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ABSTRACT Stenotrophomonas maltophilia is an opportunistic pathogen exhibiting
resistance to multiple antimicrobials. This study reports the complete genome of an
S. maltophilia siphophage, Summit. Its genome of 95,728 bp has 148 protein-coding
genes and 5 tRNAs, including 1 predicted suppressor tRNA. Possible target genes for
the suppressor tRNA are not identified.

S tenotrophomonas maltophilia, a Gram-negative bacterium, is both a human oppor-
tunistic pathogen and potential biocontrol agent for use in bioremediation (1, 2).

S. maltophilia exhibits intrinsic resistance to various classes of antimicrobials, causing
the need for new drugs, such as bacteriophage therapy, to counter S. maltophilia infec-
tions (2, 3). This report summarizes the complete genome annotation of a novel S. mal-
tophilia phage siphophage, Summit.

Bacteriophage Summit was isolated from a weaning foal swab sample provided by the
Texas A&M Veterinary Clinic, College Station, TX. The phage was isolated and cultured by
the soft agar overlay method (4) with S. maltophilia (ATCC 17807) as a propagation host
grown aerobically at 30°C in tryptone nutrient broth. Following purification, phage DNA
was isolated as previously described (5), prepared as 300-bp inserts using a Swift 2S Turbo
kit, and sequenced on an Illumina MiSeq with pair-end 150-bp reads using a V2 300-cycle
chemistry. Using FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc) and FASTX-
Toolkit v0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/) resulted in 129,787 trimmed
reads. Summit’s genome was then assembled by SPAdes v3.5.0 into a single contig with
88-fold coverage (6). Forward (59-TGGAAGAGAAGGCCACGAAC-39) and reverse (59-CCGAG
TCGAGGTAGAACGTG-39) closure primers were used to close the genome by PCR and
Sanger sequencing. The genome was annotated using the CPT Galaxy-Apollo phage anno-
tation platform (7–9). Structural annotation was completed using Glimmer v3 (10) and
MetaGeneAnnotator v1.0 (11). tRNAs were identified with ARAGORN v2.36 (12) and
tRNAScan-SE v2.0 (13). Functional gene annotation was completed using InterProScan
v5.48 (14), BLAST v2.9.0 (15), TMHMM v2.0 (16), HHPred (17), LipoP v1.0 (18), and SignalP
v5.0 (19). BLAST comparison was run against two databases, NCBI nr and SwissProt (20).
Genome-wide DNA sequence similarities were calculated by ProgressiveMauve v2.4 (21).
All analyses were done at default settings. Phage morphology was determined by staining
samples with 2% (wt/vol) uranyl acetate (22) and viewing the samples by transmission
electron microscopy (TEM) at the Texas A&M Microscopy and Imaging Center.

Phage Summit has a siphophage morphology (Fig. 1). It has a genome of 95,728 bp
with a 58.5% GC content and 93.7% coding density. Annotation of the genome
revealed 148 protein-coding genes and 5 tRNAs, including 1 predicted suppressor
tRNA. Analysis was done to identify possible target genes for the predicted amber stop
codon suppressor tRNA. No significant genes were identified that would require the
suppressor tRNA or that were lacking a Shine-Dalgarno sequence. There are 12 genes
in the genome that have amber stop codons. None of those genes are followed by a
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predicted gene that was in frame that could be fused to its upstream neighbor by
amber suppression, and no identifiable conserved domains or BLAST hits were found
in downstream sequences that would be the product of such a readthrough. No tRNA
synthetase protein was predicted during functional annotation. Therefore, the purpose
of the predicted suppressor tRNA remains unknown. At the time of the analysis,
Stenotrophomonas phage vB_SmaS_DLP_5 (GenBank accession number NC_042082.1)
was the only known phage closely related to Summit, sharing 86.4% nucleotide similar-
ity as determined by ProgressiveMauve and 139 proteins (BLASTp; E value, 0.001).

Data availability. Summit was deposited in GenBank with accession number
MZ326862. The associated BioProject, SRA, and BioSample accession numbers are
PRJNA222858, SRR14095250, and SAMN18509476, respectively.
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Center at Texas A&M University.
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