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Abstract

Background: Several gene sets for prediction of breast cancer survival have been derived from whole-genome mRNA
expression profiles. Here, we develop a statistical framework to explore whether combination of the information from such
sets may improve prediction of recurrence and breast cancer specific death in early-stage breast cancers. Microarray data
from two clinically similar cohorts of breast cancer patients are used as training (n = 123) and test set (n = 81), respectively.
Gene sets from eleven previously published gene signatures are included in the study.

Principal Findings: To investigate the relationship between breast cancer survival and gene expression on a particular gene
set, a Cox proportional hazards model is applied using partial likelihood regression with an L2 penalty to avoid overfitting
and using cross-validation to determine the penalty weight. The fitted models are applied to an independent test set to
obtain a predicted risk for each individual and each gene set. Hierarchical clustering of the test individuals on the basis of
the vector of predicted risks results in two clusters with distinct clinical characteristics in terms of the distribution of
molecular subtypes, ER, PR status, TP53 mutation status and histological grade category, and associated with significantly
different survival probabilities (recurrence: p = 0.005; breast cancer death: p = 0.014). Finally, principal components analysis
of the gene signatures is used to derive combined predictors used to fit a new Cox model. This model classifies test
individuals into two risk groups with distinct survival characteristics (recurrence: p = 0.003; breast cancer death: p = 0.001).
The latter classifier outperforms all the individual gene signatures, as well as Cox models based on traditional clinical
parameters and the Adjuvant! Online for survival prediction.

Conclusion: Combining the predictive strength of multiple gene signatures improves prediction of breast cancer survival.
The presented methodology is broadly applicable to breast cancer risk assessment using any new identified gene set.
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Introduction

Cancer is a complex disease characterized by a number of genetic

and epigenetic abnormalities. Patients associated with similar clinical

and pathological parameters may have very different tumor profiles

at the molecular level and may respond differently to treatment

[1,2,3,4]. Genome-wide expression profiling of tumors has become

an important tool to identify gene sets and gene signatures that can

be used to predict clinical endpoints, such as survival and therapy

response [1,2,3,5,6,7,8,9,10,11,12]. A number of tumor classification

algorithms based on gene expression profiles have been proposed,

using clinical data or known biological class labels to build predictive

models for outcome: e.g. the 70-gene signature MammaPrintH [3],

the 76-gene signature of Wang et al. [8] and the Genomic Grade

Index [4]. Several classification methods also utilize unsupervised

methods to discover biological subgroups [1,5,9].

Published gene signatures that are predictive of clinical outcome

in breast cancer are partly or completely based on different genes.

Nevertheless, their predictions are often in good concordance in

terms of assigning new patient samples into groups of poor and

good outcome [13,14]. This indicates that some common

biological processes overlap across those gene signatures [14,15],

but the reported gene signatures are likely to capture various

biological aspects of breast cancer. Hence, by combining

information from multiple gene signatures, one would potentially

increase the prediction power and bring out an overall picture of

this disease.

We therefore aim to develop an analytical framework that

allows us to utilize the combined strength from individual gene

signatures. Such a framework and the resulting model will be

broadly applicable for survival prediction across heterogeneous

tumor groups capturing a broad spectrum of biological aspects.
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Using the original gene signatures would generally require

recalibration on new datasets. As a consequence, the original gene

signatures will not always be maintained and used as originally

intended. In this paper, the aim is not to compare or condition on

the original gene signatures per se, but rather to focus on the genes

themselves. Thus we rely only on the gene sets on which the gene

signatures are based, and fit survival models based on these gene

sets without depending on the quantitative specifics of the

published gene signatures. In doing so, we are able to utilize

what is arguably the most critical piece of information from the

gene signatures, and analytically most challenging to derive:

shortlists of genes related to breast cancer survival. It should be

emphasized that the main aim of our study is to present a method

for explorative analyses and for seeding gene selection algorithms

with prior known gene sets, rather than a claimed method for

producing optimized gene signatures competing with published

counterparts.

We use the gene sets of eleven published gene signatures to

analyze breast cancer survival and relapse (Table 1). We aim to

build survival predictors on a common data set to achieve a fair

comparison of the gene sets. For each gene set, we fit survival

models to one dataset and apply them to another to obtain

predictions of cancer relapse and death, resulting in a predictive

index (PI) per patient. We then combine the PIs obtained for a

patient by extracting a common signal using the first principal

component, in order to improve the predictions obtained by each

gene set separately. We illustrate the capacity of the proposed

framework to lead to improved survival prediction. A flowchart of

the analysis is shown in Figure 1; see specific sections under Results

for a detailed explanation of the different parts of the figure.

Results

Cross-platform gene mapping
Using the gene mapping procedure described in Methods, we

were able to identify and map at least 80% of the genes from each

of the originally published gene sets to the Stanford 43k cDNA

array. Table 2 summarizes the number of genes mapped to the

training set (MicMa [11]) and test set (Ull [16]). The number of

genes that overlap between the different gene sets is shown in

Table 3. The percentage of overlap ranges from 0 to 25%

(between Robust and Grade) with a median overlap of 0.57%.

Penalized Cox regression
For each gene set, a Cox model was used to relate time to

systemic relapse to gene expression (see the second last section in

Results for analysis using breast cancer specific death as the

clinical endpoint). A weight is thus assigned to each gene and a

risk score (or prognostic index, PI) is found for each individual by

adding together the weighted gene expressions. Due to the large

number of covariates, ranging from 15 genes (RS; [6]) up to 561

genes (WR; [5]), we estimated a penalized partial likelihood,

where the penalty is proportional to the Euclidean (L2) norm of

the parameter vector. This has the effect of avoid over-fitting by

reducing the variance of the estimator, at the cost of introducing

a bias. A penalty parameter l controls the trade-off between the

goodness of fit (imposed by the partial likelihood) and low

variance (imposed by the penalty term). As lR0 the solution

approaches that of ordinary Cox regression, while as lR‘ the

solution approaches that of a constant estimator that does not

depend on the expression of any gene. In practice, a good choice

for l has to be determined empirically, and for this purpose we

applied leave-one-out cross-validation (LOOCV) [17]. The

cross-validation curves obtained for each of the gene sets are

shown in Figure S1, and the l that maximizes the cross-

validation function can be found in Table 4. For gene sets SD

and LM, the cross-validation function did not have a maximum

in the search range resulting in a null model that has no

covariates.

Prediction of survival with the prognostic index
Adding together the weighted gene expressions for a particular

gene set, each patient in the test set was assigned a Prognostic

Index (PI). The distributions of the PIs are shown in Figure 2A;

observe that some gene sets discriminate the patients on a wider

range of risk scores than others. The deviance, an indicator of the

models’ goodness of fit, was calculated for each gene set. Table 4

shows the difference in deviance (DD) between the fitted models

and a null model with no genes. The magnitude of DD indicated

the prediction power gained by a gene-set predictor. For gene sets

with positive DD, the corresponding gene-set models were likely

to perform poorly in prediction. Since no optimal l was found for

gene set SD and LM, the corresponding DD was 0. The standard

deviation of the empirical PI distributions can be found in

Table 4.

Table 1. Published gene sets included in the analysis.

Coding Full name Platform

RS 16-gene-recurrence-score predictor [6] Oncotype DX assay

SD 26-gene stroma-derived prognostic predictor [21] Agilent Human oligo microarrays

LM 54-lung-metastasis-gene signature [7] Affymetrix GeneChips

AMST 70-gene predictor [3] Agilent Human oligo microarrays

ROT 76-gene predictor [8] Affymetrix GeneChips

Grade 97- histologic-grade-associated markers [4] Affymetrix GeneChips

Robust 127-gene classifier [31] Affymetrix GeneChips

Hypoxia 168-hypoxia-gene signature [9] Stanford 43k cDNA array

Stem 186-invasiveness-gene signature [10] Affymetrix GeneChips

Intrinsic 306-intrinsic/UNC gene list [12] Agilent Human oligo microarrays

WR 512 wound response gene list [5] Stanford 43k cDNA array

doi:10.1371/journal.pone.0017845.t001

Combining Gene Signatures in Breast Cancer
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Similarities between PIs
The predicted PIs for the test patients by each of the individual gene

sets in our study were stacked into a PI matrix where rows indicate the

identity of the gene set, columns indicate the identity of the patient in

the test set and each cell contains the predicted PI risk score for relapse

of a specific patient by a specific gene set (Figure 1B). Hierarchical

clustering of the patients based on the PI matrix revealed two risk

groups with distinct clinical characteristics (Figure 3A) and associated

with significantly different survival probabilities (Figure 3B: Logrank

test: x2 = 7.8, df = 1, p = 0.005). This is in line with the findings from

the results on the training set (Figure S2; see Methods S1 Part IV for

calculation of the estimated PIs on the training set and Part V for a

brief discussion on the results). A control sample included in the Ull set

(DNR_N_100; marked in green in Figure 3A, see Materials and

Methods) was correctly classified to the low risk group. Clinical and

molecular characteristics for each of the two clusters are summarized

in Table 5. For the 77 patients in the test set, the low risk group

consisted of 44 patients; 14 of them had developed systemic recurrence

within the follow-up time period. Furthermore, 29 out of 38 luminal A

tumors (76%), 5 out of 13 basal-like tumors (39%), 33 out of 45 ER

positive tumors (73%), 32 out 51 PR positive tumors (63%), 2 out of 20

TP53 mutated tumors (10%) and all 6 Grade 1 tumors (100%)

belonged to this group. The high risk group consisted of 33 patients of

whom 20 experienced relapse within the follow-up time period with

53.9 month median survival time. Moreover, 9 out of 38 Luminal A

tumors (24%); 8 out of 13 basal tumors (61%) and almost all TP53

mutated tumors (18/20, 90%) belonged to the high risk group.

Prediction by individual gene sets
The concordance structure for survival prediction among the

studied gene sets is shown in the heatmap of the Spearman

correlation matrix on continuous PI scales (Figure 4A). The gene

sets SD and LM were left out since no optimal tuning parameter l
could be found. It should be noted that Hypoxia showed weak

correlations with other gene sets, whereas Robust, Grade and RS

were highly correlated.

Figure 1. Flowchart of the analysis. (A) Construction of the gene-set predictor/gene signature for risk prediction. Input: A set of genes of interest
(gene 1, …, m) which can be traced by the corresponding colors through out the diagram; gene expression data for training cohort and test cohort
with genes placed in the rows and patients in the columns. Step 1. Gene identity mapping and extract expression matrix. Step 2. With available status
of observing an event for the patients on the training set, a Cox model with L2 penalty is used to model the relationship of survival probability and
gene expression pattern of the gene set. The coefficients or ‘‘gene weights’’ (b1, …, bm) associated with individual genes are estimated from the Cox-
ridge model. Size of the bubble in the gene weights matrix reflects the importance of the corresponding gene for survival prediction. Step 3. A
Prognostic Index (PI), the predicted risk score for a test patient i (i = 1, …, n) is calculated by the sum of weighted gene expression from test patient i
using the estimated gene weights from step2. (B) Integration of multiple gene signatures by dimension reduction. Input multiple gene sets of
interest together with their gene expression data. Module 1: For jth gene set (j = 1, …, R), the procedure described in panel A is used to predict a risk
score PI for individual test patient. The resulting PI matrix is positioned in R by n dimension representing the risk prediction of the n test patients by
each of the R gene sets. Module 2: Integrate predictions from multiple gene signatures by dimension reduction using principal components analysis
(PCA). Module 3: Dichotomize the risk scores on PC1 by median (higher than median indicates high risk) resulting in two predicted risk groups for
survival outcome.
doi:10.1371/journal.pone.0017845.g001
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To increase the clinical applicability of PI scores, patients with a

positive PI score were assigned to the high risk group and the

remaining patients to the low risk group. The survival probabilities

associated with the dichotomized risk groups were assessed by the

logrank test. Kaplan-Meier plots for the predicted groups are shown

in Figure 5 for each of the individual gene sets. Three gene sets were

found to be significant: Grade (p = 0.012), Robust (p = 0.02) and RS

(p = 0.027). Previously, we observed that predictions by these three

gene sets were highly correlated, which explains their similar

performances on the dichotomous scale of PI. In addition, two gene

sets were borderline significant: ROT (p = 0.058) and WR (p = 0.077).

Using principal components analysis to obtain a
combined risk predictor

The concordance structure among the studied gene sets for

survival prediction (Figure 3A and Figure 4A) indicated that the

main signal related to survival should be well captured by a lower

dimensional representation of the PI vector associated with a

patient. Consider the PI matrix (rows indicate gene sets and

columns indicate patients) consisting of the predicted PIs of the test

patients from the 9 converged gene sets in the model training. We

used principal components analysis to derive linear combinations

of the original nine-dimensional PI vectors that captured most of

the variability of the PIs. Figure 6A shows a scatter plot of the

combined risk prediction scores for the test patients on the first two

principal components. The first principal component (PC1)

captured 64% of the total variation and a total of 76% cumulative

proportion of variation was captured by the first two components

(Table S1). An increasing proportion of relapses were observed at

the higher end of PC1. We created two classes by dividing the PC1

risk scores at the median value (20.45); thus any patient with a

PC1 risk score larger than 20.45 was considered to be a high-risk

patient, and any patient with a PC1 risk score less than or equal to

20.45 was considered to be a low-risk patient. The two risk groups

were associated with significantly different survival probabilities

(Figure 6B, logrank test p = 0.003).

Table 2. Acronyms for original gene sets and coverage on
training & test set.

Gene set Mapped genes # Coverage %

RS 15 15/16 = 94%

SD 22 22/26 = 85%

LM 48 48/54 = 89%

AMST 57 57/70 = 81%

ROT 66 66/76 = 87%

Grade 111 111/1281 = 87%

Robust 114 114/127 = 90%

Hypoxia 168 168/168 = 100%

Stem 161 161/186 = 87%

Intrinsic 290 290/306 = 95%

WR 561 561/573{ = 98%

1128 Affymetrix probe IDs were used instead of 97 gene symbols.
{573 image clone IDs were used instead of 512 genes.
doi:10.1371/journal.pone.0017845.t002

Table 3. Number of overlapping genes between gene sets.

RS SD LM AMST ROT Grade Robust Hypoxia Stem Intrinsic WR

RS 0 0 1 0 3 2 0 1 5 1

SD 0 0 1 0 0 1 1 0 0 1

LM 0 0 0 0 0 0 1 0 7 5

AMST 1 1 0 0 7 7 1 0 2 3

ROT 0 0 0 01 7 2 1 0 4 3

Grade 3 0 0 7 7 45 0 0 11 12

Robust 2 1 0 7 2 45 2 4 11 10

Hypoxia 0 1 1 1 1 0 2 4 3 12

Stem 1 0 0 0 0 0 4 4 5 7

Intrinsic 5 0 7 2 4 11 11 3 5 19

WR 1 1 5 3 3 12 10 12 7 19

1There was 1 gene overlapping between ROT & AMST according to the previous report [15]: CCNE2 (GenBankID NM_004702). However, in the newer version of the NCBI
database: ‘‘NM_004702.2 was permanently suppressed because the transcript has insufficient support and is a nonsense-mediated mRNA decay (NMD) candidate.’’
(http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db = nuccore&id = 17318566. Accessed on Mar. 18, 2009).

doi:10.1371/journal.pone.0017845.t003

Table 4. Individual gene set prediction characteristics
(optimal l by LOOCV in model building, change in deviance
on test set, standard deviation for PIs).

Prediction characteristics statistic

Gene Set lopt D Deviance Sd (PI)

RS 338 -1.4 0.109

SD - 0 0

LM - 0 0

AMST 227 0.3 0.195

ROT 1029 0.1 0.095

Grade 3580 -2.12 0.078

Robust 1705 -2.57 0.121

Hypoxia 392 -0.71 0.245

Stem 3623 -0.25 0.044

Intrinsic 1576 -0.88 0.137

WR 11261 -0.37 0.037

doi:10.1371/journal.pone.0017845.t004
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Univariate comparison of predictors
We performed univariate analysis for individual gene-set

predictors as well as for clinical parameters including tumor size

(pT1, pT2 and pT3-pT4), TP53 mutation status, stage (1–4), node

status (pN0, pN1, pN2-pN3 and pNx), ER status (positive versus

negative), histological grade (1–3) and the Adjuvant! Online model

(AOL), respectively. AOL is an established on-line breast cancer

survival predictor; it calculates a 10-year survival probability based

on the patient’s age, tumor size, tumor grade, oestrogen-receptor

status, and nodal status. Patients were assigned to the low risk

group if their 10-year mortality risk was lower than 10% as

predicted by Adjuvant! Online software. The dichotomized PI

scores (positive scores indicate high risk and nonpositive scores

indicate low risk) for the gene-set predictors were used in the

univariate Cox model. The performance comparisons by using the

likelihood ratio test, the deviance, the proportion of variation explained

(PVE), the concordance index (C-index) and the Hazard Ratio (HR) are

summarized in Table 6, Figure 7 and Table S2 for the combined-

Figure 2. Boxplot of predicted PIs on test data. (A) Systemic recurrence: The figure shows that the predicted PIs across all the studied gene sets
were roughly centered around 0, resulting from the standardization procedure of the expression matrix on both training and test set for individual
gene set in the model building stage. The standard deviations of PIs for individual gene set are following: RS: 0.109; SD: 0; LM: 0; AMST: 0.195; ROT:
0.095; Grade: 0.078; Robust: 0.121; Hypoxia: 0.245; Stem: 0.044; Intrinsic: 0.137; WR: 0.037. Due to lack of convergence, the predicted PIs by gene set
SD and LM was calculated by setting tuning parameter l, at a large value. (B) Breast cancer specific death (BC specific death): Boxplot of predicted PIs
on test set. Gene set LM failed to converge in the model training.
doi:10.1371/journal.pone.0017845.g002
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PI risk predictor (where we dichotomize on PC1) and other

included predictors.

The combined-PI risk predictor was competitive in all the

tested measurements. It showed the most significant effect on

survival (p = 0.003) and it was associated with the second highest

C-index score (C = 0.75) following TP53 mutation status

(C = 0.76). The information carried by the Deviance and PVE

is highly consistent (Figure 7A). The combined-PI risk predictor

Figure 3. Hierarchical clustering of predicted PIs on test set and Kaplan-Meier analysis of the clusters. Results for systemic recurrence
are in (A–B); for BC specific death in (C–D). In heatmaps (A, C), rows are notations for the gene sets. Columns are annotation for the patients; data
outside of 1% quantile were trimmed. ‘‘Average’’ linkage based on Spearman correlation was used to construct the dendrograms. Figure A and C
share legends for the clinical parameters. (A) Heatmap of predicted PIs on the test set for systemic recurrence from each gene sets. Two risk groups
were observed from the hierarchical clustering; cluster I and cluster II. The control sample in Ull DNR_N_100, marked by green, was classified in the
cluster associated with a lower risk (cluster II). (B) The Kaplan-Meier curves for the two clusters. A significant separation between the two groups was
observed (x2 = 7.8, df = 1, p = 0.005). (C) Heatmap of predicted PIs on the test set for BC specific death from each gene sets. Two risk groups were
observed from the hierarchical clustering; cluster I and cluster II. The control sample in Ull DNR_N_100, marked by green, was classified in the cluster
associated with a lower risk (cluster I). (D) A significant separation between the two Kaplan-Meier curves associated with the clusters was observed
(x2 = 5.996, df = 1, p = 0.014).
doi:10.1371/journal.pone.0017845.g003
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had the second highest deviance (8.61) following tumor size

(9.36), indicating good fit of the model. Furthermore, the

predictor alone explained 10.6% of the variability as indicated

by PVE, following tumor size (11.7%) and stage (11.1%); see

Table 6. The high risk group assigned by the combined-PI risk

predictor had a hazard rate of 2.82 (95% CI 1.37—5.80;

Figure 7B; Table S2) times higher than the low risk group.

Among all the tested predictors, TP53 mutation status was the

only factor that gave a slightly higher HR (2.87 with 95% CI

1.42—5.83; Figure 7B; Table S2).

The proportional hazards assumption, where the hazard ratios

over time are constant, held in all the reported univariate Cox

models, expect for ER status (p = 0.009; Table S2).

Multivariate comparison of predictors
A multivariate Cox model was used to simultaneously assess

the combined-PI risk predictor and the traditional clinical and

molecular parameters that yielded significant results in the

univariate comparison (TP53 mutation status and tumor size).

Due to the known association between ER status and survival, we

included ER status as stratification variable and each stratum is

permitted to have a different baseline hazard function while the

coefficients of the remaining covariates are assumed to be

constant across the strata. We observed a high correlation

between TP53 mutation status and the combined-PI risk

predictor (odds ratio 15.0 (95% CI 3.1—145.7), Fisher’s Exact

test p,0.001). Analysis for model comparison showed that the

combined-PI predictor added significant information to tumor

size and TP53 mutations (analysis of deviance p = 0.04; Akaike’s

Information Criterion (AIC) for model with and without

combined-PI = 191.8 and 194.01, respectively; Table S2). We

used AIC in a hybrid stepwise strategy to build a final prognostic

model where the combined-PI and tumor size were left as

covariates and ER status as stratification variable in a Cox

regression model (AIC: 191.46; Table S2. Likelihood ratio test

p = 0.002; Table 6). The final model exhibited proportional

hazards (p = 0.85; Table S2).

The combined-PI risk predictor had the most significant effect

in the final multivariate model (p = 0.004). The HR for the

combined-PI high-risk group was 3.34 (95% CI 1.49—7.51)

compared with the low risk group. The partial PVE was calculated

to indicate relative importance of the individual predictor in the

multivariate setting: The combined-PI risk predictor captured

11.3% of the variability compared with 5% captured by tumor

size. The C-index (C = 0.71) indicated satisfactory predictive

discrimination ability for the final multivariate model.

Breast cancer specific death as clinical endpoint
The proposed framework was also applied with breast cancer

specific death as the clinical endpoint and the results are

presented in Figure 2-4, 6. The predicted PI scores of the risk

of dying from breast cancer by individual gene sets are

summarized in the box plot in Figure 2B. The tuning parameters

chosen by leave-one-out cross-validation are shown in Figure S3.

The correlation structure indicates concordant predictions made

by different gene sets (Figure 4B). Overall, the gene set SD had

the weakest correlation to the other gene sets. Hierarchical

clustering of the test set patients based on the predicted PI matrix

defined to two risk clusters (Figure 3C) with distinct clinical

characteristics and associated with significantly different survival

probabilities (p = 0.014); see Figure 3D. Risk scores were

combined as previously described into one risk score by

projecting the PIs onto the first principal component

(Figure 6C), in which 73% of the total variance was captured.

The continuous score was further dichotomized into high risk and

low risk using the median of the PC1 score. The difference in the

Table 5. Clinical and molecular characteristics of the two risk
groups from hierarchical clustering of the test patients based
on the predicted PI matrix.

Low risk High risk

Number of patients 44 33

Number of events (Recurr.) 14 20

Median survival (month) - 53.9

LumA (%) 29/38 (76) 9/38 (24)

Basal (%) 5/13 (39) 8/13 (61)

ER+ (%) 33/45 (73) 12/45 (27)

PR+ (%) 32/51 (63) 19/51 (37)

TP53 mutated (%) 2/20 (10) 18/20 (90)

Grade 1 (%) 6/6 (100) 0/6 (0)

doi:10.1371/journal.pone.0017845.t005

Figure 4. Correlation structure of predicted PIs from gene sets
with convergence in model-building stage. Heatmap of Spearman
correlation matrix of predicted PIs for corresponding survival endpoint
from individual gene sets. (A) For systemic recurrence, nine gene sets
that reached convergence during modeling building are displayed. (B)
For BC specific death, ten gene sets that reached convergence during
modeling building are displayed. Figure A and B share the same color
legend.
doi:10.1371/journal.pone.0017845.g004
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associated survival probabilities of the two predicted risk groups

was confirmed by the logrank test (p = 0.001; Kaplan-Meier plot

in Figure 6D). For comparison, the univariate performances of

individual gene sets for dichotomous prediction and clinical

parameters as well as AOL are shown in Figure S4 and Methods

S1. The combined-PI risk predictor for breast cancer specific

death was the most significant among all the tested predictors in

the univariate setting (likelihood ratio test p = 0.001) with the

second largest HR 3.36 (95% CI 1.5—7.4), following TP53

mutation status (HR 3.46 with 95% CI 1.7—7.2; Figure S4B).

Furthermore, it had the second largest C-index (C = 0.77)

following TP53 (C = 0.8; Figure S4A) and it was also highly

ranked by PVE (12.4%) and deviance (10.2) following node status

(PVE = 12.5%, Deviance = 10.3; Figure S4A). The combined-PI

risk predictor was the most significant predictor (p = 0.005;

Methods S1) with HR 4.62 (95% CI 1.58—13.55) in a

multivariate Cox model containing combined-PI risk, TP53

mutation status (HR = 2.6, 95% CI 0.86—7.78), tumor size and

node status, stratified by ER status (See Methods S1 for the AIC

stepwise model selection). The correlation between the com-

bined-PI predictor and TP53 mutation status appeared to be

significant (odds ratio 33.9 with 95% CI 4.8—1490.4, Fisher’s

Exact test p,0.001; Methods S1) and the combined-PI added

significant information to TP53, tumor size and node status

(analysis of deviance p = 0.035; AIC for model with and without

combined-PI = 149.96 and 152.41, respectively; Methods S1).

Figure 5. Systemic recurrence: Kaplan-Meier plot of the PI-risk groups for each of the individual gene sets. The Kaplan-Meier curves
and the associated logrank p values for dichotomized PI-risk groups from each of the 9 converged gene-set models.
doi:10.1371/journal.pone.0017845.g005
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Except for the univariate Cox model for ER status, the

proportional hazards assumption was met for the reported

models (Methods S1).

Assess robustness of the combined-PI model
To test the robustness of the proposed procedure, we performed

the analyses by switching the test and training sets. To gain

computational efficiency, we applied 10-fold CV instead of

LOOCV during the model training procedure for each of the

gene sets. We obtained similar results for prediction of BC specific

death (Figure S5E–H). The combined-PI predictor and TP53

mutation status was strongly correlated (odds ratio 11.2 with 95%

CI 4.0—36.8, Fisher’s Exact test p,0.001). For prediction of

systemic recurrence, only three out of the eleven tested gene sets

Figure 6. Systemic recurrence: PCA of predicted PIs from converged gene sets and performance of the resulting groups from PC1.
Results for systemic recurrence are in (A-B); for BC specific death in (C-D). (A) Scatter plot of predicted PIs from 9 converged gene-set models on the
space of the top two leading PCs. Black circles indicate censored observations; red dots indicate patients with relapse. (B) The Kaplan-Meier curves for
high and low risk groups are significantly different (x2 = 8.76, df = 1, p = 0.003). (C) Scatter plot of predicted PIs from 10 converged gene-set models on
the space of the top two leading PCs. Black circles indicate censored observations; red dots indicate patients with BC specific death; brown stars
indicate death from other reasons. (D) The Kaplan-Meier curves for high and low risk groups are significantly different (x2 = 10.26, df = 1, p = 0.001).
doi:10.1371/journal.pone.0017845.g006
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achieved model convergence, which most likely contributed to a

compromised combined-PI risk predictor built from insufficient

signals (Figure S5A–D).

Furthermore, we also checked the stability of the combined-PI

prediction by correlating the predicted combined-PIs on the test

set from one analysis with the combined-PIs on the training set

from the switched analysis. The continuous PCA combined-PI

scores were used instead of dichotomizing on PC1. We performed

this screening for the prediction of BC specific death, and observed

moderate correlations of the combined-PIs on the MicMa set

(0.48) as well as on the Ull set (0.63). This indicates clearly that

there is a fair correlation between the combined-PIs when trained

on different data sets, but also that there is substantial variation.

Discussion

High-throughput genome profiling for genetic marker discovery

is widely applied in the field of genomic and personalized

medicine. For example, a gene signature characterizes certain

biological aspects and/or may be used to predict disease outcome

by mathematically combining the expression values of a set of

genes. The methods generating the combined expression pattern

of the biomarkers differ from study to study. A gene signature

therefore consists of a group of gene identities together with a

distinct classifier or a predictor to predict disease outcome.

In the present work, we applied Cox regression to reconstruct a

classifier from the same set of original genes as a number of

published gene signatures. Only the associated gene identities from

the original signature are retained, while the classifiers themselves

are derived on the basis of the same modeling procedure and the

same tumor data set. As a consequence, the resulting gene

signatures are derived on the basis of the same clinical endpoint

(systemic relapse or breast cancer specific death). The gene sets in

our study were pre-selected based on prior knowledge in breast

cancer. We are interested in survival prediction by the collective

expression pattern of the whole gene set without additional gene

selection. Furthermore, since the number of features (genes)

outnumbers the number of samples in the training set, p . N, for

most of the gene sets of interest, direct estimation of the coefficients

using standard Cox regression is unfeasible. Even for those gene

sets with p , N, we still have p large enough to render the

coefficient estimates highly unstable and thus of doubtful value for

prediction. Accordingly, we perform parameter estimation using a

penalized partial likelihood criterion [17] that forces the solution

to the estimation problem to have small L2-norm. Using an L2

penalty trades a little bias for a larger reduction in variance to

reduce the prediction error on a new data set. This is the so-called

‘‘bias and variance tradeoff’’ [18]. Cox-ridge regression has been

shown to be an effective model in survival prediction using gene

expression data [19,20]. There is no actual variable selection

involved; while genes are generally down weighted, all the genes

included in the Cox model will be present in the final model.

We observed that two of the pre-selected gene sets failed for

survival prediction at the model training stage: gene set LM for

Table 6. PCA-combined PI risk predictor in univariate and multivariate Cox regression.

Univariate Multivariate

Covariate p PVE* Deviance C1 HR [95% CI] p Partial PVE C

Combined-PI risk (overall effect) 0.003 0.106 8.611 0.746 11.3%

High (vs Low) 3.34 [1.49, 7.51] 0.004

AOL risk 0.131 0.033 2.283 0.734

TP53 0.006 0.092 7.47 0.759

Tumor size (overall effect) 0.009 0.117 9.358 0.706 5%

pT2 (vs pT1) 2.59 [0.86, 7.81] 0.091

pT3-pT4 (vs pT1) 2.97 [0.85, 10.42] 0.089

Stage 0.058 0.111 7.501 0.698

Node 0.107 0.076 6.090 0.605

ER 0.634 0.003 0.227 0.403

Histological grade 0.372 0.025 1.979 0.480

RS 0.028 0.061 4.827 0.686

AMST 0.148 0.027 2.092 0.630

ROT 0.058 0.046 3.591 0.686

Grade 0.013 0.077 6.174 0.712

Robust 0.02 0.068 5.391 0.703

Hypoxia 0.303 0.014 1.06 0.626

Stem 0.734 0.001 0.115 0.535

Intrinsic 0.508 0.006 0.437 0.538

WR 0.079 0.039 3.093 0.640

Multivariate model Risk = Combined-PI + Tumor Size + strata(ER) 0.002 0.19 (R2) 0.705

For overall effect of the predictor in univariate Cox regression, Likelihood ratio test p value was reported. For individual levels within the predictor, Wald test p value was
reported.
*PVE: proportion of variation explained in the outcome variable.
1C: concordance index.
doi:10.1371/journal.pone.0017845.t006
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both tested clinical endpoints, and gene set SD for systemic

relapse. The reason for their poor performance is likely related to

the lack of comparability of the data and methods used to

construct the original gene signatures and those used to construct

ours. Gene set LM contains 54 genes that mediate risk of breast

cancer metastasis to lung [7]. The original risk index for lung

Figure 7. Univariate comparison of predictors for systemic recurrence. Comparison of combined-PI risk predictor with clinical parameters
and individual gene-set predictors using univariate Cox model. (A) Y axis indicates C-index associated with individual predictor and X axis indicates
the p values (on minus log10 scale) from likelihood ratio test in univariate Cox model. C-index = 0.5 and the significant level: a= 0.05 for the
likelihood ratio test are indicated by the dotted line. The size and the color of the bubble indicate the PVE and the deviance in univariate Cox model,
respectively. The combined-PI risk predictor had the most significant marginal effect for predicting systemic recurrence (p = 0.003). It was associated
with the second highest C-index score (C = 0.75) following TP53 mutation status (C = 0.76). It had the second highest deviance (8.61) following tumor
size (9.36), and the combined-PI predictor alone explained 10.6% of the variability as indicated by PVE, following tumor size (11.7%) and stage (11.1%)
(B) X axis indicates HR from the univariate Cox model and the 95% CIs are shown along with the point estimates. ‘‘LR test’’ stands for likelihood ratio
test. Insignificant predictors (likelihood ratio test p.0.05) are grayed out. To keep the results interpretable, only predictors with two levels are
compared. The combined-PI risk predictor had the 2nd largest HR (2.82 with 95% CI 1.37—5.80) following TP53 mutation status (2.87 with 95% CI
1.42—5.83).
doi:10.1371/journal.pone.0017845.g007

Combining Gene Signatures in Breast Cancer

PLoS ONE | www.plosone.org 11 March 2011 | Volume 6 | Issue 3 | e17845



metastasis was defined as a linear combination of gene expression

values weighted by their estimated Cox regression parameters.

The essential biological information captured in the original Minn

et. al dataset [7] was absent from the cohorts studied in the present

work, which contain mainly early-stage breast cancers. Given the

comparable methods in classifier construction, we believe the

biological incomparability of data sources used for model building

led to the poor performance of gene set LM in our study. Likewise,

the gene set SD might not have been expected to perform well due

to the intrinsic biological differences in the training sets used for

the present study and the original study, where microdissected

stroma from breast cancer specimens were used to identified these

26 stroma-derived prognostic genes [21]. Not all gene sets that

were left for the model evaluation achieved significant survival

prediction in the studied test set (Figure 5 and Table 6). The inter-

cohort heterogeneity most likely played a role. The studied

training and test set showed borderline significantly different

survival probabilities for the survival endpoints (systemic relapse

p = 0.0765; breast-cancer specific death p = 0.0564; Figure S6).

Unless there exists a ‘‘gold-standard’’ dataset representing

perfectly the underlying population for breast cancer, dealing

with the heterogeneity feature is inevitable. The proposed

framework demonstrates a straightforward yet effective approach

to improve the survival prediction power by integrating multiple

gene set predictors.

Interestingly the combined-PI risk predictor correlates with but

provides additional information to TP53 mutation status. TP53

mutation status has been shown to be one of the strongest single

molecular prognostic markers in breast cancer. It is known as a key

molecule involved in different pathways important in cancer. It is a

molecular marker important to compare with other prognostic

markers to gain insights about the underlying biology. It is a prime

example of a single molecule not function alone, but rather

involving many players in various networks. Restoring TP53

activity is a potential therapeutic strategy [22].

The results indicated that to some extent the generalization

from MicMa set to Ull set was better than that from Ull to MicMa.

We suspect the main reason may be the reduction of the training

set sample size from 123 in the MicMa cohort to 80 in the Ull

cohort. Since the training step is prone to over-fitting due to the

large number of genes from which the models may be fitted, the

ability to fit a reliable model strongly depends on having a

sufficient sample size.

As a potential extension of the framework of mining large

collection of gene sets for survival prediction, an optional filter step

could be added prior to the analysis to eliminate gene sets that are

not significantly related to survival or not enriched in the training

set. Our analysis framework does not restrain to the gene sets from

gene signatures, as this is one of the many ways to provide input to

the ‘‘combining power procedure’’.

In conclusion, our proposed framework for improving survival

prediction contains three analytical modules: (1) gene signature

(gene-set prognostic model) construction, (2) dimension reduction

and (3) risk prediction. Each module could be fine tuned or

modified depending on the data under study. Our study showed

that by aggregating the predictive strength from multiple gene sets

we can improve the outcome prediction in breast cancer, and it

can be broadly applicable to breast cancer survival risk assessment.

Materials and Methods

Ethics statement
The studies included in the project were approved by the

Regional Ethical Committee (REK: S97103 for MicMa and REK:

200401129-1 for Ull). All samples were obtained with written

informed consent approved by the ethical committee.

Tumor samples and patients
The training set (MicMa) comprise published gene expression

and clinical data on 123 human breast cancer cases, mainly stage I

and II [11]. Patients were treated for localized breast cancer and

included between 1995 to 1998 [23]. The prognostic model for

relapse was trained using 118 patients with available endpoint

status. All the 123 patients were available for training the

prognostic model for breast cancer specific death. The test set

(Ull) mainly consisted of early stage breast cancers from which

gene expression and clinical data were available [16]. Patient

samples were sequentially collected from 1990 to 1994. In this data

set, together with eighty tumor cases a normal breast tissue sample

coded as ‘‘DNR_N_AO100’’ was included as control. Descriptive

aspects of the training and test sets are given in Table S3. More

details are provided in Methods S1.

Microarray
Both the training set (MicMa) and test set (Ull) were obtained

using the Stanford 43k cDNA microarrays. Using the protocols

described in Methods S1, total RNA was isolated, amplified,

labeled and hybridized to arrays containing around 42,000

features representing 23169 unique cluster IDs (UniGene Build

Number 215) produced at the Stanford Functional Genomics

Facility (http://www.microarray.org/sfgf/jsp/home.jsp). All pro-

cedures are available at Stanford Genomics Breast Cancer

Consortium Portal (http://genome-www.stanford.edu/breast_

cancer/) for the MicMa set and at the referred web site (http://

www.stanford.edu/group/sjeffreylab/) for the Ull set. All data is

MIAME compliant. Raw data for MicMa set has been deposited

in the NCBI’s Gene Expression Omnibus database (GEO; http://

www.ncbi.nlm.nih.gov/geo/) with accession number GSE3985.

Both datasets are accessible through Stanford Microarray

Database (SMD; for the MicMa set: http://smd.stanford.edu/

cgi-bin/publication/viewPublication.pl?pub_no = 833; for the Ull

set: http://smd.stanford.edu/cgi-bin/publication/viewPublication.

pl?pub_no = 629).

Preprocessing
For the MicMa set, normalized (loess with print tip

stratification) log2-transformed gene expression ratios were

retrieved from SMD (http://smd.stanford.edu/), filtered for spot

intensity over background at least 1.5 in both sample and

reference, and finally, filtered for those genes that fulfilled the

spot filter criteria in at least 85% of the experiments. For the Ull

set, probes were filtered for spot quality and included in the

analysis if the pixels within a spot showed a regression correlation

of at least 0.6 or if the signal intensity of both sample and

reference were at least 1.5 over background; data were further

normalized by the default total Intensity Normalization in SMD

(http://smd.stanford.edu/help/results_normalization.shtml). For

both MicMa and Ull, k-nearest neighbor (KNN) imputation [24]

with k = 10 was applied to impute missing values in the filtered

expression dataset.

Gene sets
An overview of the 11 published gene sets studied in this report

are listed in Table 1. The abbreviated coding for the individual

gene sets are used instead of the full name throughout this paper.

The annotation files for the gene sets were downloaded from the

web sites indicated in the original publications or were requested
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directly from the authors. Brief discussions of various gene sets are

presented in the Methods S1.

Adjuvant! Online model
Adjuvant! [25] (https://www.adjuvantonline.com) uses patient

age, comorbidity level, ER status, tumor grade, tumor size and

number of positive lymph nodes to predict 10-year risk for breast

cancer mortality. It also predicts the benefit of adjuvant therapy

for women with early-stage breast cancer. A description of the

Adjuvant! Online model and the details for computing risk scores

of the test patients can be found in Methods S1. Low risk is defined

in this paper as lower than 10% 10-year risk of breast cancer

mortality. A total of 72 patients in the Ull data set with suitable

characteristics for Adjuvant! Model were entered into the

comparison study.

Molecular subtype assignment
Tumors were assigned to a subtype using Pearson correlation to

the expression centroids as previously described [16,26].

Cross-platform gene identity mapping
Most of the gene sets in the study were developed from

microarray platforms different from Stanford 43k cDNA array (see

Table 1). For gene sets developed from Stanford 43k cDNA arrays,

clone IDs were used as the ‘‘linker’’ to link the gene identifiers in

the gene set to cDNA. For gene sets developed from different

platforms, gene identifiers in the gene set were mapped to the

cDNA clones using the following linkers: UniGene, gene symbol

and gene alias, where UniGene had the highest priority while gene

alias had the lowest priority. When matches occurred by using

multiple linkers, we took the matches from the highest ranked

linker. Furthermore, we collapsed the matched clones representing

the same gene by their mean expression value (Figure 1A).

Annotations for Stanford 43k cDNA array were retrieved from

SMD SOURCE (http://smd.stanford.edu/cgi-bin/source/sour

ceSearch) under UniGene Build Number 215. And annotations

for the individual gene sets were retrieved either from manufacture

chip annotation files or from SMD.

Penalized Cox regression for survival prediction based on
individual gene sets

We assume that at any given time, a breast cancer patient has a

certain risk of experiencing a specific event, which in our case is

either relapse after primary surgery or breast cancer related death.

We furthermore assume that for a number of patients we have

measured the time to this event. Patients that experience none of

these events for the duration of the study are labeled as censored.

For such patients, the recorded time is simply the last point of

observation and carries a different interpretation than a time to an

event. To associate the risk of an event to observed features, we

consider a Cox’s proportional hazards model (Cox model) with the

expression of selected genes as the covariates. Suppose that for a

patient we have observed a total of p expression values

X~(X1,X2,:::,Xp)’. In principle, we may model the risk of

relapse/death as a function of all measured expression values, as

in the Cox model h(tDX)~h0(t)exp(b’X), where the interpretation

is that the instantaneous risk (also known as the hazard) of

experiencing the event at time t is a product of two functions, the

first depending only on the time point (and not on the particular

patient at hand), and the second depending only on the expression

values of the patient (and not on the time point). In a Cox model,

the relative hazard between two individuals with expression

vectors X1 and X2respectively is expressed by the quantity

h(tDX1)

h(tDX2)
~exp(b’(X1{X2)):

Accordingly, even though the hazard fluctuates over time for

any one individual, the relative hazard between individuals is

constant over time. Let P(X)~(xi1,xi2,:::,xim)’ denote a subselec-

tion of genes (variables) from the complete list of p genes.

Considering the risk of relapse/death as a function of the selected

genes only, we obtain the Cox model hP(tDX)~h0(t)exp(b’P(X)).
In this paper, we want to model risk of relapse/death as a function

of R = 11 gene sets of individual sizes m1,:::,mR, each correspond-

ing to a particular subselection of genes. Thus, we consider the

Cox models

hj(tDX)~h0(t)exp b’jPj(X)
� �

ð1Þ

where j = 1,2,…,R indexes the gene sets, Pj(X) is the selected genes

(variables) in the jth gene set, bj~(bj,1,bj,2,:::,bj,mj
) is the vector of

coefficients (weights) associated with the genes in the jth gene set,

and h0(t) is the (common) baseline hazard function. Since the

response of interest is a possibly censored survival time, for a given

gene set, a Cox proportional hazards model was used to describe

the risk of a patient experiencing an event in response to

expression of gene covariates. The expression values for each gene

were mean centered and scaled to unit standard deviation in both

the training and the test datasets. All Cox models in the gene

signature construction part of the analysis were fitted using an L2-

penalized partial Cox likelihood, whereas the Cox model in the

multivariate comparison was fitted using the ordinary partial Cox

likelihood. To determine the penalty parameter, we applied the

leave-one-out cross validation procedure proposed by Verweij and

van Houwelingen [17] (See Methods S1).

A total of 118 MicMa patients with available information on

systemic recurrence status were used to develop a prediction

model using Cox-ridge regression for a gene set. For the j’th gene

set (j = 1, …, 11), the optimal gene-set specific tuning parameter

l̂ljwas found by the leave-one-out cross validation procedure [17]

using the training set; we then estimated the coefficient vector b̂bj

associated with individual genes in gene set j by the Cox-ridge

model (1) (Figure 1A). The predicted prognostic index for the jth

gene set and the ith patient in the test data set was calculated as

PIij~b̂b’jPj(Xi
test) which is sum of weighted gene expression of the

test patient i (Figure 1A). The weights b̂bj for individual genes in the

jth gene set were the corresponding estimated coefficients from the

training set using the Cox-ridge model (1) (Figure 1A). See

Methods S1 for details.

Prediction performance evaluation for individual gene
set

Spearman correlations were used to show the concordance

structure for risk prediction among the gene sets. The change in

deviance (DD) is an indicator of predictive performance of a model

obtained from a training dataset on a novel test dataset and is

given by DD~{2(lfull{lnull) where lfull is the optimal log-

likelihood with all the genes in the gene set included, and lnull is the

optimal log-likelihood with no genes included. The continuous PI

scores were dichotomized into high- and low-risk groups using

zero as cutoff, where a positive PI score indicates high risk. The

resulting PI risk groups for individual gene set were tested in a

univariate Cox model and the difference of the Kaplan-Meier

survival curves of the groups were also tested by logrank test.
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Hierarchical clustering
As a graphical illustration of the relationship among the gene

sets, the predicted PIs for all patients in the test set (Ull) using each

of the gene sets were clustered using hierarchical clustering with

Spearman correlation and average distance. The Kaplan-Meier

survival curves were plotted for the resulting groups and the

differences in clinical indications among the clusters were tested by

a logrank test.

Dimension reduction by principal components analysis
Principal components analysis (PCA) was used to project the PIs

from each of the individual gene sets onto a lower dimensional

space (Figure 1B). The values off the first principal component

were used as the combined risk scores, and further dichotomized

by median cut, where a patient with a score on PC1 higher than

median values on PC1 was considered to be high risk. A logrank

test was carried out to assess the significance of the differences in

survival probabilities associated with resulting dichotomous risk

groups (Figure 1B). The method of choice was PCA based on the

covariance matrix since we expected PIs with higher variance to

carry more information than PIs with less variance. In analyses of

relapse, however, this ended up dominated by Hypoxia although

this correlated little with other PIs, and was therefore replaced by

PCA based on the correlation matrix.

Univariate comparison of predictors
Univariate Cox models were used to compare the effects of the

combined-PI risk predictor, individual gene signatures (dichotomized

by splitting at 0), clinical parameters (Tumor size and Histological

grade, TP53, Node status, ER status and Stage), as well as the

Adjuvant! Online model. A likelihood ratio test was used to assess the

significance of the overall effect of a predictor in the univariate

models. In addition, deviance was used to check the goodness of the

model fit. The marginal contribution by a single predictor in the

univariate setting was evaluated using the proportion of variation

explained in the outcome variable (PVE) [27]. PVE R2
M ,

comparable with the R2 in regression modeling is an indicator

that quantifies the importance of covariates in the Cox model.

The Hazard Ratio (HR) was used as an accuracy measure for the

risk group prediction for different predictors. In the univariate

setting, HR is a summary of the risk difference between patient

groups defined by the predictor. To keep the results interpretable

and comparable, we presented the HRs for the predictors with two

risk groups (excluded Tumor size, Histological grade, Node status

and Stage). The larger the HR, the better is the discrimination

between the groups of the patients, such as low- and high-risk.

The concordance index (C-index) [28], an analogy to area under the

receiver operating characteristic (ROC) curve in survival analysis,

was computed to assess the predictive discrimination ability of each

of the predictors in the corresponding univariate Cox model

(Method S1). It measures the probability of concordance between

the predicted and observed responses in terms of lengths of time to

event of any two patients. The larger the C-index, the better is the

predictability of a survival model. A value of 0.5 indicates no

predictive discrimination and a value of 1 indicates perfect

separation of patients with different outcomes [28].

Multivariate comparison of predictors
The significant predictors in the univariate analysis were included

in a multivariate Cox model. Model selection was carried out using

Akaike’s Information Criterion (AIC) [29] and analysis of deviance.

The relative importance of a covariate in a multivariate Cox model

was measured by the partial PVE, which was calculated as the

difference between R2
M for the full model and R2

M for a model with

a factor of interest excluded. See Methods S1 for details.

Software
All analyses were performed in R (version 2.11.1), which is

available at http://cran.r-project.org/. The R package ‘‘penal-

ized’’ [30] was to perform penalized Cox regression. R code for

the procedures described in this paper are available from the

correspondence author.

Supporting Information

Figure S1 Systemic recurrence: Cross-validated likeli-
hood profile on l grid. The dotted line indicates the location of

the optimal l value lopt for each gene set. RS: 338; SD: Inf; LM:

Inf; AMST: 227; ROT: 1029; Grade: 3580; Robust: 1705;

Hypoxia: 392; Stem: 3623; Intrinsic: 1576; WR: 11261. Modeling

gene set SD and LM did not reach convergence by the specified

criteria in the study.

(TIF)

Figure S2 Systemic recurrence: Hierarchical clustering
of estimated PIs for systemic recurrence on training set
and the resulting risk clusters in a Kaplan-Meier plot. (A)

Heatmap of estimated PIs on training set for systemic recurrence

from each gene sets. Rows are notations for the gene sets. Columns

are annotation for the patients; data outside of 1% quantile were

trimmed. ‘‘Average’’ linkage based on Spearman correlation was

used to construct the dendrograms. Two risk clusters I and II, were

observed from the hierarchical clustering with distinct clinical

characteristics: a total of 30 out of 49 Luminal A tumors (61%)

were clustered in the low risk group, and 19 luminal A tumors

(39%) were found in the high risk group. (B) The Kaplan-Meier

curves for cluster I and cluster II. A significant separation between

the two clusters was observed (x2 = 49.7, df = 1, p,0.001).

(TIF)

Figure S3 BC specific death: Cross-validated likelihood
profile on l grid. The purple dotted line indicates the location of

the optimal l value lopt for each gene set. RS: 343; SD: 249; LM:

Inf; AMST: 230; ROT: 379; Grade: 1337; Robust: 898; Hypoxia:

1823; Stem: 3866; Intrinsic: 1639; WR: 8317. Modeling gene set

LM did not reach convergence by the specified criteria in the study.

(TIF)

Figure S4 Univariate comparison of predictors for BC
specific death. (A) Y axis indicates C-index associated with

individual predictor and X axis indicates the p values (on minus

log10 scale) from likelihood ratio test in univariate Cox model. C-

index = 0.5 and the significant level: a = 0.05 for the likelihood

ratio test are indicated by the dotted line. The size and color of the

bubble indicates the PVE and deviance in univariate Cox model,

respectively. The combined-PI risk predictor for BC specific death

was the most significant one among all the tested predictors

(likelihood ratio test p = 0.001). It had the second largest C-index

(C = 0.77) following TP53 (C = 0.8). And it was also highly

ranked by PVE (12.4%) and deviance (10.2) following node status

(PVE = 12.5%, Deviance = 10.3). (B) X axis indicates HR from

the univariate Cox model and the 95% CIs are shown along with

the point estimates. ‘‘LR test’’ stands for likelihood ratio test.

Insignificant predictors (likelihood ratio test p . 0.05) are grayed

out. The combined-PI risk predictor had the second largest HR

3.36 (95% CI 1.5—7.4), following TP53 mutation status (HR 3.46

with 95% CI 1.7—7.2).

(TIF)
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Figure S5 Summary of switched analysis by using Ull
as training set and MicMa as test set. Results for systemic

recurrence are in (A-D); for BC specific death in (E-H). (A)

Boxplot of predicted PI for systemic recurrence. Only three out of

eleven gene sets had converged model in model training stage. (B)

Spearman correlation structure among gene sets with conver-

gence. (C) Projection of the predicted PIs on space formed by

PC1 (captured 81% variability) and PC2. (D) Kaplan-Meier

curves associated with the two risk groups by median-cut of PC1

value (logrank p = 0.191). (E) Boxplot of predicted PI for BC

specific death. (F) Spearman correlation structure among gene

sets with convergence. (G) Projection of the predicted PIs on

space formed by PC1 (captured 65% variability) and PC2. (H)

Kaplan-Meier curves associated with the two risk groups by

median-cut of PC1 value (logrank p = 0.028).

(TIF)

Figure S6 Survival curves for training set (MicMa) and
test set (Ull). The logrank test showed that the training cohort

and test cohort had borderline significant survival curves for the

survival endpoint.

(TIF)

Table S1 Results summary of PCA on predicted PIs for
systemic recurrence from 9 converged gene sets.
(PDF)

Table S2 Results summary of univariate and multivar-
iate analysis of combined PI-risk predictor for systemic
recurrence.
(PDF)

Table S3 Molecular and clinicopathological character-
istics of the tumor material in MicMa and Ull datasets.
(PDF)

Methods S1 Supplementary methods, results, notes,
and references.
(PDF)
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23. Wiedswang G, Borgen E, Kåresen R, Kvalheim G, Nesland JM, et al. (2003)

Detection of isolated tumor cells in bone marrow is an independent prognostic

factor in breast cancer. J Clin Oncol 21: 3469–3478.

24. Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, et al. (2001) Missing

value estimation methods for DNA microarrays. Bioinformatics 17: 520–525.

25. Ravdin P, Siminoff L, Davis G, Mercer M, Hewlett J, et al. (2001) Computer

program to assist in making decisions about adjuvant therapy for women with

early breast cancer. Journal of Clinical Oncology 19: 980.

26. Sørlie T, Tibshirani R, Parker J, Hastie T, Marron JS, et al. (2003) Repeated

observation of breast tumor subtypes in independent gene expression data sets.

Proc Natl Acad Sci U S A 100: 8418–8423.

27. Schemper M (1993) The relative importance of prognostic factors in studies of

survival. Statistics in medicine 12: 2377–2382.

28. Harrell F, Lee K, Mark D (1996) Tutorial in biostatistics multivariable

prognostic models: issues in developing models, evaluating assumptions and

adequacy, and measuring and reducing errors. Statistics in medicine 15:

361–387.

29. Akaike H (1974) A new look at the statistical identification model. IEEE

transactions on Automatic Control 19: 716–723.

30. Goeman J, Goeman M (2010) Penalized R package. version 0.9-32 ed.

31. van Vliet MH, Reyal F, Horlings HM, van de Vijver MJ, Reinders MJ, et al.

(2008) Pooling breast cancer datasets has a synergetic effect on classification

performance and improves signature stability. BMC Genomics 9: 375.

Combining Gene Signatures in Breast Cancer

PLoS ONE | www.plosone.org 15 March 2011 | Volume 6 | Issue 3 | e17845


