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Abstract

Introduction: The distribution of histopathological features of invasive breast tumors in BRCA1 or BRCA2 germline
mutation carriers differs from that of individuals with no known mutation. Histopathological features thus have
utility for mutation prediction, including statistical modeling to assess pathogenicity of BRCA1 or BRCA2 variants of
uncertain clinical significance. We analyzed large pathology datasets accrued by the Consortium of Investigators of
Modifiers of BRCA1/2 (CIMBA) and the Breast Cancer Association Consortium (BCAC) to reassess histopathological
predictors of BRCA1 and BRCA2 mutation status, and provide robust likelihood ratio (LR) estimates for statistical
modeling.

Methods: Selection criteria for study/center inclusion were estrogen receptor (ER) status or grade data available for
invasive breast cancer diagnosed younger than 70 years. The dataset included 4,477 BRCA1 mutation carriers, 2,565
BRCA2 mutation carriers, and 47,565 BCAC breast cancer cases. Country-stratified estimates of the likelihood of
mutation status by histopathological markers were derived using a Mantel-Haenszel approach.

Results: ER-positive phenotype negatively predicted BRCA1 mutation status, irrespective of grade (LRs from 0.08 to
0.90). ER-negative grade 3 histopathology was more predictive of positive BRCA1 mutation status in women 50 years
or older (LR = 4.13 (3.70 to 4.62)) versus younger than 50 years (LR = 3.16 (2.96 to 3.37)). For BRCA2, ER-positive grade 3
phenotype modestly predicted positive mutation status irrespective of age (LR = 1.7-fold), whereas ER-negative grade 3
features modestly predicted positive mutation status at 50 years or older (LR = 1.54 (1.27 to 1.88)). Triple-negative tumor
status was highly predictive of BRCA1 mutation status for women younger than 50 years (LR = 3.73 (3.43 to 4.05)) and
50 years or older (LR = 4.41 (3.86 to 5.04)), and modestly predictive of positive BRCA2 mutation status in women 50 years
or older (LR = 1.79 (1.42 to 2.24)).

Conclusions: These results refine likelihood-ratio estimates for predicting BRCA1 and BRCA2 mutation status by using
commonly measured histopathological features. Age at diagnosis is an important variable for most analyses, and grade is
more informative than ER status for BRCA2 mutation carrier prediction. The estimates will improve BRCA1 and BRCA2
variant classification and inform patient mutation testing and clinical management.
Introduction
It is well established that BRCA1-related breast tumors,
as a group, differ from non-BRCA1 tumors in terms of
histological phenotype. Tumors of BRCA1 mutation car-
riers are more likely to be high-grade with medullary
subtype features, including greatly increased mitotic
count, pushing margins, lymphocytic infiltrate, trabecu-
lar growth pattern, and necrosis [1-3]. Consistent with
overrepresentation of a basal phenotype, a number of
immunohistochemical (IHC) markers have been shown
to be of value in assessing BRCA1 tumor phenotype in
female patients, including estrogen receptor (ER), pro-
gesterone receptor (PR), human Epidermal Growth Factor
Receptor 2 (HER2), p53, cytokeratin 5/6 (CK5/6), cytoker-
atin 14 (CK14), cytokeratin 17 (CK17), and epidermal
growth factor receptor (EGFR) [4-8]. In addition, several
studies reported that reduced expression of CK8/18 can
discriminate the basal tumors of BRCA1 mutation car-
riers from basal tumors of noncarriers [9,10], whereas
loss of phosphatase and tensin homolog (PTEN), to-
gether with triple-negative (TN; ER-, PR-, HER2-) status,
was reported to improve the sensitivity of BRCA1 muta-
tion prediction in a study of Asian breast cancer patients
[11]. The introduction of PTEN to BRCA1 mutation-
prediction algorithms is supported by single-cell analyses
of temporal somatic events in BRCA1 breast tumor tis-
sue, which revealed that loss of PTEN is an early event
in the development of BRCA1 basal-like tumors, whereas
TP53 mutations occur first in most luminal BRCA1
tumors [12].
The breast tumor phenotype of female BRCA2 fe-

male mutation carriers is less distinctive than that of
BRCA1 mutation carriers [1,13,14]. Nevertheless, re-
ports based on IHC or expression array analysis have
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shown that BRCA2 breast tumors are predominantly
of the luminal B subtype [13,15], and are more likely
than non-BRCA2 tumors to be ER positive and high
grade, with reduced tubule formation and continuous
pushing margins [2,13].
A number of these histopathological features have

been incorporated into prediction models or have
been proposed as selection criteria for prioritizing
testing of breast cancer patients for BRCA1 and
BRCA2 mutations [11,16-24]. These findings have also
served as the basis for including independently pre-
dictive tumor histopathological features as a compo-
nent of the multifactorial likelihood model for clinical
classification of BRCA1/2 variants of uncertain signifi-
cance [25]. The current iteration of the model in-
cludes likelihood ratio (LR) estimates of pathogenicity
for combined ER and grade or combined ER, CK5/6,
and CK14 status, for analysis of BRCA1 variants, and
tubule formation for BRCA2 [26-29]. However, these LR
estimates were derived from analyses of relatively small
datasets including a maximum of 600 mutation carriers
and 288 noncarriers [4,6], and have not been directly
validated.
We conducted analyses of large pathology datasets ac-

crued by the Consortium of Investigators of Modifiers of
BRCA1/2 (CIMBA) and the Breast Cancer Association
Consortium (BCAC) to reassess previously reported
histopathological predictors of BRCA1 and BRCA2 mu-
tation status. The results provide more-refined LR esti-
mates for downstream multifactorial likelihood analysis
and for prediction of BRCA1 and BRCA2 mutation
status.

Methods
Access to data and ethics approvals
ENIGMA (Evidence-based Network for the Interpret-
ation of Germline Mutant Alleles) is a research con-
sortium aimed to improve methods to assess the
clinical significance in breast cancer susceptibility
genes [30]. Considerable overlap in membership exists
between ENIGMA, CIMBA, and BCAC. As a collab-
oration between the three consortia, investigators in
ENIGMA accessed CIMBA and BCAC datasets for
approved pathology-related analyses relevant to the
purposes of ENIGMA. The collection of clinical, path-
ology, and genetic data by CIMBA and BCAC has
been previously approved for ongoing research studies
by the local ethics committee relevant to each of the
participating CIMBA and BCAC studies, and all
participants provided informed consent to the rele-
vant participating CIMBA and BCAC sites for such
ongoing studies.
Research analyses specific to this study were carried

out using only de-identified data, with approval from the
Human Research Ethics Committee of the QIMR Berghofer
Medical Research Institute, and the Institutional Review
Board of the University of Utah.

Sample sets
CIMBA
The Consortium of Investigators of Modifiers of BRCA1/2
(CIMBA; [31]) is a consortium established to conduct
large-scale research studies of carriers of germline BRCA1
or BRCA2 pathogenic mutations [32]. Specifically, carriers
of variants of uncertain significance are ineligible for entry
into CIMBA. The major focus is discovery and validation
of genetic factors that modify risk of breast and ovarian
cancer in BRCA1 and BRCA2 mutation carriers, with con-
sideration of risk stratified by tumor histologic features.
Contributing centers provide information relevant to ana-
lyses, including year of birth, age at diagnosis of breast
and/or ovarian cancer, cancer behavior (invasive, in situ),
basic histology, and other pathology measures for breast
and ovarian tumors from study participants. Pathology in-
formation is extracted mainly from pathology reports, al-
though a small subset of contributing centers have
conducted centralized pathology review and/or supple-
mented clinical IHC results with research testing of tumor
material (for example, 5% of ER pathology results were
centrally reviewed) [33]. All CIMBA centers with ER
and grade data available in the CIMBA database that
were from countries with pathology data available from
population (presumed noncarrier) reference cases in
BCAC (see later) were included in the analyses. Vari-
ables included were as follows: gene mutated, mutation
nomenclature (and mutation type, for example, truncat-
ing, missense, and so on), date of birth, age and date of
diagnosis of breast cancer(s), breast cancer behavior, ER
status, PR status, HER2 status, Cytokeratin 5 or 5/6 sta-
tus, and grade. No CK14 IHC results were available. No
dual-mutation carriers were found. Only invasive breast
cancer cases diagnosed before age 70 years were in-
cluded, to reduce the likelihood of phenocopy tumors
not directly related to mutation status. Samples were in-
cluded irrespective of ovarian cancer diagnoses. For indi-
viduals with two breast cancers (20% of cases), the
breast cancer diagnosed closest in time to the entry into
the CIMBA cohort was included preferentially.

BCAC
The Breast Cancer Association Consortium (BCAC [34])
was established to discover and validate genetic factors
associated with risk of breast cancer in the general
population [35]. BCAC also studies risk factors associ-
ated with tumor subtypes and tumor histologic features,
and pathology data from participating centers are de-
rived from pathology reports or center-specific research
efforts. BCAC pathology data were checked and cleaned



Table 1 Subjects in CIMBA and BCAC datasets with breast
tumor ER or grade status, by country

Country CIMBA BCAC

Number BRCA1 Number BRCA2 Number BCAC
noncarriers

Australia 363 293 2,014

Canada 97 57 927

Denmark 201 151 2,318

Finland 55 64 2,607

Germany 982 493 9,503

Italy 547 362 270

Netherlands 113 32 4,181

Poland 247 0 2,527

Spain 91 102 358

Sweden 158 34 5,266

United Kingdom 642 388 12,989

USA 981 589 4,605

Total 4,477 2,565 47,565

Data for primary breast tumor. ER, breast tumor estrogen receptor status; BCAC,
Breast Cancer Association Consortium; CIMBA, Consortium for Investigator of
Modifiers of BRCA1 and BRCA2.
ER status was missing for 548 (12.2%) BRCA1 carriers, 292 (11.4%) BRCA2
carriers and 4,942 (10.4%) presumed noncarriers. Histological grade was
missing for 890 (19.9%) BRCA1 carriers, 555 (21.6%) BRCA2 carriers, and 6,020
(12.7%) presumed noncarriers.
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centrally [36]. BCAC centers were selected for inclusion
in this analysis based on availability of ER and grade
data. Studies in BCAC in which cases were ascertained
on the basis of tumor characteristics (for example, the
TN consortium) were excluded. Variables provided for
analyses were as follows: study type (to identify within-
study strata, and/or to define cohorts with familial
cases), age at diagnosis of breast cancer(s), breast cancer
behavior, ER status, PR status, HER2 status, CK5 or 5/6
status, and grade. No CK14 IHC results were available.
The study design was noted as selected (familial and/or
age-selected, relevant for 13 studies) or unselected (from
population-based or hospital-based design), based on
study-ascertainment criteria provided by the principal
investigators of individual BCAC sites.
BRCA1 and BRCA2 germline mutation testing results

were provided by 13 of the 36 BCAC studies (compris-
ing 12% of BCAC individuals overall), nine of which
used age/family history selection criteria for case ascer-
tainment (with testing for 4% to 100% of these nine
studies). The 345 known mutation carriers (189 BRCA1,
156 BRCA2) identified in BCAC were excluded. Analysis
included subjects known to be noncarriers or untested
for BRCA1/2 mutations, with relevant pathology infor-
mation for primary invasive breast cancer diagnosis
younger than age 70 years. As for CIMBA, for individ-
uals with two breast cancers (only 5% of all BCAC cases
considered), the breast cancer diagnosed closest in time
to the entry into the cohort was included preferentially.
Statistical analysis
ER or grade data were available for 4,477 BRCA1 muta-
tion carriers, 2,565 BRCA2 mutation carriers, and 47,565
BCAC breast cancer cases with no known mutation in
BRCA1 or BRCA2 (presumed noncarriers). The numbers
of subjects by country are shown in Table 1. Only coun-
tries with ≥200 cases in BCAC and ≥100 carriers in
CIMBA were included in analyses to minimize potential
bias due to country-specific patterns of pathology assess-
ment. ER-negative, PR-negative, and HER2-negative tu-
mors were categorized as triple-negative (TN). All other
combinations of known ER, PR, and HER2 status for a
single breast tumor were categorized as “Not TN.”
CIMBA and BCAC studies contributing pathology data
are noted in Additional file 1: Table S1. Final sample
sizes for analyses are reported in footnotes to Tables 2
and 3, and Additional file 1, Tables S2 to S4.
CK5/6 IHC data were available for only 128 BRCA1

carriers, 78 BRCA2 carriers and 6,796 BCAC cases with
valid data on ER status. Numbers of carriers reduced
further after country-matching, and frequencies differed
significantly between countries for carriers. Cytokeratin
analyses were thus not pursued further.
All statistical analyses were performed by using STATA
version 12 (StatCorp, College Station, TX, USA). Statistical
significance was defined as P <0.05.
We first examined whether family history was related

to the predictor variables of interest in the BCAC sam-
ple set. Family-history information, defined as first-
degree relative with breast cancer, was available for
30,223 individuals (7,547 reporting a family history of
breast cancer). Logistic regression analyses were per-
formed to predict ER status, grade 3, or TN status as a
function of family history (defined as first-degree relative
with breast cancer), adjusting for age at diagnosis and
country. No significant effect was observed for family
history on any of these histopathologic features, so we
did not consider family history further in any analyses.
To identify the most important predictors of mutation

status to be used in estimation of the likelihood ratios
for classification of variants, we undertook a series of lo-
gistic regression analyses. These analyses compared
BRCA1 and BRCA2 with the BCAC set. A sequential
series of models with country and age (younger than
50 years versus 50 years or older) as a starting point and
then adding ER, grade, and the ER/grade combination to
test for interaction between ER and grade. For those
cases who had data on TN status, we examined ER, ER
and grade, ER TN, grade TN, and last, models with ER,
grade, and TN. Likelihood ratio tests were used to deter-
mine the most parsimonious models for each gene.



Table 2 Estimated likelihood ratios for predicting BRCA1 or BRCA2 mutation status defined by breast tumor ER and/or
grade phenotype*

Gene ER status Grade Diagnosis <50 years Diagnosis ≥50-70 years

% Carriers (CIMBA) % BCAC LR (95% CI) % Carriers (CIMBA) % BCAC LR (95% CI)

BRCA1 ER negative Grade 1 0.8 1.4 0.59 (0.36-0.98) 0.6 1.2 0.51 (0.18-1.40)

ER negative Grade 2 9.8 6.7 1.36 (1.18-1.58) 13.3 6.1 2.34 (1.88-2.91)

ER negative Grade 3 67.1 20.8 3.16 (2.96-3.37) 54.5 12.8 4.13 (3.70-4.62)

ER positive Grade 1 1.0 13.7 0.08 (0.05-0.12) 2.3 20.6 0.11 (0.07-0.18)

ER positive Grade 2 7.4 36.1 0.21 (0.18-0.24) 14.6 43.6 0.34 (0.28-0.42)

ER positive Grade 3 13.9 21.2 0.64 (0.57-0.72) 14.7 15.8 0.90 (0.73-1.10)

100% 100% 100% 100%

- Grade 1 2.1 15.8 0.13 (0.10-0.16) 2.9 22.3 0.12 (0.08-0.18)

Grade 2 18.1 42.8 0.38 (0.34-0.42) 28.7 49.1 0.57 (0.50-0.65)

Grade 3 79.8 41.4 1.67 (1.62-1.78) 68.4 28.6 2.20 (2.01-2.71)

100% 100% 100% 100%

ER negative - 77.5 28.8 2.60 (2.47-2.73) 69.4 19.9 3.31 (3.03-3.61)

ER positive 22.5 71.2 0.32 (0.29-0.34) 30.6 80.1 0.37 (0.32-0.42)

100% 100% 100% 100%

BRCA2 ER negative Grade 1 0.7 1.4 0.51 (0.25-1.05) 1 1.2 0.86 (0.36-2.08)

ER negative Grade 2 3.4 6.7 0.49 (0.36-0.68) 5.2 6.1 0.89 (0.60-1.32)

ER negative Grade 3 14.6 20.8 0.69 (0.59-0.80) 20.8 12.8 1.54 (1.27-1.88)

ER positive Grade 1 4.9 13.7 0.37 (0.28-0.48) 6.6 20.6 0.32 (0.22-0.45)

ER positive Grade 2 37.8 36.1 1.07 (0.97-1.17) 37.5 43.6 0.89 (0.77-1.02)

ER positive Grade 3 38.7 21.2 1.77 (1.60-1.95) 28.9 15.8 1.76 (1.49-2.08)

100% 100% 100% 100%

- Grade 1 5.7 15.8 0.33 (0.26-0.41) 8.6 22.3 0.35 (0.27-0.46)

Grade 2 41.8 42.8 0.88 (0.80-0.95) 42.0 49.1 0.81 (0.72-0.92)

Grade 3 52.5 41.4 1.08 (1.00-1.17) 49.4 28.6 1.52 (1.35-1.71)

100% 100% 100% 100%

ER negative - 19.2 28.8 0.66 (0.59-0.74) 25.1 19.9 1.18 (1.01-1.38)

ER positive 80.8 71.2 1.15 (1.08-1.22) 74.9 80.1 0.90 (0.82-0.98)

100% 100% 100% 100%

*Analyses stratified by country, as detailed in the methods section. LR, Likelihood ratio; ER, breast tumor estrogen-receptor status; BCAC, Breast Cancer Association
Consortium, No known mutation status.
ER-Grade analysis included tumor phenotypes from 3,039 BRCA1 mutation carriers (2,393 < 50 years at diagnosis, 646 ≥ 50 years), 1,718 BRCA2 mutation carriers
(1,217 < 50 years at diagnosis, 501 ≥ 50 years) and 36,603 BCAC cases with no report of positive BRCA1/2 mutation status (12,584 < 50 years at diagnosis,
24,019 ≥ 50 years). Grade analysis included tumor phenotypes from 3,587 BRCA1 mutation carriers (2,825 < 50 years at diagnosis, 762 ≥ 50 years), 2,010 BRCA2
mutation carriers (1,415 < 50 years at diagnosis, 595 ≥ 50 years) and 41,545 BCAC cases with no report of positive BRCA1/2 mutation status (14,678 < 50 years at
diagnosis). ER analysis included tumor phenotypes from 3,929 BRCA1 mutation carriers (3,106 < 50 years at diagnosis, 824 ≥ 50 years), 2,273 BRCA2
mutation carriers (1,616 < 50 years at diagnosis, 657 ≥ 50 years), and 42,623 BCAC cases with no report of positive BRCA1/2 mutation status (14,484 < 50 years at
diagnosis, 28,139 ≥ 50 years). Percentages may not total 100 because of rounding error.
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We then estimated simple likelihood ratios of the form
L[path| BRCAi/L[path|BRCA0], where i = 1, 2 to denote
tumors from women with germline BRCA1 and BRCA2
mutations, respectively, and BRCA0 to denote cancers
from women presumed to be without such mutations.
For example, if m BRCA1 tumors have a given histo-
pathological feature of a total of M total carriers with
measured data on this feature, and s noncarriers (in this
case, from the BCAC set) of a total of S have the feature
of interest, then the LR is estimated by (m/M)/(s/S). An
approximate variance of log(LR) is given by Var(ln(LR) =
[1/m – 1/M +1/s – 1/S]. Thus assuming a normal distri-
bution for log(LR), 95% confidence limits are given by exp
[ln(LR) ± 1.96√(Var(ln(LR))].
However, to account for potential differences between

countries in the distributions of ER status and grade to-
gether with large differences in the ratio of carriers to
noncarriers, we derived stratified estimates of LR by



Table 3 Estimated likelihood ratios for predicting BRCA1 or BRCA2 mutation status defined by breast tumor triple-negative
phenotype

Gene Breast tumor
phenotype

Diagnosis <50 years Diagnosis ≥50 to 70 years

% Carriers % BCAC LR (95% CI) % Carriers % BCAC LR (95% CI)

BRCA1 Triple-negative 67.3 17.5 3.73 (3.43-4.05) 57.7 12.9 4.41 (3.86-5.04)

Not triple-negative 32.7 82.5 0.40 (0.37-0.44) 42.3 87.1 0.49 (0.42-0.56)

100% 100% 100% 100%

BRCA2 Triple-negative 13.0 17.5 0.72 (0.59-0.87) 23.5 12.9 1.79 (1.42-2.24)

Not triple-negative 87.0 82.5 1.06 (0.98-1.15) 76.5 87.1 0.88 (0.78-1.00)

100% 100% 100% 100%

Analyses stratified by country, as described in the Methods section. Analysis included tumor phenotypes from 2,249 BRCA1 mutation carriers (1,788 < 50 years,
461 ≥ 50 years), 1,195 BRCA2 mutation carriers (859 < 50 years, 336 ≥ 50 years) and 19,178 BCAC cases with no report of positive BRCA1/2 mutation
status (7,103 < 50 years, 12,075 ≥ 50 years). LR, likelihood ratio. Triple-negative phenotype defined as ER-negative, PR-negative, HER2-negative; not
triple-negative; all other combinations, with status measured for all three markers.
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using a Mantel-Haenszel approach [37] with approxi-
mate 95% confidence intervals calculated according to
Greenland and Robins [38]. The country-based strata
considered were as follows: Australia, United Kingdom,
Germany, USA, and all other countries (with smaller in-
dividual sample sizes) pooled. Both stratified and un-
stratified analyses were conducted for all ages, and by
age at diagnosis younger than 50 years versus 50 years
or older, when sufficient sample size was available in all
groups.
We performed a series of sensitivity analyses to assess

how the lack of BRCA1/2 testing in the vast majority of
BCAC cases might affect the Likelihood Ratio estimates
reported here. First, we determined the probability that
each untested BCAC case was a true noncarrier as fol-
lows: We calculated the probability, a priori, that each
untested BCAC case carried a pathogenic BRCA1 and/
or BRCA2 mutation by using the age-specific relative
risks in Antoniou et al. [39] and assuming allele fre-
quencies of pathogenic mutations in each gene of
0.0005. Next we calculated crude LRs for ER-negative
and ER-positive tumor status by using only the ~6,000
BCAC cases that tested negative for BRCA1/2, and all
the BRCA1 and BRCA2 carriers. Then, assuming the
prior calculated in step 1, we used these preliminary ER
LRs to calculate the posterior probability that each un-
tested BCAC case had a mutation in BRCA1 or BRCA2
based on their ER status. We calculated the probability
that each BCAC case was a true noncarrier for a muta-
tion in either gene, as 1, brca1 probability minus brca2
probability.
Second we reestimated a subset of the LRs by using it-

erative sampling of BCAC cases from the posterior dis-
tribution calculated, as described. We generated a
uniform random number for each case, and used this
and the posterior probabilities to determine whether
each of the untested BCAC cases was a noncarrier, a
BRCA1 carrier, or a BRCA2 carrier. We then used these
simulated data to reestimate LRs from the whole data
set, adjusting for country, as in the initial analysis.
Further, to examine the effects of changes in pathology

over time, potential racial/ethnic differences in these fea-
tures, and possible survival bias, we performed three
additional analyses, one estimating overall unstratified
ER/grade LRs for diagnosis after 1989; one restricted to
white European ancestry cases only; and another of only
cases diagnosed within 5 years of recruitment (to avoid
possible bias between tumor phenotype and survival).

Results
The principal aim of this study was to reassess histo-
pathological predictors of BRCA1 and BRCA2 mutation
status by analysis of datasets considerably larger than
those analyzed previously for this purpose, to provide
more robust pathology-based likelihood ratios for use in
assessing the pathogenicity of BRCA1 or BRCA2 vari-
ants. Our main analyses of breast tumor features in-
cluded up to 3,929 BRCA1 mutation carriers, 2,273
BRCA2 mutation carriers, and 42,623 assumed BRCA1
and BRCA2 mutation-negative breast cancer cases
(Tables 2 and 3). This large sample set allowed us to ex-
plore ER alone, grade alone, combined ER and grade
stratified by age, and ER/PR/HER2 TN status as predic-
tors of BRCA1 and BRCA2 mutation status.

Logistic regression determining best histopathology
predictors of mutation status
For BRCA1 carriers, likelihood ratio tests indicated that
both ER and grade were strong independent predictors of
BRCA1 status compared with the BCAC set (P <10-20).
Marginal evidence suggested that considering grade and
ER status jointly improved the fit compared with including
them separately in the model (χ2 = 6.25, 2 df, P = 0.04).
When we considered only cases in which TN status and
grade were available, TN significantly added to the
model fit, even with ER status in the model; the most
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parsimonious model included ER, grade, and TN status,
which was significantly better than any model with only
two of these included (χ2 = 83.8, 1 df, P <10-20). For BRCA2
both ER and grade were highly significant predictors of
mutation status, and the interaction of ER and grade was
also quite significant (χ2 = 28.3, 2 df, P <10-6). The
addition of TN did not improve the model fit signifi-
cantly (P = 0.14) when ER and grade were included in the
model. We thus considered ER, grade, and TN status in de-
riving likelihood ratio estimates for BRCA-mutation status.

ER and grade as predictors of mutation status
The estimated likelihood ratios for predicting BRCA1 or
BRCA2 mutation status defined by breast tumor ER-
grade phenotype, adjusted for country by using stratified
analysis, are shown in Table 2. Results based on pooled
data unstratified for country, including cell counts, are
shown in Additional file 1: Table S2. In general, the
Mantel-Haenszel stratified LR estimates were quite simi-
lar to the pooled estimates, with stratified estimates
most often closer to 1.0 (although not always). Signifi-
cant between-country heterogeneity for the estimated
likelihood ratios was most often observed with grade ra-
ther than ER or TN status. ER-positive cases were less
likely to be carriers of a BRCA1 mutation, irrespective of
grade. Conversely, ER-negative cases with high-grade tu-
mors were more likely to be BRCA1 mutation carriers.
Further, our analyses showed that ER-positive grade 3
tumors were modestly predictive of positive BRCA2 mu-
tation status (Table 2). The association of BRCA2 muta-
tion status with ER-positive high-grade tumors was not
substantially different for women diagnosed at younger
or older than age 50 years (LR <50 years = 1.77 (95% CI,
1.60 to 1.95), LR ≥50 years = 1.76 (95% CI, 1.49 to 2.08)).
However, ER-negative grade 3 tumor status was mod-
estly predictive of positive BRCA2 mutation status in
women diagnosed at 50 years or older (LR, 1.54; 95% CI =
1.27 to 1.88).
It is well known that ER and grade status are corre-

lated, with ER-negative tumors more likely to present
with high grade. Consistent with this, relatively few cases
appeared in any of the sample sets with ER-negative
grade 1 tumors. However, we estimated LRs for ER alone
and grade alone to allow inclusion of pathology data in
models for predicting BRCA1 and BRCA2 mutation sta-
tus, in instances in which information for only one of
these variables is available (Table 2). For example, for a
woman diagnosed with breast cancer at 50 years or
older, the LR in favor of positive BRCA1 mutation status
would be 3.5 if her tumor were known to be ER negative
but grade status was unknown, and 2.4 if reported as
grade 3 without information on ER status.
An acknowledged caveat to the inclusion of pathology

data in multifactorial likelihood modeling is the underlying
assumption that missense and in-frame deletions consid-
ered to be pathogenic mutations will exhibit the same
tumor histopathological characteristics as do truncating
mutations. The dataset in this study included 398 known
pathogenic BRCA1 missense mutation carriers (mainly
C61G), and 44 pathogenic BRCA2 missense mutation car-
riers with information on ER status or grade. Comparing
the missense variants with the truncating set of mutations,
we found no significant association of BRCA1 mutation
type with ER status (OR = 0.9; 95% CI, 0.7 to 1.2; P =0.4)
or grade (OR = 1.15; 95% CI, 0.9 to 1.4; P =0.2) or BRCA2
(OR = 2.7; CI, 0.9 to 7.6; =0.07 for ER; OR = 0.6 0.3 –to
1.2; P =0.14 for grade), although power was quite limited
for BRCA2.

Triple-negative (TN) phenotype in BRCA1 and BRCA2
carriers
Secondary country-stratified analysis of 2,249 BRCA1,
1,195 BRCA2 and 19,178 assumed mutation-negative
breast cancer cases (Table 3) indicated that TN tumor
status is highly predictive of BRCA1 mutation status for
women diagnosed at younger than 50 years (LR = 3.73;
95% CI, 3.43 to 4.05) and at age 50 years or older (LR =
4.41; 95% CI 3.86 to 5.04), and results were little differ-
ent for unstratified analysis (see Additional file 1: Table S3,
also displaying cell counts).
Results also indicated that TN phenotype is modestly

predictive of BRCA2 mutation status in cases diagnosed
at age 50 years or older (LR, 1.79; 95% CI = 1.42 to 2.24).
This observation is explained by the lower frequency of
the TN phenotype in noncarriers (12.9% 50 years or
older) versus BRCA2 mutation carriers (23.5% 50 years
or older). Additional analysis considering grade and TN
status combined (see Additional file 1: Table S4) did not
show substantial improvement over LRs estimated for
ER and grade combined (Table 2) or TN status (Table 3),
although numbers in some cells were limited.

Sensitivity analyses
With respect to the possible consequences of contamin-
ation by missed mutation carriers in the BCAC sample
set, we first estimated which BCAC-untested cases were
more likely to be an undetected mutation carrier, and
then re-estimated a subset of the LRs by using iterative
sampling of the control dataset. Based on age-specific
relative risks, we estimated that there could be at most
796 BRCA1 (1.7%) and 433 BRCA2 (0.9%) undetected
carriers in the reference dataset of 47,565 BCAC cases.
Based on age and crude ER, LR estimated from true
non-carriers in BCAC, of 41,515 BCAC cases whose
genetic status was unknown, 34,869 (84%) had posterior
probabilities of being a true BRCA1/2-negative case
greater than 0.95, with the minimum posterior probabil-
ity being 0.89. Repeating this sampling process a total of
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5 times, the number of BRCA1 carriers within the BCAC
set ranged from 688 to 784, and the number of BRCA2
carriers ranged from 410 to 455 (total carriers, 1,114 to
1,194). Re-estimation of a subset of LRs indicated that
the LRs assuming all BCAC cases do not carry a patho-
genic BRCA1 or BRCA2 mutation is quite close to what
we would expect, had all individuals been tested. For
ER-negative Grade 3 cases diagnosed at younger than
50 years, the original LR for BRCA1 mutation status, as-
suming all BCAC cases were non-carriers, was 3.16,
whereas the five replicates from iterative analysis ranged
from 3.22 to 3.25. For TN tumor phenotype, the original
LR for BRCA1 mutation status was 3.73, whereas the
median of the five replicates was 3.76.
In additional sensitivity analyses, we recalculated un-

stratified LRs for ER and grade combined, restricting the
analyses to the subset of 36,522 (33,260 BCAC, 3,252
CIMBA) breast cancer cases of European ancestry, of
which 31,374 (28,364 BCAC, 3,010 CIMBA) were diag-
nosed within 5 years of interview, and 40,874 (36,414
BCAC, 4,460 CIMBA) were diagnosed after 1989. Re-
sults were similar to those from the overall analyses,
with LR estimates consistently within the confidence in-
tervals of the overall analyses.

Discussion
Histopathological predictors of mutation status
This study assessing histopathological predictors of
BRCA1 and BRCA2 mutation status is based on the lar-
gest sample set reported to date, and so provides more-
precise estimates that account for age at diagnosis as a
potential confounder. We also provide age-stratified LRs
for ER alone and grade alone, which, although not as
predictive as ER and grade combined, will facilitate in-
clusion of minimal pathology information in multifactor-
ial modeling of individually rare variants.
Further, we provide, for the first time, LR estimates for

TN status that can be applied when grade information is
not recorded, with estimates associated with TN status
comparable to those for ER-negative-grade 3 (for BRCA1)
and ER-positive-grade 3 (for BRCA2). Altogether, these re-
fined LRs will improve the clinical classification of BRCA1
and BRCA2 variants, particularly those identified in
women with later age at diagnosis.
Our ER-grade analysis results for BRCA1 are consist-

ent with results from analysis of raw data for a smaller
dataset of 600 BRCA1 carriers aged younger than 60 years
and 258 age-matched non-carriers from the Breast Can-
cer Linkage Consortium, which yielded LRs of 1.94 (95%
CI = 1.05 to 3.56) and 2.95 (95% CI = 2.41 to 3.62) for ER-
negative grade 2 and ER-negative grade 3 tumors,
respectively [26,27]. However, the current study demon-
strates that ER-negative grade 2 or 3 status is more pre-
dictive of positive BRCA1 status in women diagnosed at
older than 50 years compared with younger than 50 (for
example, for ER-negative-grade 3, LR ≥50 years is 4.13
(95% CI = 3.70 to 4.62) versus LR <50 years of 3.16 (95%
CI = 2.96 to 3.37); Phet <0.0001. These observations re-
flect the fact that although the overall proportion of ER-
negative high-grade tumors is lower for older onset
(54.5%) than younger onset (67.1%) BRCA1 carriers (as
previously reported [33,40]), the proportion of ER-
negative high-grade tumors differs much more markedly
for older-onset (12.8%) than younger-onset (20.8%) cases
with no identified mutation in BRCA1 or BRCA2.
In addition, not reported in previous smaller studies

[6,7,41], our results show that ER-positive grade 2 or 3
status is a stronger negative predictor of BRCA1 muta-
tion status in women diagnosed before age 50 years
compared with those diagnosed at age 50 years or older.
These patterns reflect changes in the frequency of ER
status and grade as a function of age in the non-carrier
cases, rather than large changes in the frequency of
these features in the carriers. Similarly, the findings for
BRCA2 are consistent with those from a previous study
of 157 BRCA2 mutation carriers and 314 mutation-
negative familial breast cancer cases, which indicated
that BRCA2-associated tumors were more likely to be
ER-positive than were control tumors, when accounting
for grade (OR, 2.09; 95% CI, 1.21 to 3.63; P =0.008) [13].
However, age-stratified analysis highlighted that ER-

negative grade 3 tumor status modestly predicted posi-
tive BRCA2 mutation status in women diagnosed at age
50 years or older, indicating that grade is a more import-
ant factor than ER status in predicting BRCA2 tumors.
We attempted to assess pathology difference by muta-
tion type (missense versus truncating), an issue that has
not previously been addressed rigorously because of the
limited availability of pathology information for proven
high-risk missense mutations. However, even in our very
large dataset, the number of proven pathogenic missense
mutations remained small, and it is apparent that future
even larger studies will be needed to address this question.
The associations between BRCA1 mutation status and

TN phenotype are consistent with those observed for
ER-negative, high-grade tumors. They are also consistent
with prior evidence that BRCA1 mutation carriers are
enriched for the “basal” tumor phenotype that is highly
concordant with TN status. A recent meta-analysis
assessing the prevalence of BRCA1 mutations in TN ver-
sus non-TN breast cancer patients from largely high-risk
breast cancer populations [42] estimated a risk of 5.65
(95% CI, 4.15 to 7.69) based on analysis of 236 BRCA1
mutation carriers and 2,297 non-carriers. In addition,
these authors predicted that approximately two in nine
women with TN breast cancer and additional high-risk
features (early onset or family history) harbor a BRCA1
mutation [42]. TN status has not been obviously linked
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to BRCA2 mutation status previously; however, a recent
study of 43 deleterious BRCA1/2 mutation carriers iden-
tified from screening of 409 Chinese familial breast can-
cer cases reported that TN phenotype was more likely to
be exhibited by both BRCA1 (P =0.001, 69%, n = 16) and
BRCA2 (P =0.01, 46%, n = 27) carriers identified in their
cohort, compared with non-carriers (23%; n = 366) [43].
In contrast, a similar study of 221 Korean familial breast
cancer patients [44] identified 81 deleterious mutation
carriers, and demonstrated increased TN phenotype for
BRCA1 mutation carriers (P <0.00001,57%, n = 35), but
not BRCA2 mutation carriers (P =0.9, 13.9%, n = 36)
compared with non-carriers (13%, n = 130). Neither of
these studies presented their findings for cases stratified
by diagnosis age 50 years or older.
Our study has shown that TN phenotype is modestly

predictive of BRCA2 mutation status in cases diagnosed
at 50 years or older, due to a lower TN frequency in
non-carriers versus BRCA2 mutation carriers in this age
group. Reassuringly, these TN frequency differences mir-
ror the results seen for ER-negative grade 3 status in
non-carriers and BRCA2 mutation carriers, an analysis
based on a much larger sample set.

Possible impact of study limitations
We acknowledge several limitations of our study. Ideally,
our reference group would have been drawn from the
same source as the mutation carriers, as there may be
differences between non-BRCA familial cases and unse-
lected cases. However, in the subset of 30,233 BCAC
cases that had data on family history, we did not see any
significant differences between this group and the
remainder of the sample in terms of the pattern of histo-
logical features, nor with those who indicated no first-
or second-degree relatives with breast cancer.
In our analyses, we are implicitly assuming that testing

for BRCA1/2 mutations was independent of the histo-
pathology features used for prediction of mutation sta-
tus. Although recently some features with therapeutic
implications, such as TN status, are being used as a cri-
terion for testing in some centers, we believe that the
vast majority of our CIMBA carriers were tested solely
on the basis of their family history. This analysis as-
sumes that mutation testing in CIMBA sample sets was
not directed by tumor histology. Mutation status was
not known for all BCAC samples. However, mutation
testing of BCAC samples had been performed for many
studies with selected design that might be expected to
be enriched for BRCA1 and BRCA2 mutation carriers,
and these known mutation carriers were excluded from
analysis.
Further, our sensitivity analyses suggest that, at very

most, 2.5% of BCAC cases might carry an undetected
mutation, and also show that our results would not be
substantially affected by this level of contamination of
the reference group.
The various sensitivity analyses conducted for the ER-

grade dataset provided no convincing evidence for obvious
differences for the factors being assessed. We did not see
any marked difference in LR estimates for analyses re-
stricted to individuals of European ancestry, but the small
numbers of cases from other ethnic/racial groups did not
allow us to assess reliably tumor histopathological features
for other ethnic groups, and so may not be generalizable
to patients of non-European ancestry. Although it is pos-
sible that variation in pathology grading and IHC testing
methods might occur between countries or over time, our
investigations provided no evidence that such differences
would meaningfully confound interpretation of the results,
and thus should not limit the use of the information gen-
erated for multifactorial likelihood analysis of BRCA1 or
BRCA2 variants across continents.

Use of revised LR estimates for future multifactorial
likelihood analyses
This study has re-estimated the likelihood of BRCA1 or
BRCA2 mutation status associated with breast tumor
features commonly measured in the clinical setting, by
analyzing much larger datasets than previously used for
this purpose. Our findings provide measures of confi-
dence in the individual LR estimates, and in particular,
allow age at diagnosis to be incorporated into the path-
ology component of the multifactorial likelihood model.
Figure 1 provides a flowchart indicating the proposed
application of pathology-based LRs, dependent on what
breast tumor pathology information is available for a
variant carrier. As indicated, ER-grade LRs should be ap-
plied in preference to other pathology LR estimates,
where both ER and grade information is available. The
ER-grade LRs were derived from analysis of the largest
sample sizes and thus have the greatest precision, and
application of 12 strata provided by three grade categories
refines both positive and negative prediction of mutation
status. For example, a patient with a high-grade ER-
negative tumor is three- to fourfold more likely to carry a
BRCA1 mutation than not, whereas a patient with a low-
grade ER-positive tumor is about 10 times more likely to
be mutation-negative than mutation-positive. Given that
grade and ER are almost universally used to assess prog-
nosis and predict response to antiestrogen therapies, these
features are generally readily available on standard path-
ology reports.
This study could not provide a comparison to existing

LR estimates of BRCA1 mutation status based on ER-CK
status, determined from analysis of 182 BRCA1 and 109
age-matched cases [6]. However, we caution that very large
confidence limits exist around the previously estimated
LRs for ER-CK characteristics, and recommend further



Female breast cancer patient carrying a BRCA1 or BRCA2 variant with relevant pathology information available for primary breast cancers

Ignore pathology information from any primary breast cancer if pathology 
criteria were used to select the patient for testing

(Note – pathology information from variant-carrying relatives of the patient 
may still be used for modelling)

Determine criteria used to select patient for BRCA1 or BRCA2 testing

Determine availability of pathology information for each independent primary tumour. 
If information is available for two tumours from the same patient, select only the most recent.

ER status only 
ER, PR, and HER2 

status known

Apply
TN LRs, by age

for BRCA1 or BRCA2 
as per Table 3

Apply 
ER-grade LRs, by age
for BRCA1 or BRCA2 

as per Table 2

Apply 
grade LRs, by age

for BRCA1 or BRCA2
as per Table 2

Apply 
ER LRs, by age

for BRCA1 or BRCA2 
as per Table 2

Grade reported but 
ER status not 

available
ER status known but grade not reported

<50 ≥50

BRCA1

G1 0.13 0.12

G2 0.38 0.57

G3 1.67 2.20

BRCA2

G1 0.33 0.35

G2 0.88 0.81

G3 1.08 1.52

<50 ≥50 <50 ≥50

BRCA1 ER-
neg

G1 0.59 0.51
ER-
pos

G1 0.08 0.11

G2 1.36 2.34 G2 0.21 0.34

G3 3.16 4.13 G3 0.64 0.90

BRCA2
ER-
neg

G1 0.51 0.86
ER-
pos

G1 0.37 0.32

G2 0.49 0.89 G2 1.07 0.89

G3 0.69 1.54 G3 1.77 1.76

<50 ≥50

BRCA1

ER-
neg

2.60 3.31

ER-
pos

0.32 0.37

BRCA2

ER-
neg

0.66 1.18

ER-
pos

1.15 0.90

<50 ≥50

BRCA1

TN 3.73 4.41

Not 
TN 0.40 0.49

BRCA2

TN 0.72 1.79

Not 
TN 1.06 0.88

Both ER AND grade 
status known

Figure 1 Proposed strategy for application of pathology likelihood ratios in multifactorial likelihood analysis of BRCA1 or BRCA2 rare
sequence variants. Cases carrying a variant of uncertain clinical significance, and with information on relevant pathology variables, are first
assessed to determine that breast tumor pathology information was not a criterion used to trigger gene testing. ER, estrogen-receptor breast
tumor status; PR, progesterone-receptor breast tumor status; HER2, HER2 breast tumor status; TN, triple-negative breast tumor status; Not TN,
breast tumor status not triple-negative, after measurement of ER, PR, and HER2 status; ER-neg, ER-negative status; ER-pos, ER-positive status; G,
grade; <50, breast cancer diagnosis at younger than 50 years for tumor with relevant pathology data; ≥50, breast cancer diagnosis at 50 to
70 years for tumor with relevant pathology data.
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study of large carrier and reference sample sets to provide
more-robust LR estimates for ER-CK phenotype in rela-
tion to mutation status.
It is important to note that the LRs estimated in this

study were from analysis of sample sets that were, to our
knowledge, unselected for tumor pathology status. There-
fore, it will be necessary to consider potential for bias
when individuals are screened for mutations on the basis
of their tumor phenotype. This is expected to occur
increasingly, now that BRCA1/2 mutation-prediction pro-
grams such as BOADICEA include pathology as a com-
ponent [16], and given recent evidence supporting
implementation of the National Comprehensive Cancer
Network (NCCN) guidelines that recommend testing of all
TN breast cancer patients aged 60 years or younger [45].
In this scenario, multifactorial likelihood analysis should
exclude tumor-pathology information from individuals
who had previously contributed to risk prediction used to
prioritize families for mutation screening. However, path-
ology data generated subsequently from other variant car-
rier relatives can still provide independent information
toward variant classification.
We are aware that, in the future, other tumor charac-

teristics could provide useful information for variant clas-
sification. Array Comparative Genomic Hybridization
(CGH) has been shown as an effective method to identify
BRCA1-mutated breast cancers and sporadic cases with a
BRCA1-like profile [46,47] for appropriate chemothera-
peutics, and to distinguish BRCA2-mutated tumors from
sporadic breast tumors [48]. If introduced widely as a rou-
tine test, this approach might be considered in the future
as an alternative predictor in multifactorial modeling. Fur-
thermore, the mutual exclusivity of BRCA1-germline mu-
tations and BRCA1 promoter methylation in tumors with
BRCA1-like CGH profile [49] suggests that BRCA1 pro-
moter methylation tests would add value in distinguishing
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somatic from germline loss of BRCA1 function, as is estab-
lished for clinical testing triage and variant classification
relating to MLH1 mismatch repair cancer-predisposition
gene [50].
Alternatively, genome-wide tumor-methylation profiles

may prove of value to distinguish between individual
with and without a germline BRCA1 mutation [51]. Fur-
ther, additional substratification of currently used histo-
logical features may add value in prediction of mutation
status. Options include PTEN loss of expression in
addition to TN status as a marker of BRCA1 mutation sta-
tus [11], or gene-expression arrays to identify BRCA2 mu-
tation carriers among the subset of luminal B tumors [15].
Recent research has also shown the value of considering

further stratification of breast cancer subtype in the pre-
diction of BRCA mutation status. For example although
ER-negative status clearly predicts BRCA1 mutation sta-
tus, even ER-positive BRCA1-related breast cancers are
more likely to be grade 3, CK14+, and show high mitotic
rate compared with ER-positive sporadic cancers [52].
In addition, possibilities exist to extend histopatho-

logical analyses to tumors other than female breast can-
cer. The combination of modified Nottingham grade 3
serous or undifferentiated histology, prominent intrae-
pithelial lymphocytes, marked nuclear atypia with giant
nuclei, and high mitotic index has recently been re-
ported to be a significant predictor of BRCA1 mutation
status in women with epithelial ovarian cancer [53]. Fur-
ther, breast tumors of male BRCA2 mutation carriers are
more likely to present as high-grade, PR-negative, and
relatively high rates of HER2-positivity with a micropapil-
lary component to histology have been reported [54,55].
Investigation of these features in larger sample sizes
should be considered in the future.
Although this article has focused on the utility of his-

topathologic features of breast cancers in the context of
the classification of variants in the BRCA1 and BRCA2
genes, these results should also be useful in a range of
other applications. The information provided in the
main tables can be used to estimate sensitivities and
specificities of histopathological predictors by broad age-
group (for example, triple-negative tumor status has sen-
sitivity of 0.67 and specificity 0.82 for detection of
BRCA1 mutation status in women diagnosed at younger
than age 50 years, whereas the sensitivity is 0.57 and the
specificity 0.87 for women diagnosed at age 50 or older.
As such, these results, in conjunction with other predic-
tors of mutation status, could be useful to guide system-
atic genetic testing of germline DNA from patients to
determine the appropriateness of the use of PARP inhib-
itors in therapy. The results arising from this study are
also likely to inform future development of parallel
models, which estimate the probability of an individual
carrying a BRCA1 or BRCA2 mutation, to determine
eligibility and/or priority for genetic testing (in particular,
the BOADICEA model, which has recently been updated
to include additional histopathologic characteristics from
large data resources [56]).

Conclusions
The results from this large-scale analysis refine likeli-
hood ratio estimates for predicting BRCA1 and BRCA2
mutation status by using commonly measured histo-
pathological features. We demonstrate the importance
of considering age at diagnosis for analyses, and show
that grade is more informative than ER status for BRCA2
mutation-carrier prediction. The estimates will improve
BRCA1 and BRCA2 variant classification by using multi-
factorial likelihood analysis, and inform patient mutation
testing and clinical management.
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