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Novel heteroleptic ZnII bis(dipyrrinato) complexes were prepared as intriguing emitters.
With our tailor-made design, we achieved far-red emissive complexes with a
photoluminescence quantum yield up to 45% in dimethylsulfoxide and 70% in toluene.
This means that heteroleptic ZnII bis(dipyrrinato) complexes retain very intense emission
also in polar solvents, in contrast to their homoleptic counterparts, which we prepared for
comparing the photophysical properties. It is evident from the absorption and excitation
spectra that heteroleptic complexes present the characteristic features of both ligands: the
plain dipyrrin (Lp) and the π-extended dipyrrin (Lπ). On the contrary, the emission comes
exclusively from the π-extended dipyrrin Lπ, suggesting an interligand nonradiative
transition that causes a large pseudo-Stokes shift (up to 4,600 cm−1). The large
pseudo-Stokes shifts and the emissive spectral region of these novel heteroleptic ZnII

bis(dipyrrinato) complexes are of great interest for bioimaging applications. Thus, their high
biocompatibiliy with four different cell lines make them appealing as new fluorophores for
cell imaging.

Keywords: bis(dipyrrinato) Zn II complexes, cell-viability, far-red emission, heteroleptic Zn II complexes, large Stokes
shift, live-cell imaging, multiplexing

INTRODUCTION

Far-red and near-infrared (NIR) fluorophores are highly desired probes for bioimaging and sensing
applications in living organisms. In fact, they emit in the so-called “biological imaging window”,
where interferences from absorbance by water and proteins and intrinsic autofluorescence are
minimal (Weissleder, 2001; Hilderbrand andWeissleder, 2010). Nevertheless, a proper design of far-
red/NIR dyes is necessary, as those probes usually suffer from photo-bleaching and low
photoluminescence quantum yield (Φ) (Guo et al., 2014). Borondipyrromethene based dyes
(BODIPYs) are among the most widely used fluorophore classes used in bioimaging. (Ni and
Wu, 2014; Kowada et al., 2015; Grossi et al., 2016; Callaghan et al., 2019; Filatov, 2019; Kaur and
Singh, 2019; Qu et al., 2019; Deng et al., 2021). The development of emissive bis(dipyrrinato) zinc
complexes have received an increasing momentum only recently, in contrast to BODIPYs, as they
were used mainly for supramolecular architectures and coordination polymers (Baudron, 2013;
Matsuoka and Nabeshima, 2018; Jiang et al., 2020). With an appropriate design, bright fluorescence
can also be achieved from ZnII bis(dipyrrinato) complexes (I.V. Sazanovich, 2004). Even so,
homoleptic zinc complexes suffer from an intramolecular electron transfer between the two
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electronically degenerate excited states of the identical dipyrrins.
This process causes the population of a non-emissive symmetry-
breaking charge transfer state (SBCT) (Trinh et al., 2014).
Although SBCT is very appealing in potential applications
such as artificial photosynthesis (Alqahtani et al., 2019;
Tungulin et al., 2019) or photovoltaics, (Bartynski et al., 2015),
it is not advantageous for other applications such as imaging,
where high emission also in polar solvents is of utmost
importance. A strategy to control this obstacle is encapsulation
in nanoparticles (e.g. mesoporous silica) (Sani et al., 2020). Very
recently, green-emitting homoleptic bis(dipyrrinato) zinc
complexes were employed as selective probes for cancer cells
and as photodynamic therapy photosensitisers (Karges et al.,
2019a; Karges et al., 2019b; Karges et al., 2020). However, because
of their homoleptic nature, encapsulation in polymeric
nanoparticles was necessary to overcome the quenching effects
in water.

In heteroleptic bis(dipyrrinato) zinc complexes, the
electronically excited states of the two dipyrrinato ligands are
energetically different. Thus, the absence of degeneracy sets aside
the charge-separated state and these complexes are emissive in
polar solvents. Our strategy focused on heteroleptic ZnII

bis(dipyrrinato) complexes that also benefit from a pseudo-

Stokes shift (Kusaka et al., 2012; Sakamoto et al., 2016).
Although Stokes shifts are defined as the separation in energy
between the maxima in absorption and emission of a fluorophore,
a pseudo-Stokes shift is associated with the difference between the
emission and a relative maximum in absorption for an upper-
lying excited state, which undergoes a radiation-less deactivation
in favour to the lower (and emissive) excited state. Fluorophores
with large (pseudo)-Stokes shifts are highly desirable in
biochemical experiments so that the label emission is at a
significant longer wavelength than excitation (e.g. intracellular
imaging enabling multiplexing) (Rauf et al., 2010; Jeong et al.,
2011; Shcherbakova et al., 2012; Holzapfel et al., 2018). Our new
heteroleptic ZnII bis(dipyrrinato) complexes herein presented
have intriguing properties to be used as fluorescent emitters
for bioimaging.

RESULTS AND DISCUSSION

The synthesis of the plain dipyrrins (Lp) is easily accessible via a
condensation reaction between the arylaldehyde and two and a
half equivalents of 2,4-dimethylpyrrole, followed by oxidation by
p-chloranil (Loudet and Burgess, 2007). The π-extended

FIGURE 1 | Chemical structures of the new heteroleptic Zn bis(dipyrrinato) complexes 1a-e presented in this work. For comparison we reported also the study of
the homoleptic complexes of type Zn (Lp)2 2a-d and of type Zn (Lπ)2 3a and 3e.
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dipyrrins (Lπ) were obtained by Knoevenagel condensation of the
plain dipyrrins at the methyl groups in alpha to the pyrrolic
nitrogen with 2-napthalencarbaldehyde, catalysed by acetic acid
(Tungulin et al., 2019). By mixing one equivalent of π-extended
dipyrrin and one equivalent of a plain dipyrrin with zinc diacetate
(Zn(OAc)2) at room temperature, the corresponding new
heteroleptic bis(dipyrrinato) ZnII complexes (LpZnLπ) were
obtained with a yield of up to 40%, with chemical structures
shown in Figure 1. Column chromatography is needed in order
to separate the desired complexes from the homoleptic complexes
(Zn(Lp)2 and Zn(Lπ)2) that are also formed in the reaction
(Figure 1). The homoleptic complexes 2a, 2b, and 3a were
already known, (respectively: (Sakamoto et al., 2016; Tsuchiya
et al., 2016; Tungulin et al., 2019) while the other homoleptic
complexes are presented here for the first time, to the best of our
knowledge. We expect them to have a distorted tetrahedral
geometry as other bis(dipyrrinato) ZnII complexes (Kusaka
et al., 2012; Tsuchiya et al., 2014; Zhang et al., 2018; Zhang
et al., 2019).

Photophysical Properties
All five heteroleptic complexes 1a–e have an intense blue colour
in solution (Figure 2). Their spectroscopic properties were
investigated in a nonpolar solvent, such as toluene (PhMe),
and in a polar aprotic solvent, such as dimethyl sulfoxide
(DMSO), which will be used for the preparation of the
biological assays. In order to understand their photophysical
properties, their relative homoleptic complexes were also

characterised (see Figure 3 and Supplementary Table S1 in
ESI). The UV-vis absorbance spectra of complexes 1a–e have
shared features, as shown in Figures 2, 3.

From the absorption spectra, we identify three main electronic
transition bands in the heteroleptic complexes 1a–e (Table 1).
The broad band at high energy centred at ca. 360 nm is attributed
to the electronic transitions localised on the naphthyl vinyl
moieties of the π-extended dipyrrins, as they are absent in the
plain dipyrrins. It is worth to notice that, in complex 1b, the
characteristic structured band of the anthracenyl moiety is not
visible as it is hidden by the aforementioned naphthyl vinyl
absorption. This is not the case for the homoleptic complex
2b, in which spectrum the vibronic structure of the anthracene
absorption is clearly visible. The other two main bands are in the
visible region, and their profile is reminiscent of the absorption of
the dipyrrin ligands. Between these two bands, the one at highest
energy presents a shoulder at 465 nm and a relative maximum at
ca. 490 nm (e.g.: ε (1e) � 2.2 104 cm−1 M−1).

This absorption is attributed to the singlet ligand centred
(1LC) π→π* transition localised on the plain dipyrrin (1LpC in
Figure 4). At longer wavelengths, a very intense absorption at
ca. 620 nm (e.g.: ε (1e) � 3.3 104 cm−1 M−1) is present with a
shoulder at ca. 575 nm, which is assigned to the π→π*
transition and its vibronic coupling localised on the
π-expanded dipyrrin (1LπC in Figure 4). The ZnII centre is a
d10 metal, and it is not involved in the transitions. Furthermore,
it is reasonable to expect that the dipyrrinato ligands are almost
orthogonal to each other with a weak if not absent exciton

FIGURE 2 | UV (A) Uv/Vis absorption spectra with molar absorptivity coefficient (Ɛ) and (B) excitation and emission spectra of heteroleptic complexes 1a-e (λexc �
570 nm) in spectroscopic DMSO; (C) Pictures of 1a-e in dimethyl sulfoxide solution under ambient (top) and (D) UV (bottom) light.
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FIGURE 3 | UV Photophysics in spectroscopic toluene for heteroleptic complexes 1a-e (top) and homoleptic complexes 2a-d, 3a and 3e (bottom). (A) Uv/Vis
absorption and (B) excitation (dashed plot, λem � 710 nm) emission (solid plot, λexc � 570) spectra of 1a-e. (C) Uv/Vis absorption and (D) excitation (dashed plot, λem �
600 nm for 2a-d, λem � 700 nm for 3a, 3e) emission (solid plot, λexc � 470 nm for 2a-d, λexc � 570 nm for 3a, 3e).

TABLE 1 | Photophysical properties of heteroleptic ZnII complexes 1a-e.

Complex λabs
[a][nm]

(Ɛ [104 M−1cm−1])
λem [nm] Δν [cm−1] (Pseudo

Δν [103 cm−1])
Φ [c] τ [d] [ns] kr [10

7 s−1] knr [10
7 s−1]

1a 366 (0.54) 635[a] 0.20 (4.62) [a] 0.44[a] 3.1[a] 14.2[a] 18.1[a]

491 (0.70) 638[b] 0.30 (4.61) [b] 0.71[b] 3.5[b] 20.3[b] 8.3[b]

627 (1.24)
1b 364 (1.73) 639[a] 0.27 (4.63) [a] 0.37[a] 3.6[a] 10.3[a] 17.3[a]

493 (2.4) 641[b] 0.21 (4.51) [b] 0.55[b] 4.2[b] 13.1[b] 10.7[b]

628 (3.89)
1c 366 (0.57) 634[a] 0.20 (4.59) [a] 0.05[a] 3.0[a] 1.8[a] 31.5[a]

491 (0.72) 635[b] 0.17 (4.42) [b] 0.18[b] 4.0[b] 4.5[b] 20.5[b]

626 (1.28)
1d 360 (0.95) 636[a] 0.27 (4.62) [a] 0.46[a] 2.6[a] 17.0[a] 20.0[a]

492 (0.90) 634[b] 0.32 (4.56) [b] 0.63 3.8[b] 16.6[b] 9.7[b]

625 (1.53)
1e 361 (1.54) 640[a] 0.32 (4.66) [a] 0.38[a] 3.2[a] 11.9[a] 19.4[a]

493 (2.2) 636[b] 0.20 (4.53)[b] 0.45[b] 3.9[b] 11.5[b] 14.1[b]

627 (3.28)

[a] Measured in DMSO and [b] in toluene. [c] Quantum yields were determined by the relative method, using cresyl violet in methanol as reference (Φ � 0.54).(Brouwer, 2011) [d] Exciting
with a NanoLED source at 570 nm.
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coupling (Telfer et al., 2011; Trinh et al., 2014). Each complex
shows fluorescence in the far-red region (emission centred at
635 nm) and a lower intensity shoulder in the near-infrared
region up to 800 nm. The Φ values were measured by the
relative method in two solvents: dimethyl sulfoxide (ET

N: 0.44)
and toluene (ET

N: 0.099) (Reichardt, 1994). In a nonpolar
solvent such as toluene, the zinc bis(dipyrrinato) complexes
have the highest Φ, with values ranging from 18% for complex
1c to 70% for complex 1a. The difference in Φ among
complexes 1a–e has to be ascribed to the distinct aryl group
in meso-position of the plain dipyrrins. It has been previously
proven that the aryl group rotates in respect to the plain of the
dipyrrin, allowing nonradiative deactivation unless bulky
substituents impede this rotation (I.V. Sazanovich, 2004). In
addition to that, the planarity of the chelating dipyrrin might
change upon functionalisation, which also influences the
rigidity and, therefore, the radiative transitions of the
systems (Tungulin et al., 2019). The π-extended dipyrrin is
the same for the heteroleptic compounds, besides complex 1e,
which possess a hydroxyl group in position 4 to the 2,6-
dimethylphenyl substituent, which is in para to the
dipyrrin. The presence of this extra hydroxyl group in 1e
with respect to 1d might induce additional nonradiative
processes since Φ in 1e is slightly lower than the one in 1d

(Φ � 45% and Φ � 63%, respectively). The consistently lower
emission efficiency in 1c is related mainly to the increased
rotational freedom of the aryl group in themeso-position of the
plain dipyrrin. Furthermore, the electron-donating groups
such as methoxy and hydroxyl groups induce an additional
quenching effect. The homoleptic derivatives are emissive only
in toluene (see Supplementary Table S1), although their Φ is
much lower than their heteroleptic counterparts (e.g. Φ (2a):
18%). By comparing the emissions in a polar aprotic solvent
such as DMSO, it is possible to assert that the emission
energies are not affected by changing the polarity of the
medium. In fact, LC transitions are not influenced by
different polarities. Heteroleptic zinc bis(dipyrrinato)
complexes are not symmetric in their ground and excited
states. Therefore, the non-emissive symmetry breaking
charge transfer state (SBCT) is not present, which is
favoured in the case of homoleptic complexes instead (cf.
Figure 4 and Supplementary Figure S5). The intensity of
the emission of 1a–e in DMSO, although reduced in
comparison to the values obtained in PhMe, is still very
strong with Φ of ca. 40%, except for complex 1c (Φ � 5%).
These values are incredibly appealing for far-red/near-IR
emitters, especially because by lowering the emission
energies, the nonradiative deactivation paths are much more
probable to occur.

The fluorescence decays are monoexponential, and the
lifetimes (τ) are close to 3 ns (in DMSO) and 4 ns (in
PhMe), with minor differences among the complexes.
Radiative rate constants (kr) are comparable among the
heteroleptic ZnII complexes and are higher than the
nonradiative ones (knr) in PhMe and lower in DMSO
(except for complex 1c). Excitation spectra of the
investigated complexes show a precise comparison with
their relative absorption spectra, meaning that the far-red
emission centred on the π-extended dipyrrinato moiety also
occurs upon excitation of the plain dipyrrinato moiety
(Figures 2B, 3B, and Supplementary Figure S1). Thus, the
excited state 1LpC undergoes a rapid interligand nonradiative
transition to populate the lower-lying 1LπC (Figure 4).
Therefore, upon excitation at shorter wavelength (470 nm),
the detected emission is at lower energies (emission maximum
at ca. 635 nm). This effect prompts a pseudo-Stokes shift of
more than 4,600 cm−1 (Table 1). As the quenching of the plain
dipyrrin is total, Nishihara and coworkers suggested a 100%
efficient energy transfer from the donor Lp to the acceptor Lπ.
(Kusaka et al., 2012; Sakamoto et al., 2016). Advanced studies
are necessary in order to elucidate the photophysical pathways
of these heteroleptic complexes and, currently, we are
investigating the involved nonradiative processes by means
of transient absorption spectroscopy, which are beyond the
scope of the present work.

Further experiments were done by measuring the
fluorescence lifetimes of the heteroleptic complexes 1a–e,
using three different excitation wavelengths (455, 570, and
625 nm). For each complex, the obtained decays show identical
fittings independently from the excitation energy used
(Supplementary Figure S1).

FIGURE 4 |Qualitative Jablonski-diagram for the involved photophysical
processes in heteroleptic ZnII complexes. (VR: Vibrational radiation; 1LpC:
singlet excited state centered on the plain dipyrrin; 1LpC: singlet excited state
centered on the π-extended dipyrrin. Pink arrow: rapid interligand
nonradiative transition).
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Confocal Laser Microscopy
The emission colors of these new heteroleptic ZnII

bis(dipyrrinato) complexes, as well as their high quantum
yields also in polar solvents and their large pseudo-Stokes
Shifts are appealing properties for their exploitation in
bioimaging. Before evaluating their biocompatibility, we
analysed their stability in different aqueous environments. The
UV/vis absorption spectra of the complexes 1a–e were recorded
in Dulbecco Modified Eagle Medium (DMEM) and in deionized
water (Supplementary Figure S3), using the same concentrations
adopted for the confocal laser microscopy, in order to evaluate
these the new dyes in media close to the cellular environment.
The absorption profiles are stable. The same is true also in
aqueous solutions at pH 3.3 and 5.0 (Supplementary Figure
S4). These conditions were chosen based on the typical pH
gradient in endocytic compartments of cells and DMEM is
tipically used as cellular medium for cell culture applications.
Emission profiles of the compounds in DMEM overlay very well
with those measured in organic solvents, while there is a
bathochromic shift in water, where the emission maxima are
at about 670 nm (Supplementary Table S1). Quantum yields of
the compounds in aqueous media reflect the extremely large
polarity (ET

Nof H2O: 1.00), since the values are up to 3.1% in
DMEM and up to 1.7% in water. Furthermore, it should be noted

that water causes an additional quenching effect due to hydrogen-
bond-assisted nonradiative deactivation (Maillard et al., 2021).

The stability of these complexes was tested at increasing
temperatures (Supplementary Figure S6. The emission of the
complexes is only slightly reduced when going from 20 to 50°C,
and this can be ascribed to the increasing collisions with solvent
molecules followed by an increase of nonradiative deactivation
processes. Thus, our far-red emissive bis(dipyrrinato) zinc
complexes are stable in an aqueous solution at different pH values
and temperatures. In order to test their biocompatibility in living cells,
cell viability and cellular uptake were determined in four different cell
types, including primary somatic cells such as human dermal
fibroblasts (NHDF), a mouse cell line from embryonic fibroblasts
(NIH3T3), and two human cancer cell lines (HeLa, and MCF7). To
test the viability, MTT assays were performed by treating 104 cells of
the respective cell type with different concentrations of the complexes
1a–e for 72 h at 37°C. For all complexes, the LD50 valueswere>20 μM,
showing high biocompatibility (Supplementary Figure S7). On the
contrary,MTT assays of the single dipyrrin ligand showed a decreased
viability already at concentrations lower than 7 µM (Supplementary
Figure S8). For all these results, we assume high stability of these
heteroleptic complexes in the cellular environments.

Since all the complexes showed only negligible toxicity when used
to treat the different cell lines, a concentration of 20 µM was chosen

FIGURE 5 | Cellular uptake of heteroleptic bis(dipyrrinato) zinc complexes in HeLa cells ((A): 1a, (B): 1d, (C): 1e). For co-staining of nuclei and endosomes, cells
were treated with Hoechst 33,342 (λexc � 405nm, λem � 414–462 nm), Lysotracker™ Green (λexc � 488 nm, λem 494–545 nm); and Hoechst 33,342, compounds 1a,
1d, 1e (λexc � 630 nm, λem � 640–750 nm). Intracellular accumulation of the complexes was detected with fluorescence confocal microscopy using a Leica Stellaris 5
with a white light laser. The overlay is the merged image of the single-channel fluorescence images. Scale bars: 25 μm.

Frontiers in Chemistry | www.frontiersin.org September 2021 | Volume 9 | Article 7544206

Tabone et al. Heteroleptic Zn Bis(Dipyrrinato) Complexes for Bioimaging

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


for the cellular uptake experiments and the live-cell fluorescent
imaging (Figure 5, 6 and Supplementary Figures S11–17). With
the best performing complexes 1d and 1e we tested their cellular
uptake also at different concentrations, such as 1, 10, and 20 µM
(Supplementary Figures S9, S10) It was assumed that due to their
hydroxyl groups, a higher water solubility was achieved with
complexes 1c, 1d, and 1e. As expected, due to the low Φ of 1c,
this complex is hardly detectable. In contrast, complexes 1d and 1e
display improved cellular uptake with respect to DMSO controls by
virtue of their higher solubility in aqueous solution. Complexes 1a
and 1b showed decreased cellular uptake. All complexes were taken
up by endocytosis at the respective concentrations, leading to an
accumulation in the endosomal/lysosomal compartment, which was
proven by the counterstaining with Lysotracker GreenTM (Figure 5)
(Canton and Battaglia, 2012; Kolmel et al., 2012).

As a further analysis, confocal live-cell fluorescence microscopy
was performed with Mitotracker™ Green. However, no
counterstaining with mitochondrial markers was observed
(Supplementary Figures S12–14). Figures 5A–C shows the
counterstaining experiments in HeLa cells with Lysotracker
Green with Pearson coefficients of 0.85 for 1e, 0.60 for 1d, and
0.24 for 1a (Bolte and Cordelières, 2006). To further test the
suitability of these heteroleptic ZnII bis(dipyrrinato) complexes
for bioimaging applications, the correlation of incubation time
with signal intensity in live-cell imaging and the stability after
fixation of cells were also investigated. While differences in the
obtained signal intensity could be detected when incubating cells for
a period of 0.5, 1.5, and 6 h (Supplementary Figure S17, compound
1e), the complexes showed no decrease in fluorescence intensity after
fixation (Figure 6). This proves the versatility of these complexes, as
they can be used in live-cell imaging and in fixed-cell experiments,
e.g. for immunocytochemistry. Moreover, given the photochemical
properties of the compounds and the significant pseudo-Stokes shift,
the excitation of complexes was possible at multiple wavelengths,
allowing for the simultaneous excitation of two fluorophores at
488 nm and the detection of their emission at different wavelengths.

CONCLUSION

In the search of promising far-red-emitting fluorophores for
bioimaging, we designed and synthesized five new heteroleptic

ZnII bis(dipyrrinato) complexes. Their relative homoleptic
derivatives were prepared for comparison. We investigated
their luminescence in two different solvents: the nonpolar
toluene and the polar and water-miscible dimethylsulfoxide.
In contrast to the homoleptic derivatives, the heteroleptic
complexes feature high emission also in polar aprotic
solvent, such as DMSO. We confirmed that emission comes
only from the singlet excited state that is centered on the
π-extended dipyrrin that has the lowest energy gap. Therefore,
those heteroleptic complexes emit in the far-red to NIR region,
which is highly desirable for biological investigations. Our
heteroleptic ZnII bis(dipyrrinato) are stable in aqueous
solutions and at different pH. They presented an endosomal
uptake with high cell biocompatibility in four different cell
types. Thanks to their large pseudo-Stokes shift, these
complexes can be excited at multiple wavelengths.
Moreover, we demonstrated that they can be used also in
fixed-cell experiments. All in one, those results envision
heteroleptic ZnII bis(dipyrrinato) complexes as successful
fluorophores and motivates further development for
exciting application in fluorescence imaging and beyond.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

Conceptualization: CB. Funding acquisition: CB, US, and EL. Project
administration: CB Supervision: CB and US Validation: CB and US
Investigation: RT, DF, and EL Writing: all authors.

FUNDING

This research has been funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
under the Research Training Group GRK 2039 (RT and CB:

FIGURE 6 | Post-fixation immunochemical staining of nuclei and actin cytoskeleton of NIH3T3 cells treated with compound 1d. Cells were treated with DAPI (λexc �
405nm, λem � 410–470 nm), Actin (λexc � 488 nm, λem 490–535 nm); compound 1d (λexc � 640 nm, λem � 656–700 nm).

Frontiers in Chemistry | www.frontiersin.org September 2021 | Volume 9 | Article 7544207

Tabone et al. Heteroleptic Zn Bis(Dipyrrinato) Complexes for Bioimaging

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


project A4; DF and US: project C2) and under Germany’s
Excellence Strategy via the Excellence Cluster 3D Matter Made
to Order (EXC-2082/1—390761711) (US and EDL). The work of
EDL has been supported by a postdoctoral research fellowship of
the Alexander von Humboldt Foundation.

ACKNOWLEDGMENTS

The authors thank the KIT and the Carl Zeiss Foundation for
financial support. Prof. S. Bräse and Prof. H.-A. Wagenknecht
(Institute of Organic Chemistry, KIT) and Prof. M. Bastmeyer

(Zoological Institute, KIT) are gratefully acknowledged for giving
access to the labs and necessary equipment. We acknowledge
support by the KIT-Publication Fund of the Karlsruhe Institute of
Technology.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/
fchem.2021.754420/full#supplementary-material

REFERENCES

Alqahtani, N. Z., Blevins, T. G., and Mccusker, C. E. (2019). Quantifying Triplet
State Formation in Zinc Dipyrrin Complexes. J. Phys. Chem. A. 123,
10011–10018. doi:10.1021/acs.jpca.9b08682

Bartynski, A. N., Gruber, M., Das, S., Rangan, S., Mollinger, S., Trinh, C., et al.
(2015). Symmetry-breaking Charge Transfer in a Zinc Chlorodipyrrin Acceptor
for High Open Circuit Voltage Organic Photovoltaics. J. Am. Chem. Soc. 137,
5397–5405. doi:10.1021/jacs.5b00146

Baudron, S. A. (2013). Luminescent Dipyrrin Based Metal Complexes. Dalton
Trans. 42, 7498–7509. doi:10.1039/c3dt50493j

Bolte, S., and Cordelières, F. P. (2006). A Guided Tour into Subcellular
Colocalization Analysis in Light Microscopy. J. Microsc. 224, 213–232.
doi:10.1111/j.1365-2818.2006.01706.x

Brouwer, A. M. (2011). Standards for Photoluminescence Quantum Yield
Measurements in Solution (IUPAC Technical Report). Pure Appl. Chem. 83,
2213–2228. doi:10.1351/pac-rep-10-09-31

Callaghan, S., Filatov, M. A., Savoie, H., Boyle, R. W., and Senge, M. O. (2019). In
Vitro cytotoxicity of a Library of BODIPY-Anthracene and -pyrene Dyads for
Application in Photodynamic Therapy. Photochem. Photobiol. Sci. 18, 495–504.
doi:10.1039/c8pp00402a

Canton, I., and Battaglia, G. (2012). Endocytosis at the Nanoscale. Chem. Soc. Rev.
41, 2718–2739. doi:10.1039/c2cs15309b

Deng, P., Xiao, F., Wang, Z., and Jin, G. (2021). A Novel BODIPY Quaternary
Ammonium Salt-Based Fluorescent Probe: Synthesis, Physical Properties,
and Live-Cell Imaging. Front. Chem. 9, 650006. doi:10.3389/
fchem.2021.650006

Filatov, M. A. (2019). Heavy-atom-free BODIPY Photosensitizers with Intersystem
Crossing Mediated by Intramolecular Photoinduced Electron Transfer. Org.
Biomol. Chem. 18, 10–27. doi:10.1039/c9ob02170a

Grossi, M., Morgunova, M., Cheung, S., Scholz, D., Conroy, E., Terrile, M., et al.
(2016). Lysosome Triggered Near-Infrared Fluorescence Imaging of Cellular
Trafficking Processes in Real Time. Nat. Commun. 7, 10855. doi:10.1038/
ncomms10855

Guo, Z., Park, S., Yoon, J., and Shin, I. (2014). Recent Progress in the Development
of Near-Infrared Fluorescent Probes for Bioimaging Applications. Chem. Soc.
Rev. 43, 16–29. doi:10.1039/c3cs60271k

Hilderbrand, S. A., and Weissleder, R. (2010). Near-infrared Fluorescence:
Application to In Vivo Molecular Imaging. Curr. Opin. Chem. Biol. 14,
71–79. doi:10.1016/j.cbpa.2009.09.029

Holzapfel, H. Y., Stern, A. D., Bouhaddou, M., Anglin, C. M., Putur, D., Comer, S.,
et al. (2018). Fluorescence Multiplexing with Spectral Imaging and
Combinatorics. ACS Comb. Sci. 20, 653–659. doi:10.1021/acscombsci.8b00101

Jeong, S., Won, N., Lee, J., Bang, J., Yoo, J., Kim, S. G., et al. (2011). Multiplexed
Near-Infrared In Vivo Imaging Complementarily Using Quantum Dots and
Upconverting NaYF4:Yb3+,Tm3+ Nanoparticles. Chem. Commun. 47,
8022–8024. doi:10.1039/c1cc12746b

Jiang, Q., Desbois, N., Wang, S., and Gros, C. P. (2020). Recent Developments in
Dipyrrin Based Metal Complexes: Self-Assembled Nanoarchitectures and
Materials Applications. J. Porphyrins Phthalocyanines 24, 646–661.
doi:10.1142/s1088424620300025

Karges, J., Basu, U., Blacque, O., Chao, H., and Gasser, G. (2019a). Polymeric
Encapsulation of Novel Homoleptic Bis(dipyrrinato) Zinc(II) Complexes with
Long Lifetimes for Applications as Photodynamic Therapy Photosensitisers.
Angew. Chem. Int. Ed. 58, 14334–14340. doi:10.1002/anie.201907856

Karges, J., Blacque, O., Chao, H., and Gasser, G. (2019b). Polymeric
Bis(dipyrrinato) Zinc(II) Nanoparticles as Selective Imaging Probes for
Lysosomes of Cancer Cells. Inorg. Chem. 58, 12422–12432. doi:10.1021/
acs.inorgchem.9b02019

Karges, J., Blacque, O., and Gasser, G. (2020). Metal Dipyrrin Complexes as
Potential Photosensitizers for Photodynamic Therapy. Inorg. Chim. Acta 505.
119482. doi:10.1016/j.ica.2020.119482

Kaur, P., and Singh, K. (2019). Recent Advances in the Application of BODIPY in
Bioimaging and Chemosensing. J. Mater. Chem. C 7, 11361–11405.
doi:10.1039/c9tc03719e

Kölmel, D., Fürniss, D., Susanto, S., Lauer, A., Grabher, C., Bräse, S., et al. (2012).
Cell Penetrating Peptoids (CPPos): Synthesis of a Small Combinatorial Library
by Using IRORI MiniKans. Pharmaceuticals 5, 1265–1281. doi:10.3390/
ph5121265

Kowada, T., Maeda, H., and Kikuchi, K. (2015). BODIPY-based Probes for the
Fluorescence Imaging of Biomolecules in Living Cells. Chem. Soc. Rev. 44,
4953–4972. doi:10.1039/c5cs00030k

Kusaka, S., Sakamoto, R., Kitagawa, Y., Okumura, M., and Nishihara, H. (2012). An
Extremely Bright Heteroleptic bis(dipyrrinato)Zinc(II) Complex. Chem. Asian
J. 7, 907–910. doi:10.1002/asia.201200131

Loudet, A., and Burgess, K. (2007). BODIPY Dyes and Their Derivatives: Syntheses
and Spectroscopic Properties. Chem. Rev. 107, 4891–4932. doi:10.1021/
cr078381n

Maillard, J., Klehs, K., Rumble, C., Vauthey, E., Heilemann, M., and Fürstenberg, A.
(2021). Universal Quenching of Common Fluorescent Probes by Water and
Alcohols. Chem. Sci. 12, 1352–1362. doi:10.1039/d0sc05431c

Matsuoka, R., and Nabeshima, T. (2018). Functional Supramolecular Architectures
of Dipyrrin Complexes. Front. Chem. 6, 349. doi:10.3389/fchem.2018.00349

Ni, Y., and Wu, J. (2014). Far-red and Near Infrared BODIPY Dyes: Synthesis and
Applications for Fluorescent pH Probes and Bio-Imaging. Org. Biomol. Chem.
12, 3774–3791. doi:10.1039/c3ob42554a

Qu, X., Song, W., and Shen, Z. (2019). A Highly Selective NIR Fluorescent Turn-
On Probe for Hydroxyl Radical and its Application in Living Cell Images. Front.
Chem. 7, 598. doi:10.3389/fchem.2019.00598

Rauf, S., Glidle, A., and Cooper, J. M. (2010). Application of Quantum Dot
Barcodes Prepared Using Biological Self-Assembly to Multiplexed
Immunoassays. Chem. Commun. 46, 2814–2816. doi:10.1039/b927149j

Reichardt, C. (1994). Solvatochromic Dyes as Solvent Polarity Indicators. Chem.
Rev. 94, 2319–2358. doi:10.1021/cr00032a005

Sakamoto, R., Iwashima, T., Kögel, J. F., Kusaka, S., Tsuchiya, M., Kitagawa, Y.,
et al. (2016). Dissymmetric Bis(dipyrrinato)Zinc(II) Complexes: Rich Variety
and Bright Red to Near-Infrared Luminescence with a Large Pseudo-stokes
Shift. J. Am. Chem. Soc. 138, 5666–5677. doi:10.1021/jacs.6b02128

Sani, U., Tungulin, D., Bizzarri, C., and Cucinotta, F. (2020). Turning Weak
Emitters into Outstanding Luminescent Materials Using Rigid Host media. RSC
Adv. 10, 2841–2845. doi:10.1039/c9ra10727d

Sazanovich, I. V., Kirmaier, C., Hindin, E., Yu, L., Bocian, D. F., Lindsey, J. S.,
et al. (2004). Structural Control of the Excited-State Dynamics of

Frontiers in Chemistry | www.frontiersin.org September 2021 | Volume 9 | Article 7544208

Tabone et al. Heteroleptic Zn Bis(Dipyrrinato) Complexes for Bioimaging

https://www.frontiersin.org/articles/10.3389/fchem.2021.754420/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fchem.2021.754420/full#supplementary-material
https://doi.org/10.1021/acs.jpca.9b08682
https://doi.org/10.1021/jacs.5b00146
https://doi.org/10.1039/c3dt50493j
https://doi.org/10.1111/j.1365-2818.2006.01706.x
https://doi.org/10.1351/pac-rep-10-09-31
https://doi.org/10.1039/c8pp00402a
https://doi.org/10.1039/c2cs15309b
https://doi.org/10.3389/fchem.2021.650006
https://doi.org/10.3389/fchem.2021.650006
https://doi.org/10.1039/c9ob02170a
https://doi.org/10.1038/ncomms10855
https://doi.org/10.1038/ncomms10855
https://doi.org/10.1039/c3cs60271k
https://doi.org/10.1016/j.cbpa.2009.09.029
https://doi.org/10.1021/acscombsci.8b00101
https://doi.org/10.1039/c1cc12746b
https://doi.org/10.1142/s1088424620300025
https://doi.org/10.1002/anie.201907856
https://doi.org/10.1021/acs.inorgchem.9b02019
https://doi.org/10.1021/acs.inorgchem.9b02019
https://doi.org/10.1016/j.ica.2020.119482
https://doi.org/10.1039/c9tc03719e
https://doi.org/10.3390/ph5121265
https://doi.org/10.3390/ph5121265
https://doi.org/10.1039/c5cs00030k
https://doi.org/10.1002/asia.201200131
https://doi.org/10.1021/cr078381n
https://doi.org/10.1021/cr078381n
https://doi.org/10.1039/d0sc05431c
https://doi.org/10.3389/fchem.2018.00349
https://doi.org/10.1039/c3ob42554a
https://doi.org/10.3389/fchem.2019.00598
https://doi.org/10.1039/b927149j
https://doi.org/10.1021/cr00032a005
https://doi.org/10.1021/jacs.6b02128
https://doi.org/10.1039/c9ra10727d
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Bis(dipyrrinato)zinc Complexes: Self-Assembling Chromophores for Light-
Harvesting Architectures. J. Am. Chem. Soc. 126, 2664–2665. doi:10.1021/
ja038763k

Shcherbakova, D. M., Hink, M. A., Joosen, L., Gadella, T. W. J., and Verkhusha, V.
V. (2012). An orange Fluorescent Protein with a Large Stokes Shift for Single-
Excitation Multicolor FCCS and FRET Imaging. J. Am. Chem. Soc. 134,
7913–7923. doi:10.1021/ja3018972

Telfer, S. G., Mclean, T. M., and Waterland, M. R. (2011). Exciton Coupling in
Coordination Compounds. Dalton Trans. 40, 3097–3108. doi:10.1039/
c0dt01226b

Trinh, C., Kirlikovali, K., Das, S., Ener, M. E., Gray, H. B., Djurovich, P., et al.
(2014). Symmetry-Breaking Charge Transfer of Visible Light Absorbing
Systems: Zinc Dipyrrins. J. Phys. Chem. C 118, 21834–21845. doi:10.1021/
jp506855t

Tsuchiya, M., Sakamoto, R., Kusaka, S., Kitagawa, Y., Okumura, M., and Nishihara,
H. (2014). Asymmetric Dinuclear bis(dipyrrinato)Zinc(II) Complexes: Broad
Absorption and Unidirectional Quantitative Exciton Transmission. Chem.
Commun. 50, 5881–5883. doi:10.1039/c4cc01573h

Tsuchiya, M., Sakamoto, R., Shimada, M., Yamanoi, Y., Hattori, Y.,
Sugimoto, K., et al. (2016). Bis(dipyrrinato)Zinc(II) Complexes:
Emission in the Solid State. Inorg. Chem. 55, 5732–5734. doi:10.1021/
acs.inorgchem.6b00431

Tungulin, D., Leier, J., Carter, A. B., Powell, A. K., Albuquerque, R. Q., Unterreiner,
A. N., et al. (2019). Chasing BODIPY: Enhancement of Luminescence in
Homoleptic Bis(dipyrrinato) Zn II Complexes Utilizing Symmetric and
Unsymmetrical Dipyrrins. Chem. Eur. J. 25, 3816–3827. doi:10.1002/
chem.201806330

Weissleder, R. (2001). A Clearer Vision for In Vivo Imaging. Nat. Biotechnol. 19,
316–317. doi:10.1038/86684

Zhang, F., Baudron, S. A., and Hosseini, M. W. (2018). Symmetrical and
Dissymmetrical 2,2′-Bis-Dipyrrin Ligands and Zn(ii) Binuclear Helicates.
New J. Chem. 42, 6997–7004. doi:10.1039/c8nj00335a

Zhang, F., Fluck, A., Baudron, S. A., and Hosseini, M. W. (2019). Synthesis, crystal
Structure and Optical Properties of a Series of Dipyrrins Bearing Peripheral
Coordinating Groups and Their BODIPYs and Zn(II) Complexes. Inorg. Chim.
Acta 494, 216–222. doi:10.1016/j.ica.2019.05.027

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Tabone, Feser, Lemma, Schepers and Bizzarri. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Chemistry | www.frontiersin.org September 2021 | Volume 9 | Article 7544209

Tabone et al. Heteroleptic Zn Bis(Dipyrrinato) Complexes for Bioimaging

https://doi.org/10.1021/ja038763k
https://doi.org/10.1021/ja038763k
https://doi.org/10.1021/ja3018972
https://doi.org/10.1039/c0dt01226b
https://doi.org/10.1039/c0dt01226b
https://doi.org/10.1021/jp506855t
https://doi.org/10.1021/jp506855t
https://doi.org/10.1039/c4cc01573h
https://doi.org/10.1021/acs.inorgchem.6b00431
https://doi.org/10.1021/acs.inorgchem.6b00431
https://doi.org/10.1002/chem.201806330
https://doi.org/10.1002/chem.201806330
https://doi.org/10.1038/86684
https://doi.org/10.1039/c8nj00335a
https://doi.org/10.1016/j.ica.2019.05.027
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

	Intriguing Heteroleptic ZnII bis(dipyrrinato) Emitters in the Far-Red Region With Large Pseudo-Stokes Shift for Bioimaging
	Introduction
	Results and Discussion
	Photophysical Properties
	Confocal Laser Microscopy

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


