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Simple Summary: This study evaluated the effects of Lonicera japonica and Radix Puerariae crude
extracts as feed additives on finishing pigs. The results indicated diets supplemented with L. japonica
and Radix Puerariae crude extracts improved growth performance, abundance of beneficial bacteria in
feces, and digestibility of crude protein and total phosphorus in finishing pigs. These results suggest
that Lonicera japonica and Radix Puerariae crude extracts could be a good feed additives for finishing
pigs feeding.

Abstract: This study aims to investigate the influence of adding Lonicera japonica (L. japonica) and
Radix Puerariae crude extracts and their mixture to the diet of finishing pigs on their fecal microbes
and nutrient apparent digestibility. A total of 72 healthy Duroc × Landrace × Yorkshire crossbred
barrows without significant differences in body weight (93 ± 2 kg) were selected and randomly
divided into four groups (18 in each group). Three replicate pens per group (six pigs per pen) were
used, and two pigs were evaluated for each pen. The groups were fed the following diets: control
group (CON), basic diet; chlorogenic acid group (CGA group), basic diet + 1 kg/ton L. japonica
crude extract; Pueraria flavonoid group (PF group), basic diet + 1 kg/ton Radix Puerariae crude
extract; and mix group (Mix group), basic diet + 0.5 kg/ton L. japonica crude extract + 0.5 kg/ton
Radix Puerariae crude extract. The following results were obtained: (1) At the phylum level, Bac-
teroidetes, Firmicutes, Spirochaetes, Proteobacteria, Fibrobaeteres, and Kiritimatiellaeota were the
main components of the fecal microbiota (top 5); the relative abundance of bacteria from phyla
Firmicutes significantly increased in the Mix group than in the CON group (p < 0.05). At the genus
level, Treponema_2, Rikenellaceae_RC9_gut_group, uncultured_bacterium_f_Lachnospiraceae, un-
cultured_bacterium_f_Prevotellaceae, and Prevotellaceae_NK3B31_group were the main components
of the fecal microbiota (top 5); the relative abundance of bacteria from genus Lactobacillus signifi-
cantly increased in the Mix group than in the CON group (p < 0.05). Chao1 and Ace counts were
significantly higher in group CGA than in the CON group and group Mix (p < 0.05). The alpha and
beta diversities and the relative abundance of fecal microbes were higher in all test groups than in
the CON group. (2) The protein digestibility was significantly higher in the CGA and PF groups
than in the CON group, and the TP digestibility was significantly higher in the CGA than in the
CON and Mix groups (p < 0.05). In conclusion, Lonicera japonica and Radix Puerariae crude extract
supplementation in the diet significantly changed fecal microbiota and improved the protein and TP
digestibility of finishing pigs.

Keywords: finishing pigs; feces microbiota; Lonicera japonica crude extracts; Radix Puerariae crude
extracts; nutrient apparent digestibility
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1. Introduction

Antibiotics are widely used to increase growth performance and disease resistance
in livestock and poultry, but they have certain issues. In particular, pathogenic bacteria
adapt to an antibiotic environment and develop resistance to antibiotics, resulting in death
in humans [1]. Many countries have prohibited the addition of antibiotics to livestock
feed while aiming at the serious problem of abuse of antibiotics in livestock and poultry
breeding [2]. However, not adding antibiotics to the livestock diet results in a decrease in
growth performance and feed conversion ratio, and an increase in treatment cost. Thus,
finding a safe alternative to antibiotics is essential.

Honeysuckle is the dried flower bud or first flower of Lonicera japonica Thunb.
(L. japonica) of the family Caprifoliaceae. It is a common Chinese medicine with strong
antioxidant, anti-inflammatory, and antiviral effects [3]. Chlorogenic acid (CGA), also
known as coffee tannic acid, is a phenolic acid formed by the condensation of caffeic acid
and quinic acid [4]. CGA is widely found in natural plants, and its main sources are
honeysuckle, eucommia leaves, coffee beans, and so forth. Among these, honeysuckle
and eucommia leaves contain the highest content of CGA, which is the main antioxidant,
antibacterial, and antiviral active ingredient [5–7].

Pueraria lobata is the dried root of Radix Puerariae (Willd.) Ohwi, is a leguminous plant
with a long history of medicinal origin in China. It has been widely used for treating
cardiovascular diseases, diabetes, Alzheimer’s, and cancer [8–10]. Pueraria flavonoid (PF)
is a class of isoflavone derivatives extracted from P. lobata, mainly including puerarin, which
has the functions of antioxidant, blood sugar reduction, and immunity regulation [11–13].

In the present study, we hypothesized that dietary supplementation with L. japonica
and Radix Puerariae crude extracts might have a positive effect on the fecal microbiota
and improve the apparent nutrient digestibility of finishing pigs. To test the hypothesis,
the microbiota community composition of the fecal samples and the apparent nutrient
digestibility were quantified, to evaluate the effects of L. japonica and Radix Puerariae crude
extracts on fecal microbiota and apparent nutrient digestibility.

2. Materials and Methods
2.1. Experimental Design

The experiment was conducted in the piggery of the experimental base of Animal
Husbandry and Veterinary Research Institute, Tianjin Academy of Agricultural Sciences.
The tests were performed over a 50-day period. All the experimental procedures were
approved by the Animal Ethics Committee of the Tianjin Academy of Agricultural Sciences.

A single-factor completely random design was conducted in this experiment. A to-
tal of 72 healthy Duroc × Landrace × Yorkshire crossbred barrows with 152 days of
age and body weight of 93 ± 2 kg were purchased from Tianjin Nongkang Breeding
Co., Ltd. (Tianjin, China) and randomly divided into four groups (18 in each group).
Three replicate pens per group (six pigs per pen) were used. The groups were fed the
following diets: control group, basic diet; CGA group, basic diet + 1 kg/ton L. japonica
crude extract; PF group, basic diet + 1 kg/ton Radix Puerariae crude extract; and Mix group,
basic diet + 0.5 kg/ton L. japonica crude extract + 0.5 kg/ton Radix Puerariae crude extract.
The experiment was performed for 50 days.

L. japonica and Radix Puerariae crude extracts were purchased from Anhui Tianfulai
Biotechnology Co., Ltd. (Lu’an, Anhui, China). The active component in the L. japonica
crude extract and Radix Puerariae crude extract was 4.96% CGA and 93.6% PF, respectively,
with no other nutrients.

2.2. Animal Management

The test hoggery adopted strict biosecurity measures to ensure full entry and exit of
animals as well as complete isolation of breeders. The temperature in the test hoggery
was controlled at 20–28 ◦C, with natural light and normal ventilation. The pigs were fed
and watered freely during the trial period and the manure was cleaned daily. The trial
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pre-feeding period was 5 days, with transitional feeding by replacing the original diet with
20%, 40%, 60%, 80%, and 100% of the test diet. The formal experiment was conducted for
45 days, during which the health status of the test pigs (diarrhea or other diseases, death,
and so on) was observed and recorded daily.

2.3. Experimental Diets

The experimental diets (Table 1) were prepared in accordance with the NRC (2012)
standard. The feed samples in each group were collected, and the contents of crude protein,
Ca, total P, and amino acids were determined. After the experiment was completed, the
body weights of the pigs in each group were measured, and the total feed intake of the pigs
in each pen was calculated. Moreover, average daily feed intake (ADFI), average daily gain
(ADG), and feed conversion ratio (FCR) were measured.

Table 1. Basic diet composition and nutrient level (air-dry basis).

Items Contents

Corn, % 63.38
Wheat Bran, % 14.40

Soybean meal, % 13.00
Distillers dried grains with solubles (DDGS), % 5.0

CaHPO4, % 1.20
Limestone, % 0.90

NaCl, % 0.30
L-lysine hydrochloride (98.5%), % 0.27

L-threonine (97.5%), % 0.04
DL-methionine (99%), % 0.01

Choline chloride, % 0.10
Premix 1,2, % 1.40

Nutrient levels
Dry matter, % 89.62

Gross energy (GE) 3, MJ/kg 16.63
Crude protein, % 16.09

Crude fiber, % 4.80
Ca, % 0.74

Total P, % 0.69
Lysine (Lys), % 0.90

Threonine (Thr), % 0.58
Methionine + Cysteine 3, % 0.63

1. Premix provides the following per kg of diet: 6500 IU of vitamin A, 2400 IU of vitamin D3, 20 mg of vitamin E,
2.4 mg of vitamin K3, 2.4 mg of vitamin B1, 6.6 mg of vitamin B2, 3 mg of vitamin B6, 0.025 mg of vitamin B12,
25 mg of nicotinic acid, 13 mg of pantothenic acid, 0.2 mg of biotin. 2. Premix provides the following per kg of
diets: 15 mg of Cu, 150 mg of Fe, 80 mg of Zn, 50 mg of Mn, 0.6 mg of I, and 0.3 mg of Se. 3. Gross energy (GE)
and Methionine + Cysteine were calculated, and other values were measured.

2.4. Analysis of Bacterial Community and Data Analysis

On day 40 of the experiment, nine fecal samples were collected from each pen. The
rectal feces were collected from the rectum using rectal swabs into sterile tubes, immediately
transferred to liquid nitrogen for storage, and subsequently stored at −80 ◦C for further
analysis. The samples were sent to Beijing Bemac Biotechnology Co., Ltd (Beijing, China).
for 16s rRNA sequencing. The test was performed as follows.

2.4.1. DNA Extraction and 16S rRNA Sequencing

Bacterial DNA was extracted from fecal samples of the pigs using the Power Soil DNA
Isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA) following the manufacturer’s
protocols. DNA quality and quantity were assessed by the ratios of 260 nm/280 nm and
260 nm/230 nm by Nano-Drop™ (Thermo Scientific, Waltham, MA, USA). Then, the DNA
was stored at −80 ◦C until further processing.
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The V3–V4 region of the bacterial 16S rRNA gene was amplified with a primer pair
338F* (Forward primer, 5’- ACTCCTACGGGAGGCAGCA-3’) and 806R (reverse primer,
5’-GGACTACHVGGGTWTCTAAT-3’). PCR amplification was performed in a total volume
of 50 µL, including 10 µL of PCR buffer, 0.2 µL of Q5 High-Fidelity DNA polymerase, 10 µL
of GC-rich enhancer, 1 µL of dNTP, 10µM of each primer, and 60 ng genomic DNA, made
up with 50µL of H2O.

The first-round PCR cycle conditions were as follows: a pre-denaturation at 95 ◦C for
5 min, followed by 15 cycles at 95 ◦C for 1 min, annealing at 50 ◦C for 1 min, 72 ◦C for 1 min,
and extension at 72 ◦C for 7 min. The PCR products from the first step of the PCR were
purified using VAHTS DNA clean beads (Vazyme, Nanjing, China). The second round of
PCR was performed using the following thermal-cycling program: initial denaturation at
98 ◦C for 30 s, followed by 10 cycles of 98 ◦C for 10 s, 65 ◦C for 30 s, and 72 ◦C for 30 s,
and a final extension at 72 ◦C for 5 min. All final PCR products were quantified using the
Quant-iT dsDNA HS Reagent and were pooled. The samples were combined and purified
for high-throughput sequencing analysis of bacterial rRNA genes using an Illumina Hiseq
2500 platform (PE250) from Biomarker Technologies Corporation, Beijing, China.

2.4.2. Microbiota Data Analysis

The rarefaction curve was used to verify whether the amount of sequencing data was suf-
ficient to reflect the diversity of species in the samples and to indirectly reflect the abundance
of species in the samples [14]. A rarefaction curve of the Shannon index was plotted based on
the Shannon index of each sample at different sequencing depths using Mothur software and
R language tools. Operational taxonomic units (OTUs), that is, categorical operational units,
were clustering OTU consistency at a similarity level of 97.0%.

Alpha and Beta diversity metrics were evaluated by QIIME2 version 2020.2 [15,16], and
differential analysis among groups on alpha diversity metrics was processed by one-way
ANOVA. Linear discriminant analysis (LDA) effect size (LEfSe) analyses were performed
using the LEfSe tool [17], and LDA log-score threshold was set to 3.0 [18,19]. The metagenomes
and function of the intestinal microbiota were analyzed using the PICRUSt2 (https://github.
com/picrust/picrust2 accessed on 1 August 2022) and the differences in KEGG pathways
between groups were analyzed by using STAMP (version 2.1.3) [20], the significance of
the difference in function abundance between groups was evaluated by one-way ANOVA.
Intestinal microbiome phenotype predictions were predicted with BugBase [21].

2.5. Determination of Apparent Digestibility

The feed samples were collected from each group, and the content of conventional
nutrients in the feed samples was determined. The apparent digestibility of feed nutrients
was determined by the acid-insoluble ash method using an endogenous indicator. The
fecal samples were collected from each pen at 08:00–08:30, 11:00–11:30, 17:00–17:30, and
21:30–22:00 on the last 5 days of the test period, and about 400 g of feces was collected
into one sealed bags per pen per day, then mixed with 20 mL of 4 mol/L hydrochloric
acid, immediately frozen at −20 ◦C. It was used to determine the content of conventional
nutrients in the feces of finishing pigs. The collected fecal samples were dried at 65 ◦C and
then rewetted for 24 h. The samples were crushed using a grinder.

The total energy, crude protein, coarse fiber, crude fat, calcium, total phosphorus,
and acid insoluble ash (AIA) contents in feed and feces were determined by the national
standard methods. Among these, total energy was determined according to the interna-
tional standard ISO 9831:1998 method using an oxygen bomb calorimeter 6400 Series (Parr
Instrument Company, Moline, IL, USA). The crude protein, coarse fiber, crude fat, calcium,
and total phosphorus contents were determined by the Kjeldahl method in GB/T 6432-2018
for crude protein, the filtration method in GB/T 6434-2006 for coarse fiber, GB/T 6433-2006
for crude fat, GB/T 6436-2018 for calcium, and spectrophotometry in GB/T 6437-2018 for
total phosphorus in feed. The AIA content in feed and feces was determined with reference
to GB/T 23742-2009.

https://github.com/picrust/picrust2
https://github.com/picrust/picrust2
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The apparent total digestibility (ATTD) of nutrients was determined using the AIA
method, calculated as ATTD (%)= 100−

(
M2n
M1n

× M1m
M2m

)
× 100 where M1m is the AIA content

in feed (%), M2m is the AIA content in feces (%), M1n is the nutrient content in feed (%),
and M2n is the nutrient content in feces (%).

2.6. Statistical Analysis

The experimental data were examined using a one-way ANOVA analysis of variance in
SPSS Statistics 26.0 and multiple comparisons by the Duncan method. Data with p < 0.05 were
considered significantly different. The values were expressed as mean ± standard deviation.

3. Results
3.1. Influences of L. japonica Crude Extract and Radix Puerariae Crude Extract on Growth Performance

During the experiment, the experimental pigs were healthy, and no death was recorded.
Their growth performance is listed in Table 2. At the start of the experiment, the initial
weights of the finishing pigs in different groups did not significantly vary. The final weights
of the pigs in the experimental groups were not significantly different from that in the
control group. The ADGs in the mix group was significantly higher than those in the
control and CGA groups (p < 0.05). The ADFI in all the experimental groups increased
to some extent compared to the control group (p > 0.05). The FCR in the mix group were
significantly lower than those in the control group (p < 0.05).

Table 2. Effects of L. japonica crude extract and Radix Puerariae crude extract on the growth perfor-
mance of finishing pigs.

Items Con CGA PF Mix

Initial weight (kg) 94.44 ± 0.32 92.56 ± 0.75 93.28 ± 1.75 92.47 ± 0.97
Final weight (kg) 130.91 ± 1.09 129.67 ± 0.30 131.47 ± 2.27 131.94 ± 1.81

ADFI (kg) 3.00 ± 0.02 3.04 ± 0.03 3.03 ± 0.03 3.05 ± 0.03
ADG (kg) 0.83 ± 0.02 b 0.87 ± 0.03 ab 0.86 ± 0.02 ab 0.90 ± 0.02 a

FCR 3.63 ± 0.10 a 3.50 ± 0.15 ab 3.55 ± 0.12 ab 3.40 ± 0.06 b

Values in the same row with the same letter or without a letter in their superscripts are not significantly different
(p > 0.05), whereas values in the same row with different letters in superscripts correspond to significant differences
(p < 0.05).

3.2. Validity Analysis of Fecal Microbes

The rarefaction curve was used to verify whether the amount of sequencing data
was sufficient to reflect the diversity of species in the samples and to indirectly reflect the
abundance of species in the samples [14]. As shown in Figure 1, the rate of emergence
of new features (new species) in this experiment tended to level off under continuous
sampling, demonstrating that the number of species in this experiment did not increase
significantly with the number of sequencings and then the data were analyzed.

A rarefaction curve of the Shannon index was plotted based on the Shannon index of
each sample at different sequencing depths using Mothur software and R language tools.
The larger the Shannon index, the greater the number of species and the richer the species,
indicating that most of the microbe species were covered in the samples. When the curve
tended to be flat, it indicated that the amount of sequencing data was large enough so that
the number of feature species did not increase with the amount of sequencing (Figure 2).
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3.3. Operational Taxonomic Units of Rectal Microbes in Finishing Pigs

Operational taxonomic units (OTUs), that is, categorical operational units, were clus-
tering OTU consistency at a similarity level of 97.0%. As shown in Figure 3, 746 OTUs were
obtained after clustering the samples in each group, with 740 identical OTUs in the control
and three experimental groups.
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3.4. Alpha Diversity Analysis

Alpha diversity reflects the abundance (richness) and species diversity (diversity) of
an individual sample and is measured using multiple indicators: Chao1 index, Ace index,
Simpson index, and Shannon index. Among these, Chao1 and Ace indexes can be used to
measure species abundance, that is, the number of species. Simpson and Shannon indexes
were used to measuring species diversity, with larger Simpson and Shannon indexes
indicating higher species diversity in the samples [22]. As shown in Figure 4, Chao1 and
Ace indexes were significantly higher in CGA than in the control group and Mix (p < 0.05).
In comparison, Chao1 and Ace indexes were higher in PF and Mix than in the control
group, although the difference was negligible (p > 0.05). The Simpson index in the three
experimental groups was higher than that in the control group, although the difference was
negligible (p > 0.05). The species abundance of the fecal microbiome in finishing pigs was
higher in all three experimental groups than in the control group, and the fecal microbiome
diversity was higher in CGA than that in the control group.

3.5. Beta Diversity Analysis

Differences in the fecal microbiome in the three experimental groups were analyzed
using the unweighted pair group method of the arithmetic mean (UPGMA) and nonmetric
multidimensional scaling (NMDS). The UPGMA analysis was based on the four distance
matrices obtained from beta diversity analysis, and the samples were clustered hierar-
chically. The closer the samples were to the sample clustering tree, the more similar the
composition of the species of the two samples. As shown in Figure 5, the samples within
the same test group were similar and the fecal microbiome was quite different among the
three test groups, indicating that CGA and PF could influence the composition of the fecal
microbiome in finishing pigs.

NMDS analysis was performed on the samples, and points of the same color repre-
sented one sample from the same group. The closer the distance between the two points,
the smaller the difference in community composition between them. As shown in Figure 6,
the differences in the fecal microbiome community composition between the three experi-
mental groups were small, but larger compared to that in the control group, indicating that
CGA and PF had significant effects on fecal microbiome community composition.

3.6. Annotation and Taxonomic Analysis of Species

Taxonomic annotation of feature sequences were processed by Bayesian classifier
using SILVA as reference database [23]. Statistics on composition in each sample were cal-
culated at the level of phylum, class, order, family, genus, and species. QIIME (Quantitative
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Insights into Microbial Ecology) was applied to obtain the abundance of each species in
samples and distribution histogram at each taxonomic level were generated by certain R
package. As shown in Figure 7a,b, the top ten fecal microbiomes in the three experimental
groups of finishing pigs in terms of phylum-level abundance were as follows: Bacteroidetes,
Firmicutes, Spirochaetes, Proteobacteria, Fibrobaeteres, Kiritimatiellaeota, Tenerieutes,
Actinobactena, Uncultured_bacterium_k_Bacteria, and Cyanobacteria. As shown in Ta-
ble 3, the abundance of Firmicutes in the Mix group was significantly higher than that
in the control group (p < 0.05). As shown in Table 4, the top ten fecal microbiomes in
finishing pigs in the three experimental groups in terms of genus-level abundance were as
follows: Treponema_2, Rikenellaceae_RC9_gut_group, uncultured_bacterium_f_Lachnospiraceae,
uncultured_bacterium_f_Prevotellaceae, Prevotellaceae_NK3B31_group, uncultured_bacterium_f_
Muribaculaceae, Lactobacillus, Prevotellaceae_UCG−001, Ruminococcaceae_UCG−005, and
Prevotellaceae_UCG−003.
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As shown in Tables 2 and 3, the abundance of Firmicutes in the three experimental
groups was significantly higher than that in the control group (p < 0.05). The abundance
of the Rikenellaceae-RC9-gut-group in the CGA group was significantly higher than that
in the PF group (p < 0.05). The abundance of uncultured-bacterium-f-Prevotellaceae in the
control group was significantly higher than that in the PF and control groups (p < 0.05).
The abundance of the Prevotellaceae-NK3B31-group in the control group was significantly
higher than that in the PF group (p < 0.05). The abundance of Lactobacillus in the Mix group
was significantly higher than that in the control group (p < 0.05).
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Table 3. Annotation and taxonomic analysis of rectal species in finishing pigs (phylum level).

Item CON CGA PF Mix

Bacteroidetes 0.4162 ± 0.0623 0.4179 ± 0.0212 0.4059 ± 0.0526 0.3971 ± 0.028
Firmicutes 0.3533 ± 0.0623 b 0.3665 ± 0.0163 ab 0.3815 ± 0.0339 ab 0.4072 ± 0.0557 a

Spirochaetes 0.1943 ± 0.1141 0.1745 ± 0.0262 0.1788 ± 0.0551 0.1476 ± 0.0756
Proteobacteria 0.0114 ± 0.0115 0.0095 ± 0.0054 0.0080 ± 0.0033 0.0266 ± 0.0349
Fibrobacteres 0.0064 ± 0.0046 0.0082 ± 0.008 0.0084 ± 0.0089 0.0060 ± 0.0053

Kiritimatiellaeota 0.0055 ± 0.004 0.0050 ± 0.0019 0.0040 ± 0.0027 0.0045 ± 0.0022
Tenericutes 0.0051 ± 0.0051 0.0042 ± 0.0027 0.0044 ± 0.0017 0.0045 ± 0.0021

Actinobacteria 0.0033 ± 0.0019 0.0042 ± 0.0023 0.0034 ± 0.0015 0.0032 ± 0.0008
uncultured_bacterium_k_Bacteria 0.0009 ± 0.0013 0.0021 ± 0.0021 0.0015 ± 0.0012 0.001 ± 0.0011

Cyanobacteria 0.0007 ± 0.0006 0.0018 ± 0.001 0.0009 ± 0.0007 0.0006 ± 0.0003
Others 0.003 ± 0.0016 0.0026 ± 0.0009 0.0029 ± 0.0013 0.0019 ± 0.0006

Values in the same row with the same letter or no letter in superscripts are not significantly different (p > 0.05), whereas
values in the same row with different letters in superscripts correspond to significant differences (p < 0.05).



Animals 2022, 12, 2109 11 of 20

Table 4. Annotation and taxonomic analysis of rectal species in finishing pigs (genus level).

Item CON CGA PF Mix

Treponema-2 0.19 ± 0.11 0.16 ± 0.03 0.17 ± 0.06 0.14 ± 0.08
Rikenellaceae-RC9-gut-group 0.06 ± 0.04 ab 0.07 ± 0.02 a 0.04 ± 0.01 b 0.05 ± 0.02 ab

uncultured-bacterium-f-Lachnospiraceae 0.06 ± 0.03 0.05 ± 0.01 0.06 ± 0.02 0.05 ± 0.01
uncultured-bacterium-f-Prevotellaceae 0.07 ± 0.03 a 0.05 ± 0.02 ab 0.05 ± 0.01 b 0.04 ± 0.01 b

Prevotellaceae-NK3B31-group 0.06 ± 0.03 a 0.05 ± 0.02 ab 0.04 ± 0.01 b 0.05 ± 0.02 ab

uncultured-bacterium-f-Muribaculaceae 0.04 ± 0.02 0.05 ± 0.01 0.04 ± 0.01 0.04 ± 0.01
Lactobacillus 0.01 ± 0.01 b 0.03 ± 0.03 ab 0.04 ± 0.04 ab 0.07 ± 0.08 a

Prevotellaceae-UCG−001 0.03 ± 0.02 0.04 ± 0.02 0.04 ± 0.03 0.05 ± 0.04
Ruminococcaceae-UCG−005 0.04 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.03 ± 0.01

Prevotellaceae-UCG−003 0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.02 ± 0.01
Others 0.44 ± 0.08 0.43 ± 0.04 0.46 ± 0.07 0.46 ± 0.09

Values in the same row with the same letter or no letter in superscripts are not significantly different (p > 0.05), whereas
values in the same row with different letters in superscripts correspond to significant differences (p < 0.05).

3.7. LEfSe Analysis of Different Groups

LEfSe (Line Discriminant Analysis (LDA) Effect Size) analysis is a nonparametric test
(Kruskal–Wallis rank test) used to detect significant differences in abundance between
subgroups in multiple samples, followed by LDA to classify the data and assess the impact
of significantly different species (i.e., LDA score) [18]. The roles of microbiota in the three
experimental groups were analyzed by counting the specimens with LDA score > 3.0, that
is, biomarkers with statistically significant differences. In the cladogram, the species with
no significant difference were uniformly colored in yellow, whereas the other species were
colored according to the group with the highest abundance. Different colors represented dif-
ferent groups, and nodes with different colors indicated the microbiotas that played an im-
portant role in the group represented by the color. Figure 8 shows LDA distribution and
LEfSe analysis of the cladogram. As observed, the microbiotas with LDA score > 3.0 in each
group were as follows: g_uncultured_bacterium_f_Prevotellaceae, g_Oscillospira, g_Oscillibacter,
and g_Mitsuokella. The important microbes in CGA were g_Rikenellaceae_RC9_gut_group,
g_Sphaerochaeta, g_Defluviitaleaceae_UCG_011, g_Enterococcus, g_Catellicoccus, g_Megamonas,
g_Prevotellaceae_UCG_004, and g_uncultured_bacterium_o_Chloroplast. The important mi-
crobes in Mix were g_Lactobacillus and g_uncultured_bacterium_f Paludibacteraceae.

3.8. Functional Gene Prediction Analysis
3.8.1. PICRUSt2 Function Prediction

PICRUSt2 was applied to perform species annotation on feature sequences based
on reference phylogenetic tree. Potential functions and functional genes in samples were
predicted based on Integrated Microbial Genomes (IMG) database, which further revealed
the difference in functions between samples or groups [24]. As shown in Figure 9, lipid
metabolism, metabolism of other amino acids, xenobiotics biodegradation and metabolism,
and metabolism of terpenoids and polyketides in CGA were extremely significantly higher
than those in the control group (p < 0.01). Moreover, the immune disease probability was
significantly higher (p < 0.05). At the same time, the glycan biosynthesis and metabolism,
energy metabolism, and carbohydrate metabolism were higher in CGA than in the control
group, although the difference was negligible (p > 0.05). The immune system and envi-
ronmental adaptation in CGA were significantly lower than those in the control group
(p < 0.05). The probability of immune diseases (p < 0.01), metabolism of other amino
acids, and cancers: overview (p < 0.05) were significantly higher in PF than in the control
group. The probability of cardiovascular diseases, drug resistance: antineoplastic, and
infectious diseases: viral was significantly lower in PF than in the control group (p < 0.05).
However, the metabolism of other amino acids (p < 0.01), immune diseases, xenobiotics
biodegradation and metabolism, carbohydrate metabolism, lipid metabolism, and cancers:
overview (p < 0.05) were significantly higher in Mix than in the control group. However,
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the substance dependence, immune system, environmental adaptation, biosynthesis of
other secondary metabolites, and transport and catabolism were significantly lower in Mix
than in the control group (p < 0.05).
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Figure 9. Composition and differential analysis of KEGG metabolic pathways. (a) Composition and
differential analysis of the CON-CGA KEGG metabolic pathway. (b) Composition and differential
analysis of the CON-PF KEGG metabolic pathway. (c) Composition and differential analysis of the
CON-Mix KEGG metabolic pathway. All bar charts show means ± SD, * = p < 0.05; ** = p < 0.01.

3.8.2. Prediction of BugBase Phenotype

BugBase is a novel method for analyzing complex microbiome data, which provides bi-
ologically relevant microbiome phenotype predictions at the organism level. First, BugBase
normalizes OTU by predicted 16S copy number. Microbial phenotype is predicted based on
given pre-calculated files [21]. Lonicera japonica and Radix Puerariae crude extracts improved
the prediction of the fecal microbiome BugBase phenotype, with Mix aerobic, containing
mobile elements significantly higher than the CON group (Figure 10a,c); anaerobic was
significantly lower than the CON and PF (Figure 10b), and fecal microbiome potential
pathogenicity significantly lower than CON group in Mix and PF (Figure 10h).

3.9. Effect of L. japonica and Radix Puerariae Crude Extracts on Intestinal ATTD in Finishing Pigs

The results of feed nutrient ATTD measurements are shown in Table 5. The crude
protein digestibility in CGA and PF was significantly higher than that in the control group
(p < 0.05). In comparison, Mix had slightly higher crude protein digestibility than the
control group, but was not significantly different (p > 0.05). Total phosphorus digestibility
was significantly higher in CGA than in the control group and Mix (p < 0.05), but not signifi-
cantly different from that in PF (p > 0.05). Ca, crude fiber, crude fat, and overall digestibility
showed an increasing trend but no significant difference in the three experimental groups
compared with the control group.
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Figure 10. Prediction of BugBase phenotypes. The horizontal coordinate in the figure is the group
name, the vertical coordinate is the relative abundance (%), and the three lines from bottom to top
are the lower quartile, the mean, and the upper quartile, respectively, showing nine phenotypes:
(a) aerobic, (b) anaerobic, (c) contains mobile elements, (d) facultatively anaerobic, (e) biofilms forms,
(f) Gram-negative, (g) Gram-positive, (h) potentially pathogenic, and (i) stress tolerant.

Table 5. Effect of crude extract of honeysuckle and Pueraria lobata root on the apparent digestibility of
nutrients in finishing pigs.

Items CON CGA PF Mix

Crude protein (CP) 86.62 ± 0.99 b 88.07 ± 1.61 a 88.11 ± 1.07 a 87.5 ± 0.62 ab

Crude fiber (CF) 46.23 ± 4.23 46.70 ± 3.82 46.42 ± 3.44 46.50 ± 2.97
Ether extract (EE) 74.37 ± 1.76 75.14 ± 1.69 75.65 ± 1.58 74.97 ± 1.57

Ca 57.41 ± 5.76 57.38 ± 3.27 56.89 ± 1.95 58.95 ± 6.11
Total phosphorus (TP) 55.84 ± 2.71 b 59.51 ± 1.38 a 58.50 ± 2.37 ab 56.39 ± 2.39 b

Gross energy (GE) 88.54 ±0.94 88.8 ± 0.52 88.52 ± 0.77 88.60 ± 0.55
Values in the same row with the same letter or no letter in superscripts are not significantly different (p > 0.05),
whereas values in the same row with different letters in superscripts correspond to significant differences (p < 0.05).
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4. Discussion
4.1. Effects of L. japonica Crude Extract and Radix Puerariae Crude Extract on the Production
Performance of Finishing Pigs

As a green and healthy plant extract feed additive, CGA, has been added to the feed
of finishing pigs [25], whereas PF is rarely added. The daily gain in weaned piglets can be
significantly increased by adding 1000 mg/kg of CGA to their feed [26]. In our experiment,
daily gain in finishing pigs increased, and the FCR decreased. These findings were possibly
due to the L. japonica crude extract and Radix Puerariae crude extract can improve the gut
microbial diversity of finishing pigs, enhancing the intestinal digestion and absorption of
nutrients function.

4.2. Effects of L. japonica and Radix Puerariae Crude Extracts on the Fecal Microbiome in
Finishing Pigs

The gastrointestinal tract of newborn animals is sterile before birth. After birth, some
specific bacteria from the environment (Streptococcus and Escherichia coli) rapidly colonize
the intestine, consuming oxygen. Later, anaerobic bacteria (e.g., Lactobacillus and Bifidobac-
terium) begin to colonize and form a specific microbial flora [27]. It was dominated by
anaerobic bacteria and a few facultative anaerobes, including Firmicutes, Bacteroidete,
Proteobacteria, Actinobacteria, Verrucomicrobia, and Fusobacteria, with Firmicutes and
Bacteroidete as the dominant group, accounting for more than 90% of the total [28–33]. As
the diet composition and living environment of piglets changed after weaning, the intesti-
nal microbiome also changed, with Bacteroides spp. gradually becoming the dominant flora
in the colon of adult pigs [34]. The intestinal barrier plays a crucial role in transporting
nutrients and macromolecules and can block the entry of harmful macromolecules and
microbes into the bloodstream, preventing endotoxemia and inhibiting the proliferation of
pathogenic bacteria [31,35]. Yang et al. (2020) reported that the L. japonica extract (the main
component was CGA) could enhance intestinal immune function and promote host health
by modulating secretory immunoglobulins and cytokines [36]. Zhang et al. (2018) reported
that adding CGA to feed for weaned piglets resulted in a significant increase in intestinal
Lactobacillus [26]. Chen et al. (2019) found that the addition of 1000 mg/kg of CGA to
the feed of weaned piglets resulted in a significant enhancement of microbial α-diversity
in the cecum of piglets. At the phylum level, the relative abundance of Firmicutes and
Bacteroidetes increased, and the relative abundance of Proteobacteria decreased. At the
genus level, the relative abundance of Lactobacillus spp., Proteus spp., Vibrio anaerobicus,
and Heteroplasma spp. Increased [37]. In this study, the top ten fecal microbiomes in fin-
ishing pigs in the three experimental groups in terms of phylum-level abundance were
Bacteroidetes, Firmicutes, Spirochaetes, Proteobacteria, Fibrobaeteres, Kiritimatiellaeota,
Tenerieutes, Actinobactena, Uncultured_bacterium_k_Bacteria, and Cyanobacteria. Among
these, Bacteroidetes and Firmicutes showed an increasing trend. The top ten fecal micro-
biomes in finishing pigs in the three experimental groups in terms of genus-level abundance
were Treponema_2, Rikenellaceae_RC9_gut_group, uncultured_bacterium_f_Lachnospiraceae, un-
cultured_bacterium_f_Prevotellaceae, Prevotellaceae_NK3B31_group, uncultured_bacterium_f_
Muribaculaceae, Lactobacillus, Prevotellaceae_UCG−001, Ruminococcaceae_UCG−005, and
Prevotellaceae_UCG−003. Among these, the abundance of Treponema_2 showed a down-
ward trend, and the abundance of Prevotellaceae_UCG−001 and Prevotellaceae_UCG−003
showed an upward trend; the abundance of Lactobacillus in Mix was significantly higher
than that in the control group. This was consistent with the results reported earlier, in-
dicating that the addition of crude extracts of L. japonica and Radix Puerariae to the feed
promoted the species diversity of rectal microbes in finishing pigs. They increased and
decreased the relative abundance of probiotics and harmful bacteria, respectively. This was
especially true when a mixture of L. japonica and Radix Puerariae crude extracts was added.

The gut microbiota can metabolize dietary and produces end products short-chain fatty
acids (SCFAs) [38]. Meanwhile, SCFAs could regulate the abundance and composition of the
gut microbiome, increase probiotics, inhibit the growth of pathogens, and improve intestinal
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barrier function. This was attributed to the fact that SCFAs could lower intestinal pH, and
under acidic conditions, the proliferation of harmful bacteria (e.g., E. coli, Proteobacteria,
and Spirochaetes) was inhibited, while the proliferation of probiotics (Lactobacillus and
Bifidobacterium) was promoted [39–44]. In this study, L. japonica or Radix Puerariae crude
extracts were added in the feed of finishing pigs. The results showed that the abundance of
rectal Firmicutes and Lactobacillus in finishing pigs in the Mix group was significantly higher
than that in the control group. However, the abundance of rectal Spirochetes and Treponema
pallidum in the finishing pigs in the three experimental groups showed a downward trend.
It might be due to the bacteriostatic effect of CGA and PF, which increased the abundance
of Bacteroides and the content of SCFAs, and maintained the health of the gut microbiome,
thus inhibiting the reproduction of harmful bacteria.

Prevotella was found to be the main carbohydrate-degrading bacterium in the gut, play-
ing an important role in carbohydrate metabolism in the body [45,46]. The main metabolites
of Bacteroidetes and Firmicutes were SCFAs and bile acids, which had the functions of
energy supply, inhibition of pathogenic bacteria reproduction, maintenance of intestinal
health, and participation in energy and lipid metabolism of the body [43,47,48]. Lagk-
ouvardos et al. (2019) investigated bacterial diversity, ecology, functional potential, and
phylogeny in the S24-7 family (Bacteroidetes) using 16S rRNA gene analysis and data from
metagenomic, functional, and taxonomic studies of cultured species, and named it as Murib-
aculaceae. The members of Muribaculaceae were versatile in complex carbohydrate degra-
dation [49]. In this study, the clustering analysis of the fecal microbiome and predictions of
the KEGG metabolic pathway and BugBase phenotypes of rectal microbes in finishing pigs
was executed. The results demonstrated that the abundance of Bacteroidetes, Firmicutes, un-
cultured_bacterium_f_Muribaculaceae, Prevotellaceae_UCG−001 and Prevotellaceae_UCG−003
in rectal microbes, lipid metabolism, other amino acid metabolism, polysaccharide biosyn-
thesis and metabolism, energy metabolism, carbohydrate metabolism, exogenous sub-
stance biodegradation, terpenoid and polyketide metabolism, disease immunity, and other
metabolic pathways in finishing pigs showed an increasing trend after adding L. japonica
and Radix Puerariae crude extracts in the feed. BugBase phenotypes of fecal microbiome
predicted decreased potential pathogenicity and increased stress resistance in each test
group, indicating that crude extracts of L. japonica and Pueraria lobata could improve the
structure of fecal microbiome and increase the abundance of rectal probiotics in finishing
pigs, improve the metabolic pathways and functional phenotypes of the fecal microbiome
in finishing pigs, and enhance the metabolism of nutrients by the fecal microbiome.

4.3. Effects of L. japonica and Radix Puerariae Crude Extracts on ATTD in Finishing Pigs

About 300 mg/kg eucommia extract (main component CGA) was added to the diet
of yellow-feathered broiler. The results showed that the dry matter, crude protein content,
and crude fat digestibility significantly improved, and the duodenal trypsin, amylase,
and lipase activities significantly increased in the test group compared with the control
group [50]. Zhang et al. (2018) found that the addition of 1000 mg/kg CGA to the feed
of weaned piglets led to significantly enhanced duodenal intestinal villus height, V/C
ratio, and abundance of duodenal lactobacilli [26]. The main function of the small intestine
is to digest and absorb nutrients and water [51,52], thus, improved small intestine may
enhance the absorption of nutrients such as CP and TP in the small intestine and improve
digestibility. Chen et al. (2018) found that the addition of 1000 ng/kg of CGA to the feed
of weaned piglets led to significantly enhanced contents of crude protein, crude fat, and
ash ATTD, as well as the activity of alkaline phosphatase (AKP) in the jejunum [53]. AKP
is a marker enzyme for primary digestion and absorption processes in the small intestine.
There are reports that intestinal AKP plays an important role in maintaining intestinal
nutrient absorption, mucosal mechanical, chemical, immune, and biological barriers [54].
Moreover, research shows that intestinal AKP is a gut mucosal defense factor maintained
by enteral nutrition, and preserves the normal homeostasis of gut microbiota [55,56]. In this
study, 1000 mg/kg of L. japonica crude extracts and 1000 mg/kg of Radix Puerariae crude
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extract were added to the feed of finishing pigs. The results showed that the TP digestibility
was significantly higher in the CGA group compared with the control group. This might be
because the regulatory effect of CGA improved intestinal AKP or other digestive enzymes
activity and abundance of microorganisms related to phosphorus metabolism in the gut
microbiota in the intestine of pigs (e.g., Actinobacteria), which promoted the digestion
and absorption of nutrients in the feed for finishing pigs [57]. However, the underlying
regulatory mechanisms still need to be further studied.

5. Conclusions

In conclusion, our findings showed that diets supplemented with L. japonica and Radix
Puerariae crude extracts improved growth performance, abundance of beneficial bacteria in
feces, and digestibility of CP and TP in finishing pigs. Thus, it was advantageous to use
L. japonica and Radix Puerariae crude extracts as natural additives in the feed of finishing pigs.
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