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Abstract: Polyhydroxybutyrate (PHB) is a very promising alternative to most petroleum-based
plastics with the huge advantage of biodegradability. Biotechnological production processes utilizing
cyanobacteria as sustainable source of PHB require fast in situ process analytical technology (PAT)
tools for sophisticated process monitoring. Spectroscopic probes supported by ultrasound particle
traps provide a powerful technology for in-line, nondestructive, and real-time process analytics in
photobioreactors. This work shows the great potential of using ultrasound particle manipulation
to improve spectroscopic attenuated total reflection Fourier-transformed mid-infrared (ATR-FTIR)
spectra as a monitoring tool for PHB production processes in photobioreactors.

Keywords: polyhydroxyalkanoates; PHB; PAT; Synechocystis sp. PCC 6714; process monitoring;
ultrasound particle manipulation

1. Introduction

Every day, huge quantities of petroleum-based plastics are produced. The majority is
for single-use purposes, not recycled and not biodegradable. Their production and disposal
by incineration releases high amounts of the greenhouse gas carbon dioxide (CO2) into the
atmosphere. Nonbiodegradable plastics carelessly disposed in nature are polluting almost
all habitats on earth. Plastic slowly breaks down into microplastics, threatening life in water
and on land [1]. In times of serious climate change, the Paris Agreement on limiting global
warming, the single-use plastics ban of the European Union, and other initiatives to avoid
accumulation of plastics all over the planet, research on new technologies and materials
is essential [2]. These developments should help to satisfy the Sustainable Development
Goals (SDGs) proposed by the United Nations for a more sustainable future of human
society [3].

One possible solution to simultaneously reduce the atmospheric CO2 concentration
and generate biodegradable plastics are cyanobacteria. Several species of cyanobacteria
produce different types of polyhydroxyalkanoates (PHAs) photoautotrophically, i.e., solely
out of light energy and CO2 [4]. PHAs are alternatives to most petroleum-based plastics,
and they are fully biodegradable [5]. An important representative is polyhydroxybutyrate
(PHB). Alongside glycogen, PHB is accumulated by some cyanobacterial species as carbon
and energy storage compound [6–8]. It is produced during nutrient starvation (nitrogen or
phosphorus) or other stress-inducing factors [9,10].

The reason these bioplastics from cyanobacteria did not find their way into applica-
tions yet is that scaling-up the production processes is challenging. Usually, externally
illuminated glass reactors with a high surface-to-volume ratio are used [7,11,12]. For every
step during scale-up, the availability of CO2, nutrients, and most importantly, light is
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different, and biomass growth and PHB productivity strongly vary [13]. Thus, in situ
quantification tools used as process analytical technology (PAT) to determine the PHB
content in real-time are inevitable. Karmann et al. utilized flow cytometry for at-line PHB
quantification [14], and Gutschmann et al. investigated the use of photon density wave
spectroscopy for in-line PHB monitoring [15]. Vibrational spectroscopy represents another
powerful technique for probing liquid as well as solid samples in a nondestructive manner,
and it is also capable of in-line operation. Attenuated total reflection Fourier-transformed
mid-infrared (ATR-FTIR) spectroscopy can be used to quantify the amount of PHB or
glycogen accumulated within the cell [16].

In a typical in-line ATR probe, light in the mid-IR region from 400–4000 cm−1 is
totally reflected within the diamond tip. This results in an evanescent field that penetrates
approximately 1–2 µm of the cultivation broth and interacts with all molecules [17]. The
changes in light intensities are recorded, and the spectra can be evaluated by univariate
calibration or chemometric tools [16,18]. ATR-FTIR instruments are commercially available,
and applications for in-line, on-line, or at-line monitoring are established PAT tools, e.g.,
for P. chrysogenum or E. coli processes [19–21]. Further, ATR-FTIR studies were done for
characterization of PHAs [22], and for PHB production processes using bacteria [23–25].
In general, a specific cell spectrum in liquid culture is only achievable if the evanescent
field is mainly populated by cells. Usually in stirred cultivation broths, only the liquid
constituents are accessible. Different strategies were employed to selectively enhance the
signal attributed to the cells, e.g., using an on-line loop to bring medium through a flow cell
equipped with an ATR-element. By selectively stopping the flow, cells settle on the ATR
element and are then accessible for analysis with ATR-FTIR spectroscopy. This was shown
for quantification of PHB in E. coli [24]. After the measurement, the cells are resuspended
as flow is re-established. This prolonged procedure could influence the cells due to oxygen
or nutrient limitations, as well as produce biofilms as cells are not efficiently resuspended.
To avoid these effects in biotechnological processes ultrasound (US) particle manipulation
devices can be used [26].

It is, however, desirable to have a fast in-line measurement of the PHB content for
process monitoring and control. By using spectroscopic probes and acoustic traps, which
can perform in-line particle (cell) manipulation, cells can be directly accumulated in the
evanescent field of an ATR probe, making them available for measurement. These acoustic
traps use US standing wave fields to trap cells in the fermentation broth [27]. By alternating
US frequencies, the acoustic pressure nodes carrying the cells can be moved and the
cells are pushed onto the ATR diamond for direct acquisition of IR cell spectra. US
particle manipulation in combination with an ATR-FTIR probe was successfully used to
generate cell spectra containing quantitative information of accumulated carbohydrates in
S. cerevisiae cultivations [28,29].

Here, we present a US particle manipulation device to enhance the quality of in situ
ATR-FTIR spectra of Synechocystis sp. PCC 6714 during PHB accumulation. It was directly
inserted into the bioreactor, enabling in-line measurement of PHB and glycogen content of
the cyanobacterial cells. We did photobioreactor cultivations to evaluate the applicability
of the technology as a real-time PAT tool for monitoring, and to avoid time-consuming and
laborious PHB off-line analytics involving toxic chemicals.

2. Materials and Methods
2.1. Strain, Media, and Preculture Preparation

An axenic culture of wild-type Synechocystis sp. PCC 6714 accumulating PHB under
nitrogen-limiting conditions was used [30,31]. The precultures for inoculation of photo-
bioreactor cultivations were grown in 250 mL Erlenmeyer flaks containing 50 mL BG11
medium with 1.5 g·L−1 NaNO3 [32]. The cells were incubated in a Minitron incubation
shaker (Infors, Basel, Switzerland) at 28 ◦C, 150 rpm (25 mm amplitude) with 3% CO2
atmosphere under continuous illumination of 50 µmol·m−2·s−1.
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2.2. Bioreactor Cultivations

For photobioreactor experiments a Ralf bioreactor system (Bioengineering, Wald,
Switzerland) with 6.7 L total volume respectively 5.4 L working volume was equipped
with two 65 mm turbine impellers, and LED strips for external, continuous illumination
via the glass jacket. 10 m of warm-white LED stripes (Paulmann, Völksen, Germany)
carrying 200 LEDs with a total light power of 1,920 lm were uniformly wrapped around
the vessel. The inner diameter of the reactor was 148 mm, and the illumination provided in
the center, measured in cell-free BG11 medium, was 250 µmol·m−2·s−1. pH was measured
in-line via an EasyFerm Plus pH probe (Hamilton, Bonaduz, Switzerland). Pressurized
air and CO2 were separately controlled by two type 4850 mass flow controllers (Brooks
Instruments, Hatfield, PA, USA) operated by the 0254 control unit (Brooks Instruments,
Hatfield, PA, USA).

5.4 L BG11 medium containing approx. 750 mg·L−1 NaNO3 was filled into the
vessel prior to autoclaving [32]. Aeration flow of the 5% CO2-enriched air was in total
270 mL·min−1 (0.05 vvm). The pH was controlled at 8.5 ± 0.05 via automatic addition of
2 N KOH throughout the whole process. Temperature was set to 28 ◦C and the stirring
speed to 180 rpm. For inoculation, the preculture was added via septum to a final optical
density at 750 nm (OD750) of 0.12. Samples were drawn in regular intervals every day until
the end of process. To monitor cell growth OD750 was determined for every sample in
1 mL cuvettes on a Nanodrop One photometer (Thermo Fisher Scientific, Waltham, MA,
USA). Dry cell weight (DCW) was estimated via following correlation found in previous
studies [33]:

DCW [mg·L−1] = 168.9 ∗ OD750 (1)

Nitrate concentrations in the medium were determined on an ICS-6000 ion chromatog-
raphy system with an IonPac AS11 column (Thermo Fisher Scientific, Waltham, MA, USA).
The method was recently described in detail elsewhere [34].

2.3. In-Line Ultrasound-Enhanced ATR-FTIR Measurements

A ReactIR 45m spectrometer with plug-and-play interface was connected to a 1.5 m
silver halide optical fiber ATR probe with diamond tip (Mettler Toledo, Columbus, OH,
USA). It was used for collecting mid-IR spectra between 800 and 1,800 cm−1 at a resolution
of 4 cm−1. The detector was constantly cooled by liquid nitrogen and the device purged
with dry air. For data acquisition, the software iC IR 4.2 (Mettler Toledo, Columbus, OH,
USA) was used. As a background, cultivation medium before inoculation was measured.
A spectrum was recorded every minute with 256 scans.

The ATR probe head together with the soniccatch add-on (usePAT GmbH, Vienna,
Austria) formed a US trap (see Scheme 1). The created standing wave US field held cells
in place directly in the reactor. By accurate control of the field parameters via the US
transducer through the US amplifier sonicamp (usePAT GmbH, Vienna, Austria), the cells
could either be pushed into the evanescent field of the ATR or retracted from it, enabling
a selective in-situ FTIR measurement of the cells and their PHB and glycogen content.
The distance of ATR surface to US transducer was 2.8 mm, the frequency of the driving
amplifier was set to 2.18 MHz. The used trapping protocol involved four steps: firstly, cells
were trapped at a catching frequency, followed by a successive stepwise ramp to push the
cells into the evanescent field. Afterwards, the frequency was adjusted back to retract the
cells. Finally, the cells were released, and the cycle started anew. This ensured the catching
and measurement of new cells from the fermentation broth.

Spectra treatment and evaluation was done in Python 3.8 using the numpy, scipy, and
pandas libraries. Spectra were smoothed using a Savitzky–Golay filter with a window
length of 15 and a third order polynomial. Catching of cells was verified by evaluating the
integrated intensity of the Amide II band (ca. 1540 cm−1), since this absorption band is
characteristic of the cells. Pristine cell spectra were obtained by subtracting consecutive
spectra of retracted and pushed cells, leading to drift-free absorbance spectra. Since the
amount of caught and pushed cells varied, for the determination of PHB and glycogen
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content the spectra were normalized to the Amide II band. For PHB quantification, the
most important band at 1738 cm−1, corresponding to the carbonyl stretch, was integrated,
and correlated to the amount of PHB in the cells determined by the reference method.
Since this band is not overlapped by any other substance in the matrix, a simple univariate
calibration was possible. The determination of glycogen was performed analogously using
the absorption band at 1030 cm−1.

Scheme 1. Experimental setup: (1) a glass bioreactor with stirrer. (2) The sonic-catch add-on in
combination with the ReactIR 45m diamond ATR probe formed the US trap. (3) Detail of ATR probe
tip (4), where the US standing wave field (shaded in green, (5)) catches cells in pressure nodal points.
By accurate control of this US field, cells can either be pushed into evanescent field of ATR or retracted
from it.

2.4. Off-Line Quantification of PHB and Glycogen

After centrifugation of 1 mL culture aliquots, the cell pellets were dried at 75 ◦C for
24 h, and directly used for PHB and glycogen sample preparation and measurement [33].
Briefly, PHB was quantified on an UltiMate 3000 HPLC system (Thermo Fisher Scientific,
Waltham, MA, USA) with an Aminex HPX-87 H column (Bio-Rad Laboratories, Hercules,
CA, USA). Glycogen was determined on an ICS-6000 ion chromatography system with a
CarboPac PA10 column (Thermo Fisher Scientific, Waltham, MA, USA).

3. Results
3.1. Photobioreactor Cultivations

For accumulation of PHB within the wild-type Synechocystis sp. PCC 6714 strain
photobioreactor cultivations were conducted, and biomass growth and nitrate content
monitored (Figure 1).

During the biomass growth phase, growth was almost linear within the first seven
days (168 h) with an average growth rate µlinear = 0.15 g·L−1·d−1 to a value of 1.06 g·L−1.
The available nitrate in the medium of 9.0 mM was consumed after 168 h, which resulted
in an average biomass per spent nitrate yield of 1.87 g·g−1. Following the depletion of
nitrogen, PHB production started. After a maximum of 1.39 g·L−1 biomass was reached at
309 h, the cell concentration started to decline, and thus, the process was stopped at a final
DCW of 1.33 g·L−1 after 344 h (Figure 1).
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Figure 1. A photobioreactor cultivation of Synechocystis sp. PCC 6714 under nitrogen-limiting
conditions showing the DCW (blue) and nitrate concentration (orange) during process. Error bars
reflect the error of calibration curve.

3.2. Ultrasound-Enhanced ATR-FTIR Spectra

Figure 2a depicts typical process FTIR spectra, with the orange spectrum at the
top representing a spectrum in retracted state and the spectrum in blue representing
the pushing state. Clear bands attributed to specific vibrational transitions in organic
material, and in this case, cells can be seen in the blue spectrum, e.g., the Amide I band at
1650 cm−1, the Amide II band at 1540 cm−1, or the fingerprint region from 990–1200 cm−1.
Figure 2b shows the integrated intensity of the Amide II band at 1540 cm−1. When the
cells were pushed into the evanescent field of the ATR, the intensity raised, and when
the cells were pulled out again, it decreased. The resulting modulation was stable and
allowed for the subtraction of a pair of differently manipulated spectra, which yielded a
pristine spectrum of the cells, shown at the bottom of Figure 2a in green. As indicated in
Figure 2b, the intensity of the Amide II band was used to automatically detect pairs for
spectra subtraction, as it was not affected as strongly by shifts of the OH-deformation band
of water at 1650 cm−1 compared to that of the Amide I band.

In these subtracted spectra, the accumulation of PHB in the cell during the nitrogen
deprived cultivation became clearly visible, as the band attributed to the carbonyl stretch of
the PHB at 1738 cm−1 was free standing and could thus be used directly for determination
of the PHB content. It was in good agreement with the reference spectrum obtained by
direct measurement of PHB powder (Figure 3).

3.3. In Situ Quantification of PHB Content

Cell spectra obtained during the cultivations revealed a steady increase in the intensity
of the PHB absorption band at 1738 cm−1, as shown in Figure 3. These spectra were
normalized to the Amide II band to accommodate the fact that during catching of new cells,
not the exact same amount of material could be caught and was pushed into the evanescent
field of the ATR for FTIR measurement. In this case, we used nonoverlapping bands as
an internal standard for intensity correction, and the Amide II band was not affected by
either PHB or glycogen, or other components of the cultivation broth. For calibration,
reference values were needed. For the characterization of the cultivation at different
time intervals, offline samples were taken and analyzed for PHB and glycogen content.
Because the timestamp of the offline reference samples and the in-line measurements
did not necessarily coincide, the offline references were used to fit a model describing its
evolvement over time. With the obtained reference points, a univariate calibration (band
integral at 1738 cm−1 for PHB, band height at 1025 cm−1 for glycogen) was performed.
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This resulted in coefficients of determination (R2) and limit of quantifications (LOQ) of
0.91 and 18.3 mg·g−1 and 0.90 and 71.2 mg·g−1 for PHB and glycogen, respectively, as
summarized in Table 1.

Figure 2. Typical process FTIR spectra. (a) Two selected spectra with activated (blue) and deactivated US capture (orange)
are depicted on top. Subtraction yielded pure spectra of Synechocystis sp. 6714, shown at bottom (green). (b) Integrated
signal from the Amide II band, showing modulation occurring when US trap was in pushing mode vs. retracting mode.

Figure 3. Top: in-line spectra of cells during different times in fermentation. PHB and glycogen
bands were increasing steadily. Bottom: reference spectra of dry PHB and glycogen powder, showing
approximate position of specific absorption bands.
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Table 1. Calibration results for PHB and glycogen in situ quantification.

Analyte Method Adj. R2

[–]
LOQ

[mg·g−1]

PHB Band integration (1705–1774 cm−1), baseline corrected 0.91 18.3
Glycogen Band height at 1025 cm−1, baseline corrected 0.90 71.2

With an established calibration, the trends of accumulated PHB and glycogen during
the cultivation were plotted (Figure 4). The in-line determined PHB and glycogen content
were in good agreement with the references obtained from offline analytics.

Figure 4. Trend of accumulated storage compounds during Synechocystis sp. PCC 6714 cultivation.
(a) In-cell PHB; (b) glycogen content. Reference analysis was performed offline (filled markers).
Profile was modeled to extracted reference points for caught spectra. In-line measured quantities are
depicted as unfilled markers. Error bars reflect error of calibration curve.

4. Discussion

For the production of PHB classical two-phase cultivation processes were performed.
During the first stage, the biomass growth phase, linear growth with an average rate of
0.15 g·L−1·d−1 was observed until 168 h of process time. Linear photoautotrophic growth
is typical for stirred photobioreactors since the cells are usually light-limited [12]. This is
due to the long distances photons have to travel in the wide vessel, and it occurs even in
diluted cultures [35,36]. After 168 h, the nitrate was completely consumed. This initiated
the PHB production phase to a maximum intracellular product content of 132 mg·g−1

(13.2%) of DCW, respectively a volumetric PHB concentration of 175 mg·L−1, which is in
the range of published values for this strain [30]. The process was stopped after biomass
concentration started to decline after 344 h.

Throughout the cultivation, the frequency of the US trap was alternated according
to the proposed four-step protocol for trapping, pushing, retracting and releasing. By
this, different ATR-FTIR spectra were obtained, which yielded pristine spectra of caught
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Synechocystis sp. PCC 6714 cells. Specific bands for PHB at 1738 cm−1 (C-O stretch) and the
characteristic region for glycogen between 950 and 1200 cm−1 (combinations of C-O, C-C
and C-O-H stretch) could be assigned by comparison to that of off-line spectra of respective
pure standard material and literature values [37,38]. The shift between measured in-line
spectra of PHB compared to that of pure, dry PHB powder was ascribed to different IR
absorption maxima of amorphous and crystalline PHB. Thus, the PHB accumulated within
Synechocystis sp. PCC 6714 was predominantly amorphous [24]. After correlating off-line
to in situ acquired spectral data, LOQ values for cellular PHB and glycogen content of
18.3 and 71.2 mg·g−1 were calculated. The possibility to directly measure PHB in the cell
by simply using the characteristic band intensity of PHB is a straightforward univariate
analysis technique, void of complex chemometric modelling. This allows for straight
interpretation of the acquired spectra.

We successfully utilized a US particle manipulation device to enhance ATR-FTIR
spectra quality for PHB and glycogen quantification in situ in a photobioreactor. The accu-
mulation of these compounds was quantified and monitored throughout the cultivation
process. This work shows the great potential of this method as a real-time PAT monitoring
tool for PHB production processes.
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