly decreased, and thermosensitivity of MPOA
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subregions is impaired (135). The MPOA has also been linked
with torpor regulation in rodents. A recent study showed that
activation of ERa+ neurons in MPOA decreases core body
temperature and lowers energy expenditure and metabolic rate.
Furthermore, ablation of ERa in MPOA reverses the torpor-like
state in females but not in males (136). These findings suggest an
integrating role of MPOA estrogen signaling in the regulation of
energy and temperature homeostasis. Besides estrogens,
tamoxifen, a selective estrogen receptor modulator, has also
been shown to modulate the metabolic functions of MPOA
neurons. For example, subcutaneous injection of tamoxifen
alters the transcriptional profile in all MPOA cell types by
repressing metabolic genes. Hypothalamic ablation of ERa
using ERaflox/flox/Nkx2-1-Cre mice, resulting in ERa deletion
in MPOA, vlVMH, and ARH, eliminates the tamoxifen-
mediated gene repression and upregulates metabolic genes in
the MPOA. In line with this, hypothalamic ablation of ERa
blunts tamoxifen-induced inhibition of BAT thermogenesis and
locomotion. These findings suggest that tamoxifen acts through
ERa expressed by the MPOA neurons to impair energy
expenditure and suppress metabolism-related genes (137).

Sagittalis Nucleus of the
Hypothalamus (SGN)
SGN, a unique hypothalamic nucleus discovered in 2008, is
located between the ARH and VMH. Interestingly, this novel
hypothalamic region was rich in ERa-immunoreactive cells
(138). Studies focusing on SGN’s role in energy balance are
very limited. C-fos immunoreactivity was higher in the SGN of
OVX rats treated with estradiol when compared to control OVX
rats. In line with this, neural activity is enhanced when rats of
both sexes engage in sexual behavior, supporting the notion that
ERaSGN might play a role in sex-specific sexual arousal (139,
140). Further research might provide a better understanding of
the physiological relevance of ERaSGN in sexual behaviors.

VMH
ERa signaling in the VMH has also been shown to modulate
thermogenesis and glucose homeostasis. Silencing ERa in VMH
leads to hyperphagia, hyperglycemia, and decreased energy
expenditure (20). The role of estrogen signaling in VMH will
be discussed in more depth later in this article.
CENTRAL ESTROGEN INTERACTION
WITH HORMONES, ADIPOKINES,
AND KINASES

Leptin
Leptin is an adipokine synthesized in adipocytes and encoded by
the obesity (ob) gene with anorexigenic properties. Leptin is
considered a biomarker for obesity as the levels of leptin are
directly proportional to body fat mass accumulation (141).
Leptin signals through leptin receptors (LepR, encoded by db
Frontiers in Endocrinology | www.frontiersin.org 8
gene) in the brain to communicate the status of body fat stores. If
fat depots are not metabolized, leptin will inhibit NPY/AgRP
neurons and activate POMC neurons to exert an anorexigenic
response and increase satiety (141). During LepR activation,
JAK2 tyrosine kinase phosphorylates LepR, which initiates the
recruitment and activation of the STAT3 signaling cascade.
STAT3 is essential for leptin signaling, as deletion of STAT3
leads to hyperphagia and impairs energy expenditure (142).
Mutations in the LepR-B gene results in obesity in humans
and rodents (128). Leptin-deficient ob/ob mice receiving
intraperitoneal injections of leptin experience decreases in
body mass and food intake compared to ob/ob mice receiving
PBS treatment (143). Estrogen has been reported to be a key
determinant of serum leptin levels and central leptin sensitivity.
In diabetic Akita female mice –mice carrying Ins2 mutation–,
ERa ablation exacerbates hyperphagia by further decreasing
central leptin signals and downregulating POMC gene
expression (144). OVX rats display dramatic increases in
serum leptin levels, associated with significant changes in body
weight gain. After E2 replacement, serum leptin levels are
decreased (145, 146). Both ob/ob and db/db mice treated with
E2 for 4 weeks showed body weight loss, diminished fat mass,
hypophagia, and energy expenditure. This was accompanied by
elevated hypothalamic pSTAT3 and increased POMC
immunoreactivity (126). In the hypothalamus, LepR has been
shown to coexpress with ERa and ERb, particularly in the
MPOA, PVN, dorsomedial hypothalamus (DMH), VMH and
ARH (142). Interestingly, estrogen depletion by OVX decreases
leptin gene expression in these hypothalamic regions (147).
Similarly, E2 replenishment in OVX rats significantly increased
hypothalamic leptin content, accompanied by decreases in
energy intake and body weight (145). Deletion of LepR in
vagal afferent neurons was shown to increase body weight gain,
fat accumulation, adipocyte size, and meal numbers. These
obesogenic phenotypes were associated with lower circulating
estrogen and decreased expression of ERa in vagal afferent
neurons (148). Altogether this evidence shows that central
estrogen signaling interacts significantly with leptin-induced
anorexigenic signals.

As a hormone that directly interacts with hypothalamic
neurons to modulate WAT distribution and energy intake, it is
not surprising that leptin has also been reported to act on
thermoregulating brain regions to influence body temperature
and BAT thermogenesis. In addition to ARH, leptin-sensitive
neurons can be found in the MPOA, PVN, DMH, VMH, and
lateral hypothalamus (LH) (149). These brain regions are well
known for their thermoregulatory and thermogenic properties.
Ob/ob mice display decreased body temperature at
thermoneutrality, which is brought back to basal levels following
leptin administration (150). Leptin deficiency affects body
temperature during thermoneutral conditions and when being
challenged by cold temperatures. Mice lacking both leptin and
UCP1 (ob/ob.Ucp1−/−) are unable to survive temperatures below
12°C. Interestingly, leptin treatment allowed ob/ob.Ucp1−/− mice
to adapt to cold exposure by increasing their core temperature and
oxygen consumption (151). Leptin has been shown to upregulate
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Ucp1 mRNA levels as well as thermogenic and sympathetic
markers in rodents with intact BAT sympathetic innervation
(152, 153).

A clinical study performed in pre- and post-menopausal women
evaluated the relationship between ERa/ERb ratio and obesity.
They showed that a lower ERa/ERb ratio in omental adipose
tissue (vWAT) is positively correlated with higher BMI and waist/
hip/thigh circumference. Moreover, serum leptin levels significantly
correlated with these obesity markers, suggesting that circulating
leptin may mediate the regulatory effects of estrogen signaling on
adipose tissue homeostasis (154). Similar to leptin, estrogen’s effect
on BAT thermogenesis, thermoregulation, cold adaptation, and
energy expenditure has been evidenced (9, 20, 57, 59, 61, 87, 136,
155). As discussed later in this article, estrogen and leptin were
identified as energy sensors that signal through the AMPK(VMH)-
SNS-BAT axis to activate BAT thermogenesis (59, 156). Additional
studies might be valuable to elucidate a potential estrogen-leptin
interaction and its effects on energy expenditure and overall
metabolic health.

Ghrelin
Ghrelin is an orexigenic hormone produced in the stomach that
stimulates food intake via its growth hormone secretagogue
receptors (GHSRs), which are expressed in the ARH and VMH
(157). In contrast to leptin, ghrelin is secreted under fasting
conditions and signals through GHSRs to activate NPY/AgRP
neurons and inhibit POMC neurons, leading to an orexigenic
response and an increase in food intake (155).

In estrogen-depleted rats, ghrelin mRNA in the stomach is
increased, suggesting that the absence of ovarian hormones
facilitates ghrelin synthesis. In line with this, ERa was co-
expressed with ghrelin in an intact female rat stomach. E2
replenishment in OVX rats decreases plasma ghrelin levels and
mRNA content in the stomach (158). Ghrelin-induced increases in
food intake are tightly associated with the estrous cycle in female
rats. Intracerebroventricular (ICV) administration of ghrelin results
in increased energy intake principally during the diestrus cycle when
estrogen levels are lower. Consistently, after ghrelin ICV infusion,
neural activity is greater in ARH during the diestrus phase rather
than the proestrus phase (159). Yokota-Nakagi et al. explored the
effects of estrogen on ghrelin effect in HFD-fed OVX rats. As
expected, estrogen depletion accompanied by HFD dramatically
increased body weight, food intake, and vWAT. Implantation of E2
pellets reversed the obesogenic phenotypes. Administration of
GHRP-6, a GHSR agonist, increased HFD intake in OVX mice
treated with placebo pellets, but those mice with E2 replenishment
were protected from the orexigenic effects of GHRP-6. Similarly, E2
decreased c-fos expression in ARH following GHRP-6
administration (155). These findings suggest that estrogen
influences ghrelin signaling in ARH neurons.

Although ghrelin is widely known for its effects on energy
intake, multiple reports have evidenced the role of ghrelin in
energy expenditure. Lin et al. worked with old Ghsr−/− mice to
show that ablation of ghrelin receptor decreases body weight and
improves insulin sensitivity. These phenotypes were induced by
energy expenditure rather than changes in food intake or
Frontiers in Endocrinology | www.frontiersin.org 9
physical activity. Specifically, the increase of energy
expenditure in Ghsr−/− mice is accompanied by increases in O2

consumption, CO2 production, RMR, and respiratory quotient
(RQ). In vitro and in vivo studies demonstrated that GHSR
ablation results in increased UCP1 content and upregulated
thermogenic genes in BAT (160). We showed that neuron-
specific deletion of GHSR partially prevents DIO in mice by
improving insulin sensitivity and metabolic flexibility, increasing
energy expenditure and physical activity. DIO-neuron-deficient
GHSR mice demonstrated higher body core temperature and
resistance to cold exposure when compared to control mice.
Interestingly, expression of GHSR was upregulated in the ARH
and VMH of wild-type mice fed an HFD when compared to mice
fed a regular diet, suggesting that ghrelin signals through these
hypothalamic neurons to counteract the effects of HFD (157).
The potential role of ovarian hormones (including estrogen) in
ghrelin-regulated energy expenditure remains to be elucidated.

Insulin
Adipose tissue dysfunction and obesity are tightly linked to
insulin resistance and diabetes (161). Insulin is a hormone
synthetized and secreted by b-cells in the pancreas in response
to elevated circulating glucose levels. In homeostatic conditions,
insulin induces lipogenesis to decrease plasma FFA. It also
stimulates tissue glucose uptake by binding to the insulin
receptors in adipose tissue and skeletal muscle, which activates
glucose transporter GLUT4, thus lowering blood glucose levels.
Under excessive caloric intake, the insulin demand increases and
insulin receptor-expressing tissues become unresponsive to
insulin as a protective mechanism to avoid excessive glucose
uptake (162). As a result, pancreatic b-cells uncontrollably
release insulin to overcome the desensitization, which
eventually impairs b-cell function (35, 162). Insulin resistance
is accompanied by adipose tissue inflammation, impaired
adipokine release, downregulation of GLUT4, and ectopic fat
accumulation resulting from increased FFA (52, 161, 163).
Rodent studies have shown that high-fat diets contribute to
insulin resistance by impairing peripheral glucose uptake and
increasing pro-inflammatory cytokines gene expression in
adipose tissue (52, 164). In humans, oral administration of
palm oil decreased adipose tissue insulin sensitivity and
increased hepatic fat deposition (165). Other clinical studies
demonstrate that increased visceral fat deposition is
significantly associated with insulin resistance, dyslipidemia,
and hyperinsulinemia in healthy individuals (166).

Insulin is a pancreatic hormone that is crucial for glucose
metabolism and energy balance. Insulin receptors are expressed
in the hypothalamus, including the ARH and VMH (167, 168).
In response to changes in circulating glucose, insulin is released
from pancreatic b-cells. It enters the brain to directly act on
ARH, blocking orexigenic effects of NPY/AgRP neurons and
enhancing anorexigenic effects of POMC neurons to increase
satiety and decrease blood glucose (167). Multiple studies have
shown that OVX in rodents increases circulating insulin and
glucose, decreases insulin sensitivity, and impairs b-cell function
and insulin secretion. These phenotypes are exacerbated by HFD
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and accompanied by increased body weight and total body fat.
Estrogen replacement in these animals lowers plasma insulin and
glucose levels, increases glucokinase and GLUT2 expression,
improves glucose tolerance and insulin sensitivity (169–172).
Central estrogen signaling is suggested to be involved in insulin
sensitivity, as intact obese female mice are protected from DIO-
induced insulin resistance in NPY/AgRP neurons. Conversely,
ovarian hormone depletion abolishes NPY/AgRP insulin
sensitivity (117), and deletion of ERa in steroidogenic factor 1
(SF1) - positive neurons in the VMH impairs glucose tolerance in
female mice (17, 20).

Insulin resistance may result not only from b-cell dysfunction
or glucose disposal impairment but can also be caused by a
reduction in insulin-mediated thermogenesis (173). BAT is
highly sensitive to insulin given the high expression of insulin
receptors in this tissue (35, 174). Insulin-mediated BAT activity
improves lipid/glucose clearance, contributing to decreased
glucolipotoxicity, ultimately improving b-cell function and
insulin sensitivity (174). In humans, insulin stimulation
increases BAT glucose uptake, energy expenditure, and
expression of UCP1 and glucose transport genes in BAT (175).
Similarly, cold exposure for eight hours increases energy
expenditure, glucose disposal, and insulin sensitivity in
individuals with high BAT activity. Administration of insulin
following cold exposure further enhances glucose disposal and
reduces glucose production in these patients (176). A study by
Benedict et al. directly targeted central insulin signaling by
administrating intranasal insulin to healthy men following an
overnight fast. Individuals treated with insulin showed a
dramatic increase in energy expenditure (177).

In mice, it has been shown that insulin acts through SNS to
upregulate UCP1 in BAT and thermogenic function (178). In
line with this, adrenergic stimulation in mice increases WAT
lipolysis, BAT insulin signaling, and energy expenditure. These
phenotypes are reversed by insulin receptor antagonism (179).
Deletion of insulin receptors specifically in BAT results in
decreases in glucose uptake, mass, and thermogenic capacity of
BAT (179, 180). A recent report targeting diosmetin, a natural
flavonoid commonly found in citrus fruits, showed that
diosmetin treatment reverses DIO in mice by decreasing fat
mass, reducing plasma glucose and insulin, and increasing
insulin sensitivity and glucose disposal. In addition, diosmetin-
treated mice show increased O2 consumption, enhanced heat
production, and increased body temperature and WAT
browning. Interestingly, mRNA levels of ERa and ERb were
dramatically increased in WAT and BAT, suggesting that
diosmetin-induced thermogenesis was mediated by estrogen
signaling. Administration of estrogen antagonist fulvestrant
abolished the beneficial metabolic effects of diosmetin in DIO
mice. These findings link insulin sensitivity and thermogenesis
with estrogenic signals in adipose tissue.

Mammalian Target of Rapamycin (mTOR)
Emerging evidence highlights the relevance of hypothalamic
mTOR signaling in body weight balance and energy intake.
mTOR is a serine-threonine kinase that senses fluctuations in
nutrient availability (181, 182). In its phosphorylated (active,
Frontiers in Endocrinology | www.frontiersin.org 10
pmTOR) form, mTOR phosphorylates its major substrate, the
serine/threonine ribosomal protein S6 kinase B1 (S6K1),
modulating multiple cellular processes, including cell growth,
cell survival, proliferation, and glucose metabolism (181, 182).
Hypothalamic mTOR expression and activity have been reported
in ARH, VMH, PVN, and the mediobasal hypothalamic area
(MBH) (181–183).

In recent years, several reports have revealed the association
between estrogen’s anorexic effects and mTOR signaling. An
elegant study from González-Garcıá et al. provided evidence of
mTOR-dependent weight loss and decreased food intake
induced by E2. In addition to the typical obesogenic
phenotypes associated with estradiol depletion, OVX rats
showed reduced phosphorylation of mTOR and S6K1 in the
ARH compared to sham rats. Conversely, E2 supplementation
led to decreased body weight and food intake, associated with
increased phosphorylation of mTOR and pS6K1 in the ARH.
Consistently, ICV delivery of PPT reversed the OVX-induced
body weight gain and strongly enhanced phosphorylation of
mTOR and pS6K1 in the ARH (174). These findings support a
model that E2/ERa activation increases mTOR signaling in the
ARH to regulate food intake and body weight (182).

A recent report identified the role of the kappa-opioid
receptor (k-OR) in the obesogenic effects of E2 withdrawal
(175). They found that a k-OR/mTOR/p70S6K axis
compensates for estrogens depletion in OVX mice by
promoting body weight loss, increased energy expenditure, and
WAT browning. Conversely, central antagonism of orexigenic k-
OR increased phosphorylation of mTOR in the MBH of WT
OVX mice, resulting in beneficial metabolic effects. Selective
expression of constitutive activated S6K in the MBH decreased
body weight and WAT mass and stimulated WAT browning, as
indicated by increased UCP1 expression in gWAT. These
findings suggest a model that inhibition of k-OR activates
mTOR signaling in MBH to prevent body weight gain and
adiposity induced by OVX (183).
VENTROMEDIAL HYPOTHALAMUS (VMH)

The VMH plays a critical role in modulating energy expenditure,
appetite regulation, sexual aggressive behaviors, lipid mobilization,
and thermoregulation. The VMHwas the first hypothalamic region
identified to stimulate BAT thermogenesis and energy expenditure
(19, 168). It is well established that VMH lesions in animals induce
increases in food intake, adiposity, and body weight gain (184).
Electrical stimulation of the VMH increases BAT temperature and
thermogenic activity. This was abolished by the b-adrenergic
blockade, confirming that SNS is an essential intermediary
between the VMH-BAT crosstalk (185). SF1 is the most
abundant neural population in the VMH. SF1 neurons express
LepR, vesicular glutamate transporter 2 (vGLUT2), and ERa (19,
168). SF1 neurons project to the medial amygdala (MeA), DMH,
periaqueductal gray (PAG), and ARH, all of which are linked to
feeding regulation (186). Interestingly, recent reports have reveal
that glutamatergic VMH neurons project to POMC neurons and
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that this VMH!POMC neural circuit senses changes in nutrient
availability and helps maintain energy homeostasis (187). In
addition to regulation of energy expenditure, the VMH neurons
have been recently shown to be glucose-sensitive and play a key role
in glucose homeostasis (188).

Estrogen Signals in VMH Regulate
Energy Balance
AMP-activated protein kinase (AMPK) is a critical element in
the regulatory effects of VMH on BAT thermogenesis and
glucose homeostasis. AMPK is activated by phosphorylation of
Thr172 in the alpha subunit. Activation of AMPK signaling in
the hypothalamus is associated with increased food intake and
decreased energy expenditure (189). In the VMH, multiple
factors have been found to repress AMPK activation and
subsequently promote anti-obesogenic signals. These factors
include bone morphogenetic protein 8B (BMP8B) (190),
glucagon-like peptide 1 (GLP-1) (191), thyroid hormones (TH)
(192), leptin (156), and estradiol (59). These AMPK-regulating
factors have been extensively reviewed in a recent publication
(193). The raphe pallidus (RPa) and inferior olive (IO) are two
brainstem nuclei that are anatomically connected to the VMH
and participate in the activation of SNS to activate BAT
thermogenesis (Figure 2) (189).

Several studies have evidenced the requirement of VMH
estrogen-ERa signaling for the modulation of BAT
thermogenesis and fat distribution (16, 17, 19, 20, 57).
Martıńez de Morentin and colleagues unveiled the role of
AMPK in the stimulatory effects of VMH estrogen signaling
on BAT thermogenesis and energy expenditure (59). In their
study, they showed that OVX rats treated with E2 directly into
the VMH via ICV infusion show dramatic loss of body weight
gain and food intake, increases mRNA levels and protein content
of UCP1 in BAT and increases BAT temperature. All these effects
were associated with decreased AMPK phosphorylation (active)
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in the VMH, suggesting a protentional role of VMH AMPK
signaling. In supporting this, specific injection of E2 into the
VMH decreased VMH AMPK activity, increased c-fos numbers
in RPa and IO, and upregulated expression of thermogenic
markers in the BAT. Conversely, VMH-specific co-infusion of
AMPK completely abolished these anti-obesity effects (59).
These findings reveal a VMH-AMPK-SNS-BAT axis that is
modulated by estrogenic signals to maintain energy balance
(Figure 2). Other studies have shown that silencing ERa in the
VMH of rodents induces body weight gain, increased visceral
adiposity, decreased physical activity, downregulation of
thermogenic genes in the BAT, and increased circulating
glucose (16, 17). In a study performed by Xu and colleagues,
female mice with ERa deleted specifically in the SF1 neurons
demonstrate increased body weight, increased visceral and
gonadal adiposity, impaired glucose tolerance, decreased heat
production, as well as decreased SNS activity and BAT UCP1
transcripts. The group concluded that estrogens activate ERa
expressed by the SF1 neurons of the VMH to increase
sympathetic outflow and modulate fat distribution, which
ultimately results in increased BAT thermogenesis and
decreased lipid storage (20).

Besides the VMH-AMPK-SNS-BAT axis, E2 also modulates
ceramides metabolism and endoplasmic reticulum (ER) stress in
the brain to regulate thermogenesis and energy balance (187).
Specifically, OVX increased levels of ER stress markers in MBH
and VMH, while both E2 replenishment and ICV ceramide
inhibition abolished these phenotypes in rats. This group
further targeted serine palmitoyltransferase long chain base
subunit 1 (SPTLC1), an enzyme that catalyzes ceramide
synthesis, to explore ceramide action in the VMH. They found
that VMH-specific injection of SPTLC1 shRNA decreased body
weight, enhanced BAT and core temperature, and upregulated
BAT UCP1 protein levels in OVX rats. These phenotypes were
accompanied by the downregulation of ER stress markers in
FIGURE 2 | Hypothalamic estrogen acts on the VMH-AMPK-SNS-BAT axis to regulate thermogenesis. Estrogen represses AMPK signaling in the vlVMH to
subsequently stimulate sympathetic activity. In the BAT, b3-AR activation induces lipolysis. The resulting FFA are oxidized in the mitochondria, providing the fuel for
heat production by UCP1 activity. E2, estrogen; PVN, paraventricular hypothalamic nucleus; DMH, dorsomedial hypothalamus; LH, lateral hypothalamus; ARH,
arcuate hypothalamic nucleus; VMH, ventromedial hypothalamus; dmVMH, dorsomedial VMH; cVMH, central VMH; vlVMH, ventrolateral CMH; IO, inferior olive; RPa,
raphe pallidus; FFA, free fatty acid; UCP1, uncoupling protein 1. Adapted from (21), created by (194).
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the VMH. Consistently, VMH-specific overexpression of ER
glucose chaperone GPR78, a protein that decreases ER stress
by facilitating degradation pathways, also ameliorated ER stress
and improved body weight and thermoregulation in OVX rats.
These findings demonstrate that estrogens in the VMH
contribute to energy balance by maintaining optimal levels of
ceramides and decreasing ER stress (187).

ERa is highly expressed in the ventrolateral subregion of the
VMH (vlVMH), where it has been shown to regulate fertility,
social behaviors, and locomotor activity in a sex-specific manner
(16, 18–20, 99). We and others have shown that DREADD
activation of ERavlVMH neurons augmented BAT and core
temperature as well as physical activity in female mice (18,
195). Moreover, this ERavlVMH chemogenetic activation
ameliorates body weight gain caused by HFD, indicating
beneficial effects of ERavlVMH activation in metabolic health
(195). Correa et al. targeted Nkx2-1+ neurons in the vlVMH,
which are associated with physical activity in mice. ERa and
NKX2-1 are co-expressed in the vlVMH. Neural activation of
Nkx2-1+ vlVMH using chemogenetic approaches increased
ambulatory and vertical movement as well as heat production
in Nkx2-1Cre female mice. Deletion of NKX2-1 in the vlVMH of
female mice led to increased body weight, increased WAT
depots, decreased locomotion, and lower heat production.
More importantly, these phenotypes were associated with
decreased Esr1 transcripts and ERa protein content (19). A
single-cell transcriptomic study targeting SF1+ neurons in the
VMH identified differentially expressed gene transcripts that
included reprimo (Rprm), tachykinin Precursor 1 (Tac1),
prodynorphin (Pdyn), and somatostatin (Sst). In females, Tac1
and Rprm were highly expressed in the vlVMH when compared
to males, and these genes were found to coexpress with ERa in
the vlVMH (ERavlVMH), positioning these genes as female-
specific markers in this neuronal population (16, 18).

A recent report has identified another sexually dimorphic
subset of ERavlVMH neurons expressing MC4R, a receptor of
anorexigenic ligand melanocyte-stimulating hormones (MSH)
(16, 196). Loss-of-function mutations in MC4R are the most
frequent genetic cause of obesity in humans (196). In this study,
ERa/MC4RvlVMH neurons were identified as a subset population
of ERavlVMH neurons. They showed colocalization of MC4R and
ERa in the vlVMH during proestrus in mice supplemented with
E2. Although OVX mice display reduced locomotion and
hypometabolism, chemogenetic manipulation of ERa/
MC4RvlVMH neurons significantly stimulated physical activity
in these estrogen-depleted mice. The restoration of physical
activity by ERa/MC4RvlVMH stimulation was accompanied by
reduced body weight and white adipocyte size. These findings
suggest that ERa/MC4RvlVMH plays an essential role in sex-
dimorphic physical activity in mice (16).

To gain mechanistic insight into the physiological functions
of ERavlVMH neural subsets, the anatomical distribution of the
downstream neural circuitries and their functionality need to be
studied. Excitingly, MC4RvlVMH neurons were shown to send
projections to distinct brain regions including dorsal CA1,
periaqueductal grey (PAG), and hindbrain pontine region (16).
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Similarly, we have recently identified 5-HT+ neurons in the DRN
as a downstream neuronal population receiving monosynaptic
innervation from ERavlVMH. Using electrophysiology and
optogenetic tools, we showed the glutamatergic nature of these
ERavlVMH ! DRN monosynaptic inputs. Interestingly, we
demonstrate that ERavlVMH ! DRN neural circuit has
thermo-sensing and nutrient-sensing properties, which are
abolished in OVX mice, suggesting an important role of
ovarian hormones in ERavlVMH ! DRN responsiveness to
ambient temperature and nutritional state. Optogenetic
activation of the ERavlVMH ! DRN circuit stimulates BAT
thermogenesis and physical activity, while its inhibition has the
opposite effect, demonstrating an in vivo physiological role
ERavlVMH ! DRN neural circuit. We show that activation of
5-HTDRN neurons is required for these stimulatory effects
induced by ERavlVMH activity. Importantly, deletion of ERa
from vlVMH neurons projecting to DRN reduced physical
activity and BAT thermogenesis in female mice, demonstrating
that ERavlVMH!DRN neural circuit is relevant for regulation of
physical activity and energy expenditure in female mice (195).
Altogether, these findings demonstrate the physiological
relevance of ERavlVMH neurons in the maintenance of physical
activity and thermogenic balance.

As discussed previously, the VMH communicates with both
BAT and WAT through SNS to modulate thermogenesis and
lipolysis. The VMH regulation of BAT thermogenesis has been
discussed. However, VMH modulation of WAT lipolysis is less
clear. Like BAT’s thermogenesis mechanism, SNS induces the
release of NE, which activates b3-adrenoceptors in white
adipocytes. The subsequent downstream signaling cascade
stimulates PKA, which phosphorylates perilipin A and HSL, two
key factors that initiate lipolysis (197). One of the possible
contributors of impaired SNS activation during obesity is insulin.
It is suggested that insulin resistance may increase sympathetic
firing and therefore increase lipolytic rate in WAT, which results in
elevated free fatty acids in circulation (197). The VMH-AMPK-
SNS-BAT axis has been discussed before. However, despite the
evidence indicating the role of estrogen VMH signaling in adiposity
and fat distribution, the neuroanatomical projections that mediate
the estrogen VMH-SNS-WAT communication, as well as the
underlying molecular mechanisms, remain to be elucidated.

Estrogen Signals in the VMH Regulate
Glucose Homeostasis
In the brain, two different types of neurons can sense changes in
circulating glucose levels: glucose-excited (GE) neurons and
glucose-inhibited (GI) neurons (198). The VMH is highly
enriched with both GE and GI neurons. Within the vlVMH,
GE neurons are more abundant than GI. Additionally, the
majority of ERavlVMH neurons are glucose-sensing neurons
(188). The enzyme glucokinase is expressed in GE and GI
neurons. It is required for the glucose-sensing property, as
ablation of this enzyme in the VMH leads to increased fat
mass, decreased glucagon secretion, and reduced sympathetic
activity. These phenotypes were predominant in female mice,
highlighting the already mentioned sexual-biased functions in
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the vlVMH (199). In GE neurons, when glucose levels are
elevated, the ATP/ADP ratio is increased. This, in turn, causes
the closure of KATP channels, resulting in the depolarization and
excitation of these neurons. In GI neurons, the increased glucose
also increases the ATP/ADP ratio, but this results in the
inhibition of AMPK. As a result, the K+ and Cl- channels are
opened, allowing the hyperpolarization and inhibition of GI
neurons (198, 200). These mechanisms ultimately decrease the
levels of glucose in circulation. Under low glucose conditions,
KATP channels are opened, and GE neurons are hyperpolarized.
GI neurons are depolarized by activation of AMPK, which
induces closure of K+ and Cl- channels. Inhibition of GE
neurons and activation of GI neurons leads to an increase in
circulating glucagon, which ultimately results in increased
glucose levels (188, 200).

Since estrogen is a key factor in the VMH-AMPK-SNS-BAT
axis, it is not surprising that under hypoglycemic conditions,
estradiol impedes the activation of GI neurons in female mice by
inhibiting AMPK signaling, thus preventing the decrease in glucose
concentrations in a sex-specific manner (201). Yu et al.
demonstrated the requirement of membrane-bound ERa for
fasting- and glucopenia-induced refeeding. Mutations in
membrane-bound ERa decreased the firing rate of ERavlVMH

even after administration of PPT, and importantly, impaired the
ability of ERavlVMH neurons to respond to hypoglycemia (101). Our
previous study reveals the mechanisms underlying the glucose-
sensing properties in ERavlVMH neurons (188). During
hypoglycemia, the activation of GI neurons in ERavlVMH neurons
is mediated by the calcium-activated chloride channel protein
channel encoded by anoctamin 4 (Ano4), which contributes to
their depolarization. Conversely, GE neurons are hyperpolarized by
the activation of Abcc8, which encodes KATP subunit Sur1.
Additionally, we reported that GI-ERavlVMH neurons project to
the medioposterior part of the ARH (mpARH) and GE-ERavlVMH

neurons project to the DRN. Activation of ERavlVMH!mpARH
and inhibition of ERavlVMH!DRN complementarily contribute to
the prevention of hypoglycemia (188). Altogether, the discussed
evidence supports estrogen as a critical element in the VMH for the
modulation of glucose and energy homeostasis.
CONCLUSION

Obesity is considered a global epidemic affecting 650 million
people worldwide (128, 202). This disease is often exacerbated by
other metabolic disorders that have a significant impact on
patient quality of life. In humans and animal models, sexual
dimorphism has been described not only in adipose tissue
Frontiers in Endocrinology | www.frontiersin.org 13
deposition and distribution but also in BAT thermogenic
capacity. This is partially mediated by the female sex hormone
estrogen, which confers protection against metabolic diseases in
premenopausal women. Hypothalamic estrogen signaling has
been shown to have positive effects on energy homeostasis by
decreasing food consumption, diminishing excessive adiposity,
improving insul in sensit ivi ty , and promoting BAT
thermogenesis and WAT beiging. Although it is well
established that SNS mediates estrogen brain-to-adipose tissue
signals (57, 59), less is known about the downstream neural
circuits mediating the regulatory effects of brain estrogen on
adipose metabolism. As discussed earlier, multiple hypothalamic
projections have been described, including the VMH!POMC
neural circuit that detects fluctuations in nutritional status and
the ERavlVMH ! DRN that modulates physical activity and
energy expenditure (187, 195). It would be interesting to test the
role of estrogen in VMH!POMC projection and explore in
more depth the estrogen-modulated hypothalamic circuitry that
regulates adipose tissue function and remodeling. Moreover,
while ERa+ neurons in the VMH have been shown to be
essential for heat production and energy expenditure (20), a
recent report also revealed that ERa+ neurons in the MPOA are
thermosensitive and decrease energy expenditure when activated
(136). These findings support a model where ERa+ neurons in
distinct hypothalamic regions act synergistically to respond to
changes in nutrient availability and environmental temperature.
Collectively, further studies are needed to unravel the estrogen-
governed neural networks modulating adipose tissue function,
which is critical for a better understanding of the
pathophysiology of obesity.
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181. Martıńez de Morentin PB, Martinez-Sanchez N, Roa J, Ferno J, Nogueiras R,
Tena-Sempere M, et al. Hypothalamic mTOR: The Rookie Energy Sensor.
Curr Mol Med (2014) 14:3–21. doi: 10.2174/1566524013666131118103706
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