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Summary
Background Patients with hepatic cirrhosis are at in-
creased risk of bone loss. Recent work on areal bone
mineral density has reported contradictory findings.
As the assessment of bone microarchitecture is com-
plex, a search was made for correlations with new
serum markers of bone turnover. Current data on
serum sclerostin levels in patients with increased frac-
ture risk are divergent and to date only one study has
examined patients with hepatic cirrhosis. Therefore,
the aim of this study was to evaluate serum sclerostin
levels and to test for correlations with microarchitec-
ture.
Methods This study was performed in 32 patients
with recently diagnosed hepatic cirrhosis and 32 con-
trols. The parameters of bone microarchitecture were
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assessed by high-resolution peripheral quantitative
computed tomography. Sclerostin was detected via
a new ELISA that detects the active receptor interac-
tion site at loop 2 of the sclerostin core region.
Results Sclerostin levels were slightly, but not signif-
icantly lower in the patient group, compared to con-
trols. In contrast, patients with alcoholic liver cir-
rhosis had significantly lower levels than the controls.
A significant correlation with areal bone mineral den-
sity (BMD) and trabecular microarchitecture was ob-
served in the patient group. However, there was hardly
any correlation between sclerostin and bone microar-
chitecture in the controls.
Conclusion In hepatic cirrhosis, sclerostin is related to
altered bone microarchitecture and lower areal BMD.
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In alcoholic liver disease, low sclerostin concentra-
tions were seen.

Keywords Alcoholic liver cirrhosis · Trabecular
number · Trabecular separation · Sandwich ELISA ·
Bone mineral density

Abbreviations
aBMD Areal bone mineral density
ALD Alcoholic liver disease
BTM Bone turnover markers
CTX C-terminal telopeptide of type I collagen
CtPo Cortical porosity
CtTh Cortical thickness
DXA Dual X-ray absorptiometry
ELISA Enzyme-linked immunosorbent assay
HR-pQCT High resolution peripheral quantitative

computed tomography
iPTH Intact parathyroid hormone
MELD Model of end stage liver disease
TbN Trabecular number
TbSp Trabecular separation
TbTh trabecular thickness
TbBV/TV Trabecular bone volume fraction

Introduction

In patients with hepatic cirrhosis areal bone mineral
density (aBMD) is decreased especially at the lumbar
spine [1, 2], whereas either decreased [3] or normal
values [1, 2, 4] are observed at the hips. Due to
technical limitations, aBMD alone can be insufficient
to explain increased fracture risk [5] and bone mi-
croarchitecture can provide additional information.
We recently investigated bone microarchitecture via
high resolution peripheral quantitative computed to-
mography (HR-pQCT) [3]. As HR-pQCT is technically
intensive, expensive and rarely available, serum bone
turnover markers (BTMs) should be tested for pre-
dictive value. As standard serum markers of bone
turnover do not reflect bone microarchitecture in
hepatic cirrhosis [3], new markers need to be ex-
amined. Sclerostin, a glycoprotein secreted mainly
by osteocytes, is a product of the SOST gene. It
negatively regulates bone mass via binding to low-
density lipoprotein receptor-related protein 5 and/or
6 (LRP5/6) and inhibits the Wnt/beta-catenin path-
way, thereby decreasing bone formation [6]. To date,
the only study investigating serum sclerostin in hep-
atic cirrhosis reported increased levels [7]. In patients
at increased fracture risk, the results are divergent:
Whereas some studies reported higher levels in post-
menopausal osteoporotic women with fractures [8],
diabetics [9] and alcoholics [10], others observed
lower levels in geriatric patients with hip fractures
[11]. These differences may result from methodologi-
cal differences (fragments biasing measurements, dif-
ferent antibodies and therefore epitopes recognized,
different assay constructions) [12].

A novel sclerostin ELISA was recently developed
and launched (BI-20472, Biomedica, Vienna, Austria),
which measures bioactive sclerostin by using a mo-
noclonal antibody directed at the LRP5/6 binding re-
gion, thereby capturing all circulating sclerostin forms
containing the free-receptor binding site. To ensure
the reliability of this ELISA, it was validated in depth
according to Food and Drug Administration quality
standards. Therefore, the aforementioned limitations
could be reduced, and themeasured analyte specified.

This study shows validation data of the used ELISA
and evaluated sclerostin in patients with hepatic cir-
rhosis, compared to matched healthy controls. The
secondary objectives were first to test for correlations
of sclerostin with trabecular and cortical bone mi-
croarchitecture and second, to examine relationships
with serum markers of bone turnover.

Methods

Subjects

This study was conducted at the St. Vincent Hospital,
an academic teaching hospital of the Medical Univer-
sity of Vienna. After approval by the St. Vincent Hospi-
tal ethics committee, patients with recently diagnosed
hepatic cirrhosis were screened for eligibility. Written
informed consent was obtained from all the patients
and controls prior to any procedures. The definition
of etiologies of hepatic cirrhosis, inclusion criteria and
exclusion criteria have recently been reported [3]. The
healthy controls (subject to the same exclusion criteria
but no history or laboratory evidence of liver disease)
were recruited from active and retired hospital staff.

Serum bone turnover markers

The BTMs were obtained after overnight fasting be-
tween 8 and 10 a.m. at an ISO 9001 certified labo-
ratory. Calcium, alkaline phosphatase, phosphorus,
C-terminal telopeptide of type I collagen (CTX), 25-
OH vitamin D and intact parathyroid hormone (iPTH)
were determined. Sclerostin serum concentration was
determined via ELISA (BI-20472, Biomedica, Vienna,
Austria) according to the manufacturer’s protocol. In
contrast to conventional assays, this ELISA is designed
to detect the active receptor interaction site at loop
2 of the sclerostin core region.

Validation of sclerostin ELISA

Validation experiments of the sclerostin ELISA (BI-
20472, Biomedica, Vienna, Austria) were performed
according to FDA quality guidelines. Specificity was
assessed with a commonly used procedure of sig-
nal competition with an at least 5-fold surplus of
liquid capture antibody and by epitope mapping
of linear epitopes of the compiled antibodies with
a peptide microarray (Pepperprint GmbH, Heidel-
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berg, Germany). Additionally, the limit of detection
(LOD), lower limit of quantification (LLOQ), intra-as-
say precision, sample parallelism and accuracy were
assessed.

The specificity of the ELISA to the protein of in-
terest is one of the most important characteristics.
The monoclonal antibody used for capture is directed
against the receptor interaction site and is 100% spe-
cific for sclerostin. The polyclonal, horseradish per-
oxidase-labelled detection antibody has several lin-
ear epitopes throughout the molecule determined by
a custom-made microarray analysis. For the sandwich
ELISA, the competition of endogenous (8 samples)
and recombinant sclerostin showed amean specificity
of 100% (99–100%).

Areal bone mineral density

Dual X-ray absorptiometry (DXA) at the lumbar spine
(L1–L4), non-dominant radius (except for previous
fractures), total body and hip was assessed. Fractured
vertebrae were excluded.

Bone microarchitecture

The HR-pQCT (XtremeCT, SCANCO Medical, Brü-
tisellen, Switzerland) measurements of the non-dom-
inant (except for previous fracture) distal radius and
distal tibia were performed while immobilized in
a carbon-fiber cast. Cortical volumetric BMD, tra-
becular bone volume fraction (TbBV/TV), trabecular
number (TbN), trabecular thickness (TbTh), trabec-
ular separation (TbSp), cortical thickness (CtTh) and
cortical porosity (CtPo) were measured [3].

Statistics

Group differences were analyzed using two-sample
t-tests. Distributional assumptions were checked vi-
sually by quantile-quantile plots. Multiple linear re-
gression models were estimated with sclerostin as an
independent variable and measures of BTMs, liver-
related biochemistry and disease severity as depen-
dent variables in separate models. Models with either
albumin or adjusted calcium as additional covariate
were estimated to investigate whether these parame-
ters explain variation in addition to sclerostin. Model
fits were quantified by adjusted R2-values. All tests
were two-sided and p values less than 0.05 were con-
sidered statistically significant. All statistical analyses
were performed with the statistical software R, version
3.50 (R Development Core Team, Vienna, Austria).

Hypothesis

The hypothesis was to test whether or not serum levels
of sclerostin would be altered in patients with hepatic
cirrhosis.

Results

In this study 32 patients (including 12 women) and
32 matched healthy controls (including 12 women)
were included. None of the subjects had received
a specific treatment for osteoporosis or chronic liver
disease. The patients and controls were of similar age
(median 62 and 60 years, respectively), 16 patients had
alcoholic liver disease (ALD), 8 viral hepatitis, 5 non-
alcoholic fatty liver disease, 2 hemochromatosis and
1 autoimmune hepatitis. Age and body mass index
did not differ between the patients and controls but
alcohol intake was higher in the patients (4units/day
vs. 1unit/day). None of the patients with ALD were
abstinent.

Patients with ALD (63 years) and other etiologies
(62 years) were of similar age. The percentages of
males were similar for patients with ALD (69%) and
controls (63%) but slightly lower for patients with
other etiologies (56%). The Child-Pugh score was
similar among the patients with ALD (5) and other
etiologies (6).

Sclerostin ELISA validation

The sensitivity of the assay was 1.9pmol/l and the
lower limit of quantification was 2.5pmol/l (data not
shown). The precision of the assay (coefficient of vari-
ation) varied from 1% to 7%. The dilution linear-
ity (also called sample parallelism) should ascertain
that the affinity of the antibodies to endogenous scle-
rostin is similar to the recombinant calibrator. The
calculated recovery of 1+ 1 and 1+ 3 diluted samples
was between 86% and 125% for serum, EDTA and cit-
rate plasma and therefore within the standard of ac-
ceptance. To examine the accuracy, which describes
the closeness of determined values to the true con-
centration of the analyte, recombinant sclerostin with
known concentration was added to samples and the
percentage of recovery was calculated. Recovery in
the lower range was 76–111% and in the higher range
was 82–95%.

Serum sclerostin levels

The sclerostin levels of all patients were slightly but
not significantly (p= 0.18) lower (108pmol/l, range
91–153pmol/l) than in the controls (133pmol/l,
104–181pmol/l). In ALD, the levels were significantly
(p= 0.045) reduced to 96pmol/l (66–154pmol/l) com-
pared to the controls, whereas patients with other
etiologies (120pmol/l, 107–153pmol/l) did not sig-
nificantly differ from either the controls (p=0.94) or
from patients with ALD (p= 0.091).

Regression and multivariate analysis

In the patients, sclerostin correlated significantly with
aBMD and microarchitecture. Furthermore, a positive
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Table 1 Linear regression analysis for sclerostin with serum markers of bone turnover, liver-related chemistry and disease
severity

Beta
coefficient
patients

Adjusted
R2 pa-
tients

p-value
patients

Adjusted R2

(incl. albumin)
patients

p-value
albumin
patients

Adjusted R2 (incl.
adjusted calcium)
patients

p-value
adjusted
calcium
patients

Beta
coefficient
controls

Adjusted
R2 con-
trols

p-value
controls

Ionized calcium
(mmol/l)

–158.68 –0.027 0.516 –0.078 0.815 –0.055 0.497 0.000 –0.040 0.706

Calcium (mmol/l) –66.99 –0.006 0.376 0.391 <0.001 0.117 0.030 0.000 –0.033 0.865

Adjusted calcium
(mmol/l)

22.46 –0.031 0.803 0.152 0.011 n.a. n.a. 0.000 –0.034 0.882

Phosphorus
(mmol/l)

58.33 0.002 0.313 –0.031 0.834 0.036 0.162 0.000 –0.032 0.743

Intact parathyroid
hormone (pg/ml)

–0.45 0.022 0.202 0.073 0.115 –0.009 0.784 0.013 –0.037 0.867

25OH vitamin D
(ng/ml)

–0.56 –0.014 0.453 0.055 0.084 –0.048 0.911 0.006 –0.034 0.885

Crosslaps (CTX)
(ng/ml)

8.03 –0.034 0.850 0.094 0.035 –0.061 0.584 0.000 0.024 0.216

Alkaline phos-
phatase (U/l)

0.60 0.006 0.287 0.247 0.003 0.014 0.269 –0.099 0.051 0.120

Albumin (g/dl) –0.13 0.017 0.225 n.a. n.a. 0.191 0.011 –0.001 –0.027 0.643

Bilirubin (mg/dl) –17.77 0.087 0.056 0.342 0.001 0.118 0.161 0.000 –0.033 0.800

Glutamate ox-
aloacetate
transaminase
(GOT, U/l)

17.41 –0.033 0.930 0.125 0.017 –0.068 0.921 0.021 –0.001 0.330

Glutamic pyruvic
transaminase
(GPT, U/l)

–0.03 –0.031 0.811 –0.066 0.865 –0.064 0.797 0.064 0.020 0.219

Gamma glutamyl
transpeptidase
(GGT, U/l)

–0.10 0.099 0.045 0.070 0.774 0.072 0.708 –0.172 0.048 0.123

Partial throm-
boplastin time
(s)

–0.08 –0.014 0.450 0.094 0.041 –0.045 0.757 0.017 0.001 0.321

International
normalized ratio

1.64 –0.009 0.397 0.228 0.003 0.040 0.123 –0.001 0.149 0.020

Creatinine (mg/dl) 35.89 –0.022 0.568 0.014 0.159 0.028 0.122 0.000 –0.033 0.865

Child-Pugh score 6.18 –0.001 0.331 0.667 <0.001 0.089 0.056 n.a. n.a. n.a.

Model of end
stage liver dis-
ease (MELD)
score

5.95 0.124 0.027 0.578 <0.001 0.278 0.011 n.a. n.a. n.a.

Beta reflects the regression coefficient and adjusted R2 the coefficient of determination (adjusted on the number of predictors)
In addition, albumin and adjusted calcium were included in covariate models. P-values lower then 0.05 and thereby significant relationships are indicated as
bold
n.a. not applicable

correlation with the model of end stage liver disease
(MELD) score was observed and a trend for alcohol
intake (p= 0.078). The strongest relations were found
for radial TbSp and TbN at both the radius and tibia
(Tables 1 and 2).

Fig. 1 demonstrates the relationship between scle-
rostin and parameters of trabecular microarchitec-
ture.

Multivariate analysis demonstrated that the addi-
tion of albumin or adjusted calcium significantly en-
hanced the R2 value of sclerostin, especially for tra-
becular microarchitecture (Table 2). Albumin and ad-
justed calcium were not confounders and showed no

correlation with microarchitecture without sclerostin
(data not shown). Remarkably, in the controls, scle-
rostin showed hardly any correlation with bone mi-
croarchitecture, especially not at the weight-bearing
tibia.

Discussion

This study assessed the quality of sclerostin to ex-
plain bone microarchitecture in hepatic cirrhosis. We
observed slightly lower sclerostin levels compared
to controls. To date, a single previous study [7] has
observed increased levels; however, neither BTMs,
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Table 2 Linear regression analysis for sclerostinwith areal bonemineral density and trabecular and cortical microarchitecture

Beta co-
efficient
patients

Adjusted
R2 pa-
tients

p-value
patients

Adjusted R2

(incl. albumin)
patients

p-value
albumin
patients

Adjusted R2 (incl.
adjusted calcium)
patients

p-value
adjusted
calcium
patients

Beta co-
efficient
controls

Adjusted
R2 con-
trols

p-value
controls

Lumbar spine
BMD (L1-4)

85.72 0.055 0.105 0.132 0.064 0.120 0.082 0.001 0.012 0.255

T-score lumbar
spine

8.90 0.038 0.145 0.156 0.031 0.086 0.119 0.008 0.044 0.138

Total hip BMD 107.52 0.120 0.030 0.136 0.222 0.163 0.120 0.000 –0.001 0.332

T-score hip 13.42 0.093 0.050 0.130 0.142 0.128 0.148 0.003 –0.009 0.393

Total body BMD 112.70 0.103 0.041 0.264 0.010 0.140 0.141 0.001 0.151 0.020

Radius BMD 140.09 0.064 0.092 0.049 0.462 0.064 0.326 0.001 0.026 0.193

Radius cortical
BMD (mg/cm3)

0.03 –0.032 0.827 –0.016 0.237 –0.060 0.670 0.155 –0.010 0.410

Radius tra-
becular bone
volume fraction

562.07 0.146 0.018 0.328 0.005 0.190 0.117 0.000 0.119 0.032

Radius trabec-
ular number
(1/mm)

65.41 0.279 0.001 0.401 0.012 0.353 0.044 0.000 –0.031 0.764

Radius trabec-
ular thickness
(mm)

120.43 –0.033 0.890 0.005 0.155 –0.067 0.866 0.000 0.231 0.004

Radius trabec-
ular separation
(mm)

–116.84 0.268 0.001 0.373 0.021 0.363 0.026 0.000 –0.003 0.348

Radius cortical
thickness (mm)

40.20 0.001 0.323 –0.016 0.482 –0.021 0.551 0.000 –0.028 0.668

Radius cortical
porosity (%)

2.95 –0.018 0.513 –0.004 0.241 –0.053 0.946 –0.001 –0.031 0.738

Tibia cortical
BMD (mg/cm3)

–0.03 –0.032 0.821 0.102 0.027 0.004 0.162 0.296 0.019 0.219

Tibia trabecular
bone volume
fraction

564.62 0.155 0.015 0.344 0.004 0.270 0.023 0.000 0.001 0.317

Tibia trabecular
number (1/mm)

69.63 0.255 0.002 0.341 0.034 0.330 0.046 0.000 –0.034 0.959

Tibia trabecular
thickness (mm)

694.05 –0.004 0.356 0.064 0.085 0.016 0.216 0.000 0.068 0.084

Tibia trabecular
separation
(mm)

–182.23 0.188 0.008 0.348 0.007 0.325 0.013 0.000 –0.031 0.756

Tibia cortical
thickness (mm)

–8.17 –0.032 0.836 0.178 0.006 0.124 0.018 0.001 0.012 0.253

Tibia cortical
porosity (%)

1.86 –0.003 0.350 –0.004 0.331 –0.037 0.916 –0.007 –0.018 0.487

BMD bone mineral density

aBMD nor microarchitecture were assessed. There-
fore, in our patients, aBMD could be lower due to
advanced age. Moreover, we investigated Caucasians,
whereas Rhee et al. [7] examined Koreans. Fur-
thermore, most of their patients had viral hepatitis,
whereas more than 50% of our patients had ALD. In
a study on patients with primary biliary cholangitis
(PBC), local expression of sclerostin in the bile ducts
was reported, especially in early stages of the disease
but declined in advanced disease stages [13]. There-
fore, we assume that in our patients only a minor
fraction of serum sclerostin is derived from hepatic

production. Finally, within the characterization and
validation of the ELISA used in our study we could
show that it uniquely detects sclerostin molecules
containing the LRP5/6 interaction site and therefore
assumed to have bioactive function. As it is not
completely understood which sclerostin molecules
circulate (monomers vs. dimers [14], intact vs. frag-
ments [15]), it is even more important to further
characterize binding sites of utilized antibodies and
therefore specify the detected analyte.

Within the technical validation of specificity, accu-
racy, intra-assay precision, limit of detection, lower
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Fig. 1 Panel a: the regression analysis demonstrates a sig-
nificant (p= 0.001) inverse correlation between serum scle-
rostin and TbSp at the radius. Panel b reflects a significant
(p= 0.002) direct correlation between serum sclerostin and
TbN at the tibia

limit of quantification and sample parallelism, we
could show that the novel ELISA completely meets all
quality standards comparable with other sclerostin
assays on the market [16] but in contrast to those
assays, the novel ELISA used in this study has clearly
defined binding sites.

Sclerostin correlated with the MELD score, but nei-
ther the Child-Pugh nor the MELD scores improved
the predictive value of sclerostin (data not shown). Al-
bumin improved the R2 value of sclerostin for microar-
chitecture. These findings emphasize the presence of
a liver-bone axis in terms of a strong relation between
liver function and bone health. Especially albumin
(synthetic function) together with sclerostin explained

deranged bone structure in our patients. Similarly, in
a large population-based outpatient study, lower albu-
min was independently associated with osteoporosis
[17]. Rhee et al. [7] found higher sclerostin levels in
advanced disease states and suggested lower hepatic
clearance and altered concentrations of sex hormones
to explain these findings. Similarly, patients with ad-
vanced ALD had higher sclerostin levels than in less
pronounced states [10]. In contrast, those of our pa-
tients with ALD had significantly lower sclerostin lev-
els, probably as alcohol promotes osteocyte apopto-
sis [18]. Moreover, maybe more sclerostin fragments
are circulating and detected with their assay but not
with our ELISA. Adjusted calcium improved R2 espe-
cially for trabecular microarchitecture, probably due
to the correction for low albumin. Moreover, adjusted
calcium was decreased in patients in whom we also
observed deranged microarchitecture [3]; however, al-
bumin and adjusted calcium did not correlate with
sclerostin. Rhee et al. [7] did not test for relations
with BTMs. Our patients’ sclerostin levels correlated
with aBMD and microarchitecture. Similarly, in older
men serum sclerostin [19] is related to microarchitec-
ture and higher fracture risk. Lower serum sclerostin
[11] and lower femoral sclerostin expression corre-
lated with impaired trabecular microarchitecture in
patients with hip fractures [20].

Sclerostin is produced predominantly by osteo-
cytes. As low sclerostin expression is related to low
bone volume and number of osteocytes per volume
[21], lower trabecular bone volume and/or increased
osteocyte apoptosis could explain the lower sclerostin
levels in our patients. Alcoholism promotes osteocyte
apoptosis, as demonstrated in a rat model [22]. In
addition, in bone samples of patients with hepatic
cirrhosis of various etiologies, a decreased number
of osteocytes was reported [23]; however, bone histo-
morphometry was not available in our patients and
therefore, further studies are required to confirm our
assumption. In contrast, sclerostin levels could be de-
creased due to a rescue mechanism. A study on male
idiopathic osteoporosis reported that lower sclerostin
expression could reflect an autoregulatory promo-
tion of bone formation [24]. As osteoblast activity
is reduced in hepatic cirrhosis [25], this mechanism
could act as an attempt to preserve osteogenesis.
The relatively small sample size is a limitation of our
study. The possibility exists that in a higher number
of subjects some differences in serum sclerostin con-
centrations could become significant. In conclusion,
serum sclerostin levels reflect deterioration of bone
microarchitecture and osteocyte function in patients
with hepatic cirrhosis. Patients with ALD had sig-
nificantly lower sclerostin levels compared to other
etiologies.
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