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Abstract

Retinotopic mapping, i.e., the mapping between visual inputs on the retina and neuronal

activations in cortical visual areas, is one of the central topics in visual neuroscience. For

human observers, the mapping is obtained by analyzing functional magnetic resonance

imaging (fMRI) signals of cortical responses to slowly moving visual stimuli on the retina.

Although it is well known from neurophysiology that the mapping is topological (i.e., the

topology of neighborhood connectivity is preserved) within each visual area, retinotopic

maps derived from the state-of-the-art methods are often not topological because of the low

signal-to-noise ratio and spatial resolution of fMRI. The violation of topological condition is

most severe in cortical regions corresponding to the neighborhood of the fovea (e.g., < 1

degree eccentricity in the Human Connectome Project (HCP) dataset), significantly imped-

ing accurate analysis of retinotopic maps. This study aims to directly model the topological

condition and generate topology-preserving and smooth retinotopic maps. Specifically, we

adopted the Beltrami coefficient, a metric of quasiconformal mapping, to define the topologi-

cal condition, developed a mathematical model to quantify topological smoothing as a con-

strained optimization problem, and elaborated an efficient numerical method to solve the

problem. The method was then applied to V1, V2, and V3 simultaneously in the HCP data-

set. Experiments with both simulated and real retinotopy data demonstrated that the pro-

posed method could generate topological and smooth retinotopic maps.

Author summary

Retinotopic maps of human observers derived from state-of-the-art methods are often not

topological because of the low signal-to-noise ratio and spatial resolution of fMRI. The

proposed topological smoothing method can generate topology-preserving and smooth

retinotopic maps in V1, V2, and V3 simultaneously from retinotopy fMRI data.

This is a PLOS Computational Biology Methods paper.
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Introduction

Retinotopic mapping, i.e., the mapping between visual input on the retina to neuronal activa-

tions in visual cortical areas, is one of the central topics in visual neuroscience [1]. Although

initially discovered in neurophysiology [2], Blood Oxygenation Level Dependent (BOLD)

functional magnetic resonance imaging (fMRI) provides an excellent noninvasive tool to per-

form in vivo retinotopic mapping on human observers [3,4]. The procedure typically consists

of (1) recording BOLD fMRI cortical activations generated by carefully designed slowly mov-

ing visual stimuli on the retina to uniquely encode the visual space [5,6], (2) co-registering the

fMRI activations with structural MRI, (3) flattening the 3D structural MRI data to obtain visual

cortical surface, and (4) decoding the retinal visual coordinates underlying the observed fMRI

time series at each location on the cortical surface [3,7]. In the last two decades, the develop-

ment of a variety of retinotopic mapping techniques has greatly extended our understanding

of visual cortical organization in normal and abnormal populations [3,8–13].

Although the exact shape of visual inputs on the retina is not preserved on the cortical sur-

face, neurophysiology studies [14–17] have shown that the mapping preserves local neighbor-

hood geometric relationships. More specifically, neighboring points on the cortical surface

should have neighboring retinal visual coordinates [18]. We adopted the term topology preserv-
ing (or topological) to refer to the preservation of neighborhood relationships of the observa-

tions in the output space [19]. In this work, the topological condition or topology-preserving

are not related to the surface genus, handles or holes. The concept of topological condition is

illustrated in Fig 1 for retinotopic mapping. Fig 1A and 1B show an example of topological

mapping that preserves the structure of the source polygon (on the cortical surface) in the tar-

get (retina) domain (Fig 1B). Fig 1A and 1C show an example of non-topological mapping that

breaks the source polygon structure after mapping: fi is out of the polygon edge �fjfk , resulting

in what is called a flipped triangle Δfifjfk (the orientations of the triangle are different in the

source and target domains).

The topological condition is a natural consequence of the hierarchical organization of the

visual system: there cannot be duplicated neuronal representations of the same retinal location

within each visual area (otherwise the visual area should be further divided into more subar-

eas). Although neurophysiological studies on animals have found that the retinotopic maps in

lower visual areas are topological [2], the “raw” retinotopic maps derived from BOLD fMRI

recordings are usually not because of the low signal-to-noise ratio and spatial resolution of the

technology [3]. Although the quality of fMRI data has improved during the last three decades,

the signal-to-noise ratio is still relatively low even with ultra-high field MRI systems [20]. A

Fig 1. Illustration of topological and non-topological maps. (A) A polygon patch on an inflated cortical surface

(source domain). (B) A topological mapping of (A) in the target domain (retina space). It preserves the structure of the

source polygon. (C) A non-topological mapping of (A). It breaks the structure of the source polygon: fi is moved out of

the edge �fjfk
�
, resulting in what is called a flipped triangle Δfifjfk. (d) A typical retinotopic map of V1. Flipped triangles

are labeled with red color.

https://doi.org/10.1371/journal.pcbi.1009216.g001
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typical raw retinotopic map of V1 from the state of the art dataset and method [20] still con-

tains about 20% flipped triangles (Fig 1D; Table A in S5 Text). Violations of the topological

condition not only make the results from fMRI inconsistent with those from neurophysiology

but also make it difficult to perform quantitative analysis on retinotopic maps.

Typically, fMRI signals are analyzed on a voxel-by-voxel basis. The most prominent method

is based on the population receptive field (pRF) model, which decodes perception parameters

of the fMRI signals at each voxel. However, influenced by low SNR and low spatial resolution,

the retinotopic maps from the analysis are typically not topological. In the past decade, signifi-

cant efforts have been devoted to improving their accuracy and stability. For instance, the reli-

ability of perception size was discussed [12,13], and methods that could decode perception

parameters by model-free back projections with potentially more precise perception shape

were proposed [21–23]. Although they have greatly improved the pRF model, none of the

methods has explicitly investigated the topological condition.

In addition, a number of methods have been proposed to correct or reduce topological vio-

lations in fMRI-based retinotopic maps from the pRF analysis. Yet none of them has fully

solved the problem. For instance, traditional spatial smoothing methods, including Gaussian

smoothing [14,24], Laplacian smoothing [25], mesh-spectrum-based smoothing [26], cannot

guarantee the topological condition because retinotopic maps are defined on two-dimensional

surfaces, yet these methods only smooth the maps along one dimension (e.g., polar angle) at a

time. Another promising approach registers the noisy “raw” retinotopic maps to an ideal tem-

plate and assigns coordinates based on the registration function/morphing [8]. Although it

can generate smooth and topological retinotopic maps, the method relies on diffeomorphic

registration of a noisy parametrized surface to a predefined template, which is not easy to opti-

mize, especially when the data are noisy. Furthermore, even if the registration issue can be

solved, defining the right template remains a challenging problem. Other methods based on

fitting predefined algebraic models (such as Schwartz’s complex “log” model [27] or Schira’s

“Double-Sech” model [9]) can guarantee topological condition. However, the models intro-

duce a lot of assumptions on the data [8,28]. The topological condition was considered in our

previous work [29], but it was only applied to V1 with limited validation. And, because the

manually drawn boundaries were not accurate, the results were not very precise near the

boundary.

We propose a topological smoothing method to generate smooth and topological retinoto-

pic maps for multiple visual regions without assuming algebraic models. A geometric concept,

Beltrami coefficient (BC) [30], is adopted to formulate the optimization problem to define,

quantify, and ensure the topological condition [31]. The Beltrami coefficient is a complex

number that can quantify triangle-wise geometric conformality (i.e., the angle preserving

property) and topological condition for surface-to-surface mapping. When we consider the

topological condition in the mapping from the polygon in Fig 1A to 1B, the overall topological

condition can be checked for each triangle attached to point Pi. Namely, one may check

whether its mapping result, fi, is moved out of any of the polygon edges, �fjfk ; �fkfl ; �flfm ; �fmfn ,

and �fnfj . If fi is moved out of any of the edges, e.g., �fjfk , the mapping is not topological. Without

losing generality, when considering the topological condition for polygon edge �fjfk , we can

construct a coordinate system (Fig 2A and 2B). In Fig 2B, we illustrate three mapping results

for Pi: Case (1) if fi coincides with the green dot such that triangles ΔPiPjPk and Δfifjfk are simi-

lar (ΔPiPjPk~Δfifjfk), the magnitude of the Beltrami coefficient associated with triangle ΔPiPjPk
is zero (|μ| = 0). This is the case of conformal mapping. Case (2) if fi is above the f(1) axis

(fi(2)>0), shown as the yellow dot, the magnitude of the Beltrami coefficient associated with

triangle ΔPiPjPk is greater than zero but less than one (0<|μ|<1). This is the case of
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quasiconformal mapping with respect to edge �fjfk . And Case (3) if fi is below the f(1) axis,

shown as the red dot, the magnitude of the Beltrami coefficient associated with triangle ΔPiPjPk
is greater than one (|μ|>1) and the mapping is no longer topological. In summary, the com-

plex-valued Beltrami coefficient encodes relative mapping information for each triangle and

can be used to quantify the topological condition [32,33].

To ensure the topological condition, we defined an objective function such that, after opti-

mally adjusting the retinal visual coordinates of each point on the cortical surface, the maxi-

mum magnitude of the Beltrami coefficients on the new retinotopic map is less than one (i.e.,

topological). An efficient numerical method was then developed to solve the optimization

problem.

Our proposed method can work on multiple visual areas simultaneously without assuming

any prior model and allow us to draw more precise boundaries between visual areas. To vali-

date the method, we conducted experiments on both synthetic and real retinotopic map data

from the Human Connectome Project (HCP) [34] and compared the performance of our

method with that of existing methods based on the quality of fits to the raw fMRI time series.

Methods

HCP retinotopy data

The Human connectome project (HCP) [34] provides a large publicly available retinotopy

dataset collected on 7T MRI scanners. The data collection, conducted on 181 healthy young

adults (22–35 years; 109 females, and 72 males) with normal or corrected-to-normal visual

acuity, involved carefully designed retinotopy stimuli and resulted in a substantial amount of

fMRI data (30 min, 1,800 time-points) acquired at very high spatial and temporal resolutions

(1.6 mm isotropic voxels, 1-second temporal sampling). The dataset provides an exciting

opportunity to evaluate our method.

Overview of the pipeline

The overall proposed processing pipeline is shown in Fig 3. In the HCP dataset, the visual sti-

muli consist of rotating wedges, expanding/shrinking rings, and moving bars [3,35]. The carri-

ers of the stimuli are made of dynamic color textures that can better activate visual neurons

(Fig 3A). We denote a point in the visual field by v = (v(1),v(2))2R2, where v(1) is the eccentric-

ity (distance to the fovea in degrees of visual angle), and v(2) is the polar angle relative to the

positive horizontal line (Fig 3B). Both high-quality structural MRI and fMRI scans were

Fig 2. Beltrami coefficient and topological condition: (A) source triangle (triangle ΔPiPjPk), (B) three target triangles

Δfifjfk from three different types of mappings, with different Beltrami coefficients.

https://doi.org/10.1371/journal.pcbi.1009216.g002
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acquired by the HCP group (Fig 3C and 3D). The processing pipeline consists of fMRI prepro-

cessing [36], compressive population receptive field decoding [3], and topological smoothing.

The raw retinotopic maps from pRF decoding (RM; Fig 3G) contain many topological viola-

tions (Fig 3H). Topological smoothing is the proposed method in this paper to fix topological

violations and smooth the retinotopic maps (Fig 3I). In the following subsections, we briefly

describe fMRI preprocessing and pRF decoding (although we used the publicly available

decoded (raw) retinotopic maps from [20]), and then introduce the topological smoothing

method. We list the key definitions and symbols in Table A in S1 Text.

fMRI preprocessing

The goal of fMRI preprocessing is to detect, in a robust, sensitive, and valid way, the time series

of brain activations of the voxels on the visual cortical surface that are associated with the

visual stimuli. The HCP preprocessing pipeline [36] is standardized. First, a cortical surface is

extracted from structural MRI using Freesurfer [37] and resampled (Fig 3F). Then, the raw

fMRI data from each imaging session are co-registered across time to reduce the influence of

head movements and other motion artifacts (Fig 3E). Finally, the co-registered fMRI data are

projected onto the cortical surface. During the projection, spatial smoothing is applied along

the cortical surface to improve the quality of the fMRI signal. The preprocessing eventually

generates a resampled cortical surface as well as the fMRI activation time series on each point

of the cortical surface.

pRF decoder

We briefly describe the population receptive field model (pRF) [3,38] to introduce some neces-

sary notations. For readers familiar with pRF model, the visual coordinates we used here are

related to the x-y coordinates by x = v(1) cos v(2),y = v(1) sin v(2). For each voxel P = (X,Y,Z)2R3

on the visual cortical surface, pRF is used to determine its receptive field, including its center

location v and size σ in the visual field. Namely, the collection of the mapping between P and

(v,σ) constitutes a raw retinotopic map. Assuming that the voxel’s population receptive field

model is r(v0;v,σ) and the hemodynamic function is h(t), the predicted fMRI signal of the voxel

can be written as:

ŷðv; s; nÞ ¼ bð
R
rðv0; v; sÞsðt; v0Þdv0Þn � hðtÞ; ð1Þ

Fig 3. The processing pipelines. (A) Visual stimuli. (B) Coordinate system of the visual field. (C) Structural (anatomical) MR image. (D)

BOLD fMRI scans. (E) Preprocessed fMRI signals. (F) Reconstructed cortical surface with projected fMRI activations. (G) Retinotopic maps

from the pRF model. (H) Level set of the raw retinotopic maps. (I) Level set of the smoothed retinotopy maps.

https://doi.org/10.1371/journal.pcbi.1009216.g003
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where β is the activation level, n is the exponent of the power function. We used the standard

population receptive field model, i.e., r v0; v; sð Þ ¼ exp � ðx
0 � xÞ2þðy0 � yÞ2

2s2

� �
, where x = v(1) cos v(2),y

= v(1) sin v(2) (similarly for x0,y0). The center of the receptive field v and population receptive

field size σ can be estimated by minimizing the Least Square difference between the measured

and predicted fMRI activation levels:

ðv; s; nÞ ¼ arg min
ðv;s;nÞ
jŷðv; sÞ � yðPÞj2; ð2Þ

where y(P) is the fMRI signal at voxel P. Iterations of this procedure across all the voxels on the

visual cortical surface generate the raw retinotopic map. The quality of fit of the pRF model for

voxel can be evaluated by R2 ¼ 100ð1 �
R
ðŷ � yÞ2dt=

R
y2dtÞ.

Topological smoothing

Quasiconformal mapping and Beltrami coefficient. Most surface mappings can be

modeled by quasi-conformal mapping, a generalization of conformal mapping. Specifically,

the local deformation of a quasiconformal map can be characterized by its associated Beltrami

coefficient [39]. Mathematically, f:C!C is quasiconformal if it satisfies the Beltrami equation,

@f
@�u
¼ mf

@f
@u

ð3Þ

for some complex-valued Lebesgue measurable function μf satisfying kμfk1<1. The complex-

valued mf ¼
@f
@�u =

@f
@u is called the Beltrami coefficient of f, with u = u(1)+iu(2) and �u ¼ uð1Þ � iuð2Þ.

Intuitively speaking, if kμfk1<1, the map preserves the orientations of all triangles and

therefore preserves the topological condition. However, if kμfk1>1 the topological condition

is violated because the orientations of some triangles are flipped.

Surface flattening. Let fr: vi 7! Pi be the retinotopic map between the retina and V1 corti-

cal surface. To use the tool of the Beltrami coefficient, we need to flatten the cortical surface

from 3D to a 2D unit disk. Because topological proprieties are transitive (that is if mappings fr
and c are both topological, the composed mapping fr�c is also topological) and mutual (if map-

pings fr is topological, fr−1 is also topological), we can reformulate the topological condition by

mapping the 3-dimensional cortical surface to a 2D parametric space with a topological trans-

formation [37,40]. Here, we performed a conformal mapping (angle preserving) of the visual

cortical surface to a parametric space c: Pi 7! ui , where ui ¼ ðu
ð1Þ

i ; u
ð2Þ

i Þ 2 R2. Although it is

angle preserving and does not introduce any angle distortions, conformal mapping may intro-

duce big metric distortions. To reduce metric distortions, we cut a geodesic disk patch that

contains the region of interest from the cortical surface by: (1) picking a point on the cortical

surface that roughly corresponds to the fovea as the center of the disk, (2) calculating the geo-

desic distances from all points on the cortical surface to the center of the disk [41], and (3)

keeping the points of the cortical surface whose geodesic distances to the center of the disk are

within a certain value. The geodesic disk patch (the region-of-interest—ROI—shown in gray

color in Fig 4B) is mapped to a unit disk (Fig 4C). We refer the readers to [31,42] for conformal

mapping and [43] for the computation of geodesic distance.

In this work, we focus on the 2D retinotopic mapping f = fr−1�c−1 instead of the 3D retino-

topic mapping fr.
Mathematical model. With the conformal parametrization in the last section, we use the

Beltrami coefficient μf to model topological smoothing by finding new visual coordinates v̂ �
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f̂ such that,

v̂ ¼ f̂ ¼ arg min
v̂

R
wjf̂ � vj2 þ sjrf̂ j2ds; s:t:kmf̂ k1 < 1: ð4Þ

where w is the weight function,r = (@/@u(1),@/@u(2)) is the gradient operator, s is a positive

scalar emphasizing the smoothness and mf̂ is the Beltrami coefficient of f̂ written as (see S2
Text):

mf̂ ¼
@ f̂
@uð1Þ

þ i
@ f̂
@uð2Þ

 !

=
@ f̂
@uð1Þ

� i
@ f̂
@uð2Þ

 !

; i ¼
ffiffiffiffiffiffiffiffi
� 1:
p

ð5Þ

In Eq 5, we have rewritten a point in the 2D parametric domain as a complex number u =

u(1)+iu(2) and the corresponding visual coordinate as f̂ ¼ f̂ ð1Þ þ if̂ ð2Þ. Because we will only dis-

cuss the problem in 2D in the subsequent sections of the paper, we interchangeably regard

each complex number as a position vector or vice versa, that is, u = u(1)+iu(2) is regarded as a

complex number or as a position vector u = (u(1),u(2)). We denote a position vector with a bold

u and a complex number with an italic u. The same notation applies to v.

The Beltrami of f̂ can be used to quantify the Beltrami of fr−1 because the Beltrami coeffi-

cient does not change with the conformal mapping, that is, mf ¼ mfr � 1 if c is a conformal map-

ping (see S2 Text for mathematical details). Intuitively, the Beltrami coefficient measures the

angle distortion in a mapping (see S4 Text), incorporating a conformal mapping c does not

introduce any angle distortion and therefore does not change the original Beltrami coefficient.

We can directly estimate the Beltrami coefficient of the retinotopic mapping in the 2D

parametric domain on the unit disk based on this property.

Fig 4. Illustration of (A) the visual field space, (B) the cortical surface space, and (C) the parametric space.

https://doi.org/10.1371/journal.pcbi.1009216.g004

Fig 5. Illustration of a mapping function and the divergence computation. (A) An illustration of the mapping

function in the discrete domain, and (B) the divergence approximation for a vertex.

https://doi.org/10.1371/journal.pcbi.1009216.g005
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Model solver. To solve Eq (4) efficiently, we divide the problem into two subproblems,

namely smoothing and topological projection. Specifically, during smoothing, we ignore the

topological condition and find a smoothed map by,

~v ¼ arg min
~v

R
wj~v � vj2 þ sjr~vj2ds ð6Þ

which can be solved by Laplacian smoothing [44,45] efficiently. For the second subproblem,

we ignore the smoothness term and try to make the results topological.

v̂ ¼ arg min
v̂

R
wjv̂ � ~vj2ds; s:t:kmv̂k1 < 1 ð7Þ

Since we require the results to be both topological and smooth, we solve the subproblems

iteratively. Namely, the output of topological projection is fed to smoothing, and so on so

forth.

The key challenge is to solve Eq (7) efficiently. Because the topological condition is formu-

lated with the Beltrami coefficient (kmv̂k1 < 1), we need tools to compute the Beltrami coeffi-

cient and recover the function after processing the Beltrami. In the following, we describe the

Beltrami coefficient computation when a function is given and the function recovery when the

Beltrami coefficients are given in the discrete setting. Then we elaborate on the details about

solving each subproblem.

Model discretization. We now convert the problem to the discrete domain because a cor-

tical surface, S, is typically described by vertices VS and triangular faces FS: S = (FS,VS). The

visual field is also discretized. Retinotopic mapping can be reformulated as finding the corre-

sponding visual coordinate vi in the visual field for every vertex Pi2VS. We denote Wi as w(vi)
to emphasize/deemphasize voxels with high and low quality of pRF fits.

E ¼
X

i
Wijvi � f̂ ij

2
þ sjrf̂ ij

2
þ ljmij

2
; s:t:jmf̂ i

j < 1: ð8Þ

f̂ i ¼ f̂ ðuiÞ is the coordinate to be solved, mi ¼ mf̂ ðuiÞ is the Beltrami coefficient at point ui.
Discrete Beltrami coefficient computation. Given the analytical form of a mapping

function f, we can directly compute the complex-valued Beltrami coefficient μf according to Eq

(5). However, in the discrete case, the function is only defined on vertices, i.e., we only know

the mapping function f that maps the vertices on the unit disk to the vertices on the visual field

(Fig 5A), that is, v1 = f(u1), v2 = f(u2), and v3 = f(u3). To approximate the derivatives, f is inter-

polated linearly on each triangle, i.e., for any point u within the triangle, f(u) = B1(u)v1+B2(u)

v2+B3(u)v3. The coefficients, B1, B2, and B3 are called the barycentric coefficients. Specifically,

B1 (similarly for B2 and B3) is the ratio between the areas of triangles Δuu2u3 and Δu1u2u3:

B1(u) = Area(Δuu2u3)/Area(Δu1u2u3). Now we can compute f’s partial derivatives to u(1) and

u(2) and therefore the Beltrami coefficient μf according to Eq (5) (see S3 Text for the explicit

expression). Clearly μf is a constant within each triangle, as we approximate the mapping func-

tion linearly within each triangle.

Recovering mapping with Beltrami coefficients. We now explain how to recover func-

tion f = f(1)+if(2) with the given Beltrami coefficient function μ = ρ(u)+iτ(u), first introduced in

[32]. According to the definition in Eq (5), we have:

@f
@uð1Þ

þ i
@f
@uð2Þ

� �

=
@f
@uð1Þ

� i
@f
@uð2Þ

� �

¼ rþ it: ð9Þ

PLOS COMPUTATIONAL BIOLOGY Topological smoothing of retinotopic maps

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009216 August 2, 2021 8 / 27

https://doi.org/10.1371/journal.pcbi.1009216


Based on its real and imaginary components, Eq (9) is equivalent to:

�
@f ð2Þ

@uð2Þ
¼ a1

@f ð1Þ

@uð1Þ
þ a2

@f ð1Þ

@uð2Þ

@f ð2Þ

@uð1Þ
¼ a2

@f ð1Þ

@uð1Þ
þ a3

@f ð1Þ

@uð2Þ

; ð10AÞð10BÞ

8
>><

>>:

where a1 ¼
ðr� 1Þ2þt2

r2þt2 � 1
; a2 ¼

� 2t

r2þt2 � 1
, and a3 ¼

ðrþ1Þ2þt2

r2þt2 � 1
. Applying @

@uð1Þ on Eq (10A) and @

@uð2Þ on Eq

(10B), and then adding them together, we can simplify Eq (9) as:

r � Arf ð1Þ ¼ 0; ð11Þ

where A ¼
a1 a2

a2 a3

 !

;rf ð1Þ ¼ ð@fc
ð1Þ
=@uð1Þ; @fc

ð1Þ
=@uð2ÞÞ is the gradient of f(1), andr is the

divergence operator (r�G = @G(1)/@u(1)+@G(2)/@u(2) for vector G = (G(1),G(2)) = Arf(1)). By

solving Eq (11) with Dirichlet boundary conditions (i.e., f(1) values on the boundary of the cor-

tical patch), we can find a unique solution of f(1). Similarly, f(2) can be written asr�Arf(2) = 0

and be solved uniquely.

In the discrete case, the mapping function is interpolated on each triangle. The gradient

operatorrf(1)(u) can be written out and is a constant vector on each triangle. The divergence

r�G is approximated on the dual of each vertex (a convex cell consisted of the circumcenters

of the neighbor triangles). Specifically, consider a vertex with its neighbors (Fig 5B). We

assume thatr�G is a constant on the dual of the center vertex, i.e., polygon D, enclosed by cir-

cumcenters of the neighbor triangles. Namely, we approximate the term with

r � G uið Þ ¼
1

jDj

R

Dr � Gds. According to the divergence theorem [46], the divergence
R
Dr�Gdσ can be written as the integral on the boundary, i.e.

r � G uið Þ ¼
1

jDj

R

Dr � Gds ¼
1

jDj

R

@DG � ðn� dlÞds, where n is the dual cell unit normal. Since G
is a constant vector on each triangle (in the discrete case), the integration can be written as:

r � G uið Þ ¼
1

jDj

Z

@D
G � n� dlð Þ ¼

1

jDj

X

½ui ;uj;uk �2NðuiÞ
GTl
�
si
2
; ð12Þ

where GTj
is the value of G within triangle Tj, and si = (uk−uj)? denotes a vector perpendicular

to uk−uj with the same norm as uk−uj. Substituting Eq (12) into Eq (11), we have a set of linear

equations for each f(1)(ui) and its neighbors. Finally, we can writer�Arf(1) =0 in a matrix

form (see S3 Text for the explicit form) and solve f(1) efficiently with the Dirichlet boundary

condition. Similarly, f(2) can be solved efficiently.

Next, we describe how we can optimize Eq (7) by solving two subproblems iteratively.

Solving the first subproblem: Laplacian smoothing

The first subproblem can be solved by Laplacian smoothing of f(1) and f(2) separately. To get a

smooth scalar f̂ ð1Þ from a noisy f(1), we solve the following Laplacian smoothing equation

[44,45]:

f̂ ð1Þ ¼ arg min
R
jrf̂ ð1jj2 þ sjf ð1Þ � f̂ ð1Þj2du; ð13Þ

where ther is defined in the parametric domain, i.e.,r = (@/@u(1),@/@u(2)). To find the solu-

tion, we set the partial derivatives of Eq (13) to zero. It leads to the following equation

ð� r � r þ 2s IÞf̂ ð1Þ ¼ 2sf ð1Þ. It can be solved efficiently with linear algebra becauser2 =r�r

can be written in a matrix form (the details are provided in S3 Text), and σ is optimally chosen
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to minimize the generalized cross-validation score [47]. Similarly, f(2) can be smoothed to f̂ ð2Þ.
Since the Beltrami coefficients quantify local deformations, Laplacian smoothing on visual

coordinates will smooth the Beltrami coefficients. If most triangles are correctly orientated, the

smoothing will also reduce the number of flipped triangles.

Solving the second subproblem: Topological projection

The second subproblem is to make f topological. It means that the associated Beltrami coeffi-

cients must satisfy the condition kμfk1<1 on the entire cortical surface. To ensure topological

condition, for any mapping whose |μ| is greater than 1, we scale its magnitude by μ0 = μ/(|μ|

+�). The procedure is called “topological projection” [48,49] or “chopping” [50]. The goal is to

find a topological mapping that is close to the original non-topological mapping. The new μ0

shares the same argument of μ, and|μ0| is less than 1 when we choose a small positive �. Because

the Beltrami coefficient uniquely encodes the mapping [31,51], the projection process changes

the mapping when we solve equation Eq (11). The process of making the mapping topological

can be illustrated with the example in Fig 2B, in which the target fi is below the horizontal axis,

and the magnitude of the associated Beltrami coefficient is greater than one (jmDfifj fk j > 1). If

we shrink the Beltrami coefficient for Δfifjfk and retain the Beltrami coefficients for all the

other triangles, the new Beltrami coefficient jm0Dfi fj fk j is less than 1. When we solve the mapping

function according to the new Beltrami coefficient (Eq (11)), fi is moved and placed above the

horizontal axis, making the triangle Δfifjfk topological. Note that other target points, fl, fm, and

fn, also move to maintain the Beltrami coefficients of their associated triangles, e.g., when fi
moves up, fl moves accordingly so that the Beltrami coefficient of triangle Δfifkfl stays the same.

In summary, given an initial non-topological mapping, we can project the Beltrami coefficient

and solve Eq (11) to obtain a topological mapping that is close to it.

Removing phase jumping. We adopt the widely used polar coordinate system for the

visual field, i.e., eccentricity r = v(1) and polar angle θ = v(2)2[0,2π). The polar coordinate sys-

tem has many advantages, but the polar angle θ is not continuous numerically near the x axis

even when the mapping itself is. As shown in Fig 6A, points v1 and v2 share the same eccentric-

ity and are both very close to the x axis, but their polar angles are very different because the

polar angle jumps from 2π to 0 near the positive x axis. We call the phenomena “phase jump-

ing”. It makes the coordinates around the x axis discontinuous.

Phase jumping is not an intrinsic property of retinotopic mapping. The issue can be

addressed with a transformed coordinate system: If we rotate the polar coordinate system, the

phase jumping axis can be shifted. To avoid phase jumping, we shift the zero polar angle to the

negative x axis for the left hemisphere (Fig 6B). Now phase jumping occurs near the negative x
axis. Because retinotopic mapping of the left hemisphere is in Quadrants I and IV, the shift

Fig 6. Removing phase jumping and phase reversal. (A, B) Phase jumping and the shift scheme used to remove it.

(C) Phase reversal and the transformation used to remove it.

https://doi.org/10.1371/journal.pcbi.1009216.g006
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allows us to avoid phase jumping. For the right hemisphere, retinotopic mapping is in Quad-

rants II and III; we do not need any shift. By doing this, we can avoid unnecessary visual coor-

dinate discontinuities.

Removing phase reversal. We apply another linear transformation on the polar angle to

remove phase reversal across visual areas. Phase reversal is an important intrinsic property of

retinotopic mapping. As shown in Fig 6C, if one walks from V3d to V3v along the yellow arc,

the corresponding polar coordinate v(2) on the visual field first increases and then decreases.

We assign a visual area with a positive (negative) visual field sign if the polar coordinate

increases (decreases) when we move clockwise on an equal eccentricity curve, e.g., the yellow

arc in Fig 6C. A phase reversal across the boundary of two cortical areas causes a change of

visual field sign and therefore breaks the topological condition for the points near the bound-

ary between visual areas. To make our proposed smoothing method applicable to multiple

visual areas simultaneously, we apply another linear transformation to remove the visual field

sign changes across visual area boundaries. The combination of two transformations, one for

removing phase jumping and the other for eliminating visual field sign changes, is summarized

in Table 1. We call the transformed polar angle “extended polar angle”. Because polar angles

and visual area labels have a one-to-one correspondence with the extended polar angles, one

can recover the original polar angles and visual area labels from the extended polar angles.

With accurate extended polar angles, one can draw accurate interior boundaries between dif-

ferent visual areas (V1 and V2, V2 and V3, etc).

In addition, these transformations make the smoothing more precise, especially near the

boundaries of visual areas, because they remove the sharp polar angle changes across the

boundaries.

Algorithm. We now summarize the overall topological smoothing algorithm in Alg. 1.

The input data consist of the conformal parameterization u of the cortical surface, and their

associated visual field coordinates v. The output is the updated retinotopic map coordinate

v̂ ¼ f̂ . The algorithm is implemented in MATLAB 2019b [52,53].
Algorithm 1. Topological Smoother
Input Data: Retinotopic coordinates v = {vi}, conformal parametriza-
tion u = {ui} of the cortical surface, initial boundary retinotopic
coordinates, vB, and boundary value change tolerance �.
Output: Smoothed retinotopic coordinates v̂ ¼ fv̂ig

Correct the visual coordinates according to Table 1 to get adjusted
visual coordinates v0

v̂ i  v0i; assign the initial retinotopic coordinates for each vertex on
the unit disk
repeat

Compute Beltrami coefficient μ for the mapping f̂ : u! v̂ using Eq (5).

Table 1. Polar angle transformations are used to remove phase-jumping and changes of visual field sign for the

left and right hemispheres in multiple visual areas.

Region Name Transformation of Polar Angle θ
Left Hemisphere Right Hemisphere

V1v T(θ) = θ+π T(θ) = θ
V1d T(θ) = θ−π T(θ) = θ
V2v T(θ) = −θ+2π T(θ) = −θ+π
V2d T(θ) = −θ−2π T(θ) = −θ−π
V3v T(θ) = θ+2π T(θ) = θ+π
V3d T(θ) = θ−2π T(θ) = θ−π

https://doi.org/10.1371/journal.pcbi.1009216.t001
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Project non-topological mappings with μ0 = μ/(|μ|+�), if |μ|>1.
Compute new mapping v̂ 0 by LBS for μ0 with boundary value vB.
Apply Laplacian smoothing on v̂ 0ðv̂0 ð1Þ and v̂0 ð2Þ, respectively) to get v̂.
Fit a linear function near the boundary and update the boundary

value vB to v0B
Check and restore each point in v0B if it deviates from the initial

value by more than �.
until max|μ|<1
return v̂.

Results

Synthetic data

We first evaluated the performance of the algorithm on synthetic data generated with the fol-

lowing function,

uð1Þ þ iuð2Þ ¼ klnðvð1Þ þ ivð2ÞÞ: ð14Þ

We chose ln function (k = 0.5 in this paper) as it is a good approximation of the retinotopic

mapping from the visual field to the flattened cortical surface [54]. Note that in the original

study, Schwartz used the model to map from the visual field to the parametric coordinates of a

flattened cortical surface. It is the inverse function that we studied in this paper. We followed

the convention only in this subsection, i.e., generating a smoothed ûðvÞ from a noisy u(v),

instead of a smoothed v̂ðuÞ from a noisy v(u). Note that, because the topological condition is

reciprocal, the conclusion based on this approach still applies to the inverse function. More

specifically, the visual field grid mesh is first created (Fig 7A) with the following configura-

tions: eccentricity spans from 0˚ to 4.5˚ and polar angle ranges from −π/2 to π/2. We then sam-

pled 12 points in each direction and formed the quadrilateral grid mesh (144 points in total).

Based on the quadrilateral mesh, we created the triangular faces by connecting diagonal points

for each quadrilateral. Then we mapped the triangular mesh to the parametric space (Fig 7B),

according to Eq (14). Ideally, the mapping points should be located on the grid (Fig 7B). We

then added a small amount of noise with a peak signal-noise ratio (PSNR) of 10 (Fig 7C), and a

large amount of noise with a PSNR = 5 (Fig 7D).

We applied several smoothing methods, including Average Smoothing, Median Smoothing,

and Laplacian Smoothing [44], as well as our proposed Topological Smoothing, to the syn-

thetic mapping data in both high and low signal-to-noise cases. All the existing methods are

spatial smoothing procedures. Intuitively, Average Smoothing takes the average around the

neighborhoods of each vertex. Median Smoothing takes the median value of the

Fig 7. Illustration of the synthetic data. (A) The visual field domain. (B) Mapping without noise. (C) Mapping with a

small amount of noise (PSNR = 10). (D) Mapping with a large amount of noise (PSNR = 5).

https://doi.org/10.1371/journal.pcbi.1009216.g007
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neighborhood. All existing smoothing procedures treat the u(1) and u(2) coordinates separately.

In this section, we fixed the smooth parameter s = 0.001 (Eq (7)) and the boundary values were

initially inferred from the Average Smoothing results and boundary change tolerance is � =

0.01. We list the performance metric, i.e., the deviation from the ground truth of all smoothers

in Tables 2 and 3. Value deviation is the average difference relative to the ground truth. Angle

distortion (the angle spanned by the tangent vector of u(1)’s contour curves and the tangent

vector of u(2)’s contour curves, at the same location; see S4 Text for details) quantifies the local

angle changes (in degree unit) after the mapping, and the number of flipped triangles T̂ mea-

sures violations of the topological condition. All the experiments were repeated 50 times to

reduce fluctuation caused by random noise. The number of flipped triangles T̂ is the median

of the 50 experiments. In addition, we ran a non-parametric permutation test [55] to conduct

pairwise comparisons of the results from the proposed method and each of the other methods

(including no smoothing). The null hypothesis is that the results from the proposed smoother

are not significantly different from those of the other methods. We report the p value, i.e., the

probability that the null hypothesis was true. In brief, if the p value is less than 0.01, the results

from the proposed smoothing method are statistically different from those of the other

methods.

We found that (1) all smoothing methods reduced value deviation, angle distortion, and

number of flipped triangles (Tables 2 and 3); (2) the proposed method achieved the best topo-

logical result and the smallest angle deviation (all p<0.00001); (3) when the noise was relatively

small (Table 2), violations of the topological condition were largely corrected by most of the

methods, and the average smoothing method achieved very good topological results; (4) when

the noise was relatively high (Table 3), the average smoothing method lost its ability to correct

topological violations; and (5) the proposed method always performed best in angle preserv-

ing, which was not a surprise as the magnitude of Beltrami coefficient |μ| is related to angle dis-

tortion of the mapping (see S4 Text), and we penalized big |μ|0s in the proposed method (Eq

Table 2. Comparison of different smoothing methods based on three metrics: value deviation, angle distortion, and number of flipped triangles with a small

amount of noise (PSNR = 10).

Method Value Distortion Angle Distortion in deg. Topology

Mean Std p Mean Std p T̂^ p

No Smoothing 0.235 0.13 0.00001 45.001 25.25 0.00001 54 0.00000

Average 0.134 0.09 0.00001 30.903 22.52 0.00005 10 0.00000

Median 0.170 0.10 0.00001 40.124 24.04 0.00001 19 0.00000

Laplacian 0.558 0.48 0.00001 41.432 25.16 0.00001 18 0.00000

Proposed 0.143 0.09 ------ 18.313 16.41 ——— 0 ———

https://doi.org/10.1371/journal.pcbi.1009216.t002

Table 3. Comparison of different smoothing methods based on three metrics: value deviation, angle distortion, and number of flipped triangles with a large amount

of noise (PSNR = 5).

Method Value Distortion Angle Distortion (degree) Topology

Mean Std p Mean Std p T̂^ p

No Smoothing 0.334 0.18 0.00001 47.067 25.87 0.00001 65 0.00001

Average 0.169 0.10 0.00001 36.099 24.09 0.00040 22 0.00001

Median 0.206 0.12 0.00001 43.314 24.76 0.00001 32 0.00001

Laplacian 0.604 0.46 0.00001 44.544 26.18 0.00001 25 0.00001

Proposed 0.169 0.11 ------ 23.226 20.70 ------ 0 ———

https://doi.org/10.1371/journal.pcbi.1009216.t003
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(7)) to reduce angle distortions. To summarize, the proposed smoother performed best to cor-

rect topological violations and reduce angle distortions. It also performed better or comparably

with all the other methods in terms of visual coordinate distortions. Fig 8 illustrates the

smoothing results for all the methods when the noise was relatively low (PSNR = 10).

Synthetic Data II

We performed another set of synthetic data experiment in which noise was directly added to the

fMRI signals. We started with the ground-truth parameters: receptive field centers spanning the

right visual space [0:0.08:6.4]˚×[0,0.08: 4.8]˚; receptive field size = 0.4˚; gain = 1; and exponent of

the power function n = 0.5. Then, we followed Kay’s pRF model (AnalyzePRF [38,56] with stim-

ulus from the HCP group, 200×200 in spatial resolution with 1800 seconds) to generate the ideal

fMRI signal. We further normalized the fMRI signal to unit variance, added a specific amount of

white noise, decoded the pRF model for the fMRI signal (with noise), and computed the number

of flipped triangles. We varied the noise level until the percentage of flipped triangle was about

20%. (Specifically, in our experiments, noise with a 2.5 standard deviation induced about 22%

flipped triangles). With pRF decoding results at this noise level as input, we applied the topologi-

cal smoothing method and generated new visual coordinates. Then we compared our work with

the pRF model and several post-processing methods (Table 4).

We found that (1) the proposed method can fully ensure the topological condition, with 0

flipped triangles, while other smoothing methods had at least 6% of flipped triangles; (2) the

proposed method had minimal angle distortion; and (3) all smoothing methods improved the

receptive field center estimates, with the median smoothing method achieving minimal center

Fig 8. Smoothing results for the synthetic data: (A)-(D) are the results with PSNR = 10 for (A) Average smoothing, (B)

Median smoothing, (C) Laplacian smoothing, and (D) proposed topological smoothing; (E)-(H) are the results with

the same order as (A)-(D) but with PSNR = 5.

https://doi.org/10.1371/journal.pcbi.1009216.g008

Table 4. Comparison of different smoothing methods based on noisy fMRI decoding with about 22% of flipping triangles.

Method Center Distortion Angle Distortion (degree) T̂^ R2

Mean Std p Mean Std p

No Smoothing 0.407 0.520 0.352 48.55 30.20 0.00 32 13.28

Average 0.311 0.238 0.070 23.35 23.16 0.00 15 13.41

Median 0.298 0.176 0.010 22.40 16.57 0.00 11 13.41

Laplacian 0.429 0.509 0.149 42.82 29.48 0.00 23 13.09

Proposed 0.361 0.231 ------ 13.84 12.87 ------ 0 13.27

https://doi.org/10.1371/journal.pcbi.1009216.t004
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distortion. The last point is reasonable because the current work is mainly focused on the topo-

logical condition. Future fine-tuning of the pRF parameters may alleviate this problem. The

new synthetic experimental results further demonstrated that the proposed method could

remove topological violations and reduce angle distortions.

V1 retinotopic map

Although 7-Tesla MRI systems have dramatically improved the signal-to-noise ratio, the reti-

notopic maps in the HCP dataset are still quite noisy and non-topological. We first applied our

proposed smoother on the V1 retinotopic maps of all observers in the HCP dataset.

Since there is no ground truth, we evaluated the performance of the method by the good-

ness of fit of the predicted fMRI signals with the smoothed visual coordinates. Specifically, we

first decoded the visual coordinates v, population perception field size σ, BOLD response level

g for the 181 observers by the pRF method [3]. Then we applied several smoothing methods

on their V1 retinotopic maps. Based on the smoothed coordinates, we computed fMRI time

series predictions at every vertex of the cortical surface. To evaluate the impact of changing the

receptive field centers, we set the response level g and the exponent of the power function n the

same as the original pRF in computing fMRI time series predictions.

We measured the goodness of fit of the smoothing methods to the fMRI time series (with

the code from AnalyzePRF [38,56]). The results are listed in Table 5, with the following met-

rics: (1) the average number of flipped triangles across subjects, (2) the average percentage of

the non-topological area Arn, (3) the average Normalized-Root-Mean-Square-Error (NRMSE)

of the fits, and (3) the average variance �R2 accounted for across all the vertices in V1.

We observe that: (1) all the smoothing methods reduced the number of flipped triangles,

while only the proposed method eliminated topology violations completely; (2) the percentage

of the non-topological area Arn was about 8~20% of the total area with all but the proposed

smoothing method; (3) The proposed method decreased R2, mainly due to the constrain of the

topological condition. The number of flipped triangles for individual observers by all methods

can be found in the supplementary data (see Table A in S5 Text). The results also show that the

proposed method was always better in preserving topology while the goodness of fit to the

fMRI time series was reduced from the original result.

For a more intuitive comparison, Fig 9 shows the original retinotopic map of the left hemi-

sphere of the first observer in the HCP dataset and the smoothed versions by different meth-

ods. The original retinotopic map (Fig 9A) is not topological because there are many flipped

triangles. Fig 9B–9E show the results from the Average, Median, Laplacian, and proposed

smoothing methods, respectively. Although all smoothing methods improved the smoothness

of the maps, topological violation still occurred in the results of all but the proposed smoothing

methods, especially near the fovea. Only our proposed method can generate topology-preserv-

ing results (Fig 9E). Fig 9F shows the smoothed retinotopic map with level sets on the inflated

left hemisphere. To enable a clear comparison, we present enlarged level sets on the inflated

Table 5. Comparison of different methods in fitting the fMRI time series.

Method T̂ Arn(%) NRMSE × 10−3 �R2

Before Smoothing 73 20.7 0.07757 28.23

Average Smoothing 28 8.1 0.07779 27.86

Median Smoothing 35 9.7 0.07773 27.92

Laplacian Smoothing 64 18.0 0.07763 28.09

Proposed Smoothing 0 0.0 0.08139 20.35

https://doi.org/10.1371/journal.pcbi.1009216.t005
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mesh for each smoothing method in Fig 9H–9K. The green curves from the left to right repre-

sent 0.5˚ to 6˚ eccentricities with a 0.5˚ interval, and the blue curves, from the bottom to up,

represent -90˚ to 90˚ polar angles with a 15˚ interval. We can also clearly see topological viola-

tions in Fig 9G–9J, especially in the fovea region. Only the proposed method can generate

topological and smooth results (Fig 9K). The same experiment was conducted on the data of

all observers and the results are available in S5 Text. These results clearly show that the pro-

posed method can generate smooth and topological retinotopic maps in V1.

Retinotopic maps of the V1/V2/V3 complex

We took the initial visual area labels from the multimodal surface matching (MSM) results of

the HCP group [57,58], removed phase-jumping and phase-reversal for the left and right

hemispheres in multiple visual areas after polar angle transformations, and achieved topologi-

cal and smooth results across them (Fig 10). Fig 10A–10E show the visual coordinates in the

eccentricity-extended-polar coordinate space, in which the x axis is the eccentricity, and the y
axis is the extended polar angle (Table 1), for the raw data, average smoothed data, median

smoothed data, Laplacian smoothed data, and topological smoothed data, respectively. All

smoothing methods reduced topology violations, compared to the raw data. However, only

our proposed smoothing method generated topological mapping such that the contour curves

(the green and blue curves in Fig 10K) were smooth and had no self-intersection. We per-

formed the same comparison across all observers (Table A in S5 Text) and showed that our

proposed topological smoothing was the best in topology preserving.

Boundary delineation

In the eccentricity-extended-polar coordinate space, the boundaries between different visual

areas in the V1/V2/V3 complex are defined by specific polar angles. Fig 11A shows the bound-

aries directly inferred from the raw data of the first observer. Fig 11B–11E show the boundaries

generated from the smoothed data of the same observer, after average, median, Laplacian, and

topological smoothing. The new boundaries largely coincided with manually labeled visual

areas from the average data, represented by the colors of the cortical surface Fig 11). The green

curves (from the left to the right) are eccentricity contours from 1˚ to 6˚ with a 1˚ interval, and

Fig 9. Results on the first observer: (A) the raw retinotopic map on the 2D parametric domain; (B)-(E) results from

the Average, Median, Laplacian, and proposed methods, respectively; (F) the whole inflated left mesh; (G) the raw map

on the cortical surface; (H)-(K) results on the inflated surface, in the same order of (B)-(E). In (A)-(E) the x axis is the

visual x coordinate, and the y axis is the visual y coordinate.

https://doi.org/10.1371/journal.pcbi.1009216.g009
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the purple curves represent boundaries of visual areas (V3d/V2d/V1d/V1v/V2v/V3v, from up

to down). As in the retinotopic maps, topological violations occurred in boundary delineation

from the raw data and after smoothing with all but our proposed method. We present all

observers’ area boundaries after topological smoothing in S5 Text. They were all smooth and

continuous.

Discussion

In this study, we modeled the topological condition and generated topological and smooth

retinotopic maps. The Beltrami coefficient, a metric of quasiconformal mapping, was used to

define the topological condition. We developed a mathematical model to quantify topological

smoothing as a constrained optimization problem and elaborated an efficient numerical

method to solve it. The method was applied to V1, V2, and V3 simultaneously, and was robust

to inaccurate boundary labeling. Experiments with both simulated and real retinotopy data

demonstrated that the proposed method could generate topological and smooth retinotopic

maps. As a result, we were able to improve boundary delineation. To our best knowledge, con-

ventional methods have not fully considered topological constraints for multiple regions in

retinotopic smoothing. Our novel algorithm made the retinotopic maps from BOLD fMRI

topological and consistent with results from neurophysiology. Our work improved the quality

of retinotopic mapping and built a solid foundation for future retinotopy related research.

Quality assessment

In this study, we enforced the topological condition in retinotopic mapping. This enforcement

could potentially introduce large visual coordinate changes to the raw data compared to other

smoothing methods. It is important to monitor whether the smoothing results are acceptable or

have relatively big deviations. Such quality assessment can provide the right level of confidence

when drawing conclusions based on the smoothing results. In Fig 12, the visual coordinate

changes of two typical observers are shown on the cortical and parametric surfaces respectively.

Fig 12A shows the studied visual areas on the 3D cortical surface. Fig 12B and 12C shows the

Fig 10. The retinotopic mapping of the V1/V2/V3 complex of the left hemisphere of the first observer: (A) the raw

retinotopic map in the eccentricity-extended-polar coordinate space (with 232 flipped triangles), (B)-(E) the

smoothing results of the Average (with 55 flipped triangles), Median (with 85 flipped triangles), Laplacian (with 151

flipped triangles), and the proposed smooth (no flipped triangles), respectively, (F) the entire left inflated mesh in

medial view, (G) an enlarged graph of the raw retinotopic map on the inflated mesh, (H)-(K) smoothing results on the

inflated surface of the four smoothing methods, in the same order of (B)-(E). In (A)-(E) the x axis is the eccentricity

v(1), and the y axis is the extended polar angle v(2), in (H)-(K), the green and blue curves are levels sets, i.e., the contours

of eccentricity v(1) and extended polar angle v(2), respectively.

https://doi.org/10.1371/journal.pcbi.1009216.g010
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distortion in visual space. The colors indicate the amount of visual coordinate changes for the

proposed smoothing process. The first observer’s results (Fig 12A) suggested that the smoothing

was generally good, with on average an about 1.12˚ change of visual coordinates. In contrast,

the other observer’s results (Fig 12C) suggested that some sub-regions have relatively big visual

coordinate changes, with on average an about 1.75˚ change of visual coordinates. We also show

the mean visual coordination distortion distribution of all 181 subjects in Fig 12D. Together

with Table 5, the quality assessment results ensure our retinotopic mappings well respects the

original fMRI signals.

Out-most boundary condition

In this work, visual areas, V1/V2/V3, and the initial boundaries between them were deter-

mined by surface registration. Following the HCP protocol [36], MSM [58] was adopted to

register each observer’s cortical surface to the retinotopy atlas obtained from the HCP [34].

After the registration, the boundaries for each observer were determined along equal polar

angle curves, and our extended polar angles were initialized with these boundaries. The out-

most eccentricity boundaries were manually determined based on the eccentricity signal range

(in our case, approximately from 0.2˚ to 7˚).

The initial boundaries might not be accurate since they were determined by surface regis-

tration. With extended polar angles, our algorithm was robust enough to fix the interior visual

area boundaries. Our method requires that the visual coordinates of the out-most boundaries

are specified when solving the LBS. Even so, if the visual coordinates of the out-most boundary

are not properly given, we can still update the out-most boundaries and recover interior visual

coordinates. We tested two approaches to set the out-most boundary values. One approach is

to set a fixed boundary for all observers to simulate the case in which a good boundary config-

uration is given, and the other approach is to adjust the out-most boundary values by fitting a

smooth spline of the interior visual values to simulate the case in which the boundary

Fig 11. Visual area boundary delineation of the V1/V2/V3 complex of the first observer. The colors of the surface

represent manually labeled visual areas from the average data. The purple curves indicate boundaries between visual

areas of V3d/V2d/V1d/V1v/V2v/V3v (from up to down), respectively. The green curves are eccentricity contours. (A)

boundaries inferred from the raw data, and (B)-(E) boundaries after average, median, Laplacian, and topological

smoothing.

https://doi.org/10.1371/journal.pcbi.1009216.g011

Fig 12. Visual coordinate change after smoothing. (A) The visual change is rendered on the inflated cortical surface

(B) The visual change is rendered on the parametric surface for the first observer. Similarly, (C) is the visual change for

the second observer. (D) is the histogram of average visual change for the HCP dataset (N = 181).

https://doi.org/10.1371/journal.pcbi.1009216.g012
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coordinates are given but not precise. Each approach has its own pros and cons. The first

approach is numerically stable but ignores individual differences, while the second approach

adjusts the boundary values based on retinotopic data, which has higher accuracy but may fail

to set reasonable boundary values. We compared both approaches in the experiments. Fig 13A

and 13C are the results from the first approach, and Fig 13B and 13D are the results from the

second approach. We found a relatively large difference on the out-most boundaries (red

boundaries in Fig 13A and 13B), while the interior regions were less affected. The mean differ-

ence between the results of the two approaches was 0.23˚±0.15˚, which is relatively small. In

this paper, we took a combined approach: the boundary values were set within a small toler-

ance range (0.5˚) of the initial average boundary values. Nevertheless, we found that, although

the out-most boundaries may not be precise, the interior results were not much impacted by

the boundary values. Therefore, we can use the pre-defined boundary configuration for all the

subjects.

It is worth noting that our method is applicable to the registration results from Freesurfer

[37] or MSM [58] or Bayesian register [8]. Here we applied it to successfully process data from

all 181 HCP observers. In our code repository, we have published all the necessary manuals

and atlas for others to reproduce our work. We also provided a simple software tool to manu-

ally draw the out-most boundaries on visual cortical surfaces and generate corresponding

visual coordinates.

Robustness with inaccurate interior boundaries

When smoothing the retinotopic maps of the V1/V2/V3 complex, we applied linear transfor-

mations to the polar angles based on the visual region labels derived from the anatomy. Here,

we explain why our proposed smoothing method was robust even with inaccurate boundary

specifications.

We used the first observer’s data as an example to illustrate that the proposed method was

robust to inaccurate interior boundaries (Fig 14). In Fig 14A, we show the raw visual polar

angle data on the parametric disk for the first observer, with a white curve at 0.3-degree eccen-

tricity. Then we applied a linear transformation before smoothing, according to Table 1. For a

vertex with an inaccurate boundary label, the polar angle would be transformed with a wrong

offset. Since the transformation adds or subtracts multiples of π as the offset according to its

visual region label in Table 1, a wrong label makes the transformed value dramatically different

from its neighboring value. Therefore, an incorrectly transformed vertex looks like a spike and

destroys its topological condition (red points in Fig 14B).

In the next step, we applied the topological smoothing (smoothed visual polar angle is the

slope-shaped surface in Fig 14B). Since it enforces topology conditions, our topological

Fig 13. Comparison of two boundary approaches. (A) The result of fixed boundary visual coordinates. (B) The result

of changeable boundary visual coordinates. (C) Result of (A) on the inflated cortex. (D) Result of (B) on the inflate

cortex.

https://doi.org/10.1371/journal.pcbi.1009216.g013
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smoothing method replaces the spike with neighboring values. Namely, the proposed method

can fix the wrong offset and is therefore robust to inaccurate interior boundaries.

We further verified that the robustness was not due to Laplacian smoothing. In Fig 14C, we

plot the raw data and topologically smoothed results of the white curve. The white curve is

formed by points with eccentricity v(1) = 0.3˚ with tolerance 0.05˚. We now consider the data

near the white curve. If the eccentricity measurement is accurate, the 2D topological condition

can be considered as a monotonicity requirement. In Fig 14C, the blue dots are the raw

extended polar angle data, and the green curve is the topological smoothing result. Even

though there were outliers (the red circled points, mainly due to the noisy eccentricity data),

the main portion of the trend was monotonic. In Fig 14D, we plot the results with only Lapla-

cian smoothing without topology constraints as the green curve, which is crooked in order to

fit the data but not monotonic (topological). This means Laplacian smoothing can smooth but

cannot fix topological violations. In contrast, our topological smoother ensures topological

condition, which essentially makes the mapping “monotonic”. It is the topological constraint

rather than Laplacian smoothing that makes the smoothing more robust to inaccurate interior

boundaries.

The new topology-projection module in the proposed method makes it robust to inaccurate

interior boundaries. The smoothed extended polar angles from topological smoothing can be

used to infer visual area labels.

We computed visual coordinate changes following an alteration of the V1/V2 boundary. If

the visual coordinates did not change too much when the boundary was altered, the results

were robust to interior boundaries. We started from the first subject’s data (Fig 15A). We

Fig 14. Smoothing is robust to the inaccurate interior boundary: (A) the raw visual polar angle v(2) is rendered on the parametric unit disk (i.e., radius is one),

(B) v(2) as a function on the cropped region, (C) visual polar angle v(2) along the white arc by topological smoothing, (D) similar result as (C) but the curve is

from Laplacian smoothing.

https://doi.org/10.1371/journal.pcbi.1009216.g014

Fig 15. (A, B, C) Perturbations of the V1/V2 boundary, where (B) was obtained after three rounds of expansion and (C) was

obtained after five rounds of expansion. (D) Visual coordinate changes with different degrees of perturbations.

https://doi.org/10.1371/journal.pcbi.1009216.g015
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expanded V2v by moving points in V1v into V2v if they were adjacent to V2v. The expansion

was repeated to simulate different boundary misplacements (three rounds in Fig 15B and five

rounds in Fig 15C). Then we applied our smoothing method and compared the results with no

perturbation. The boxplot in Fig 15D shows that the visual coordinate differences were rela-

tively small (the average is less than 0.5˚) with V2v boundary expansion. The results suggest

that the proposed method is robust to interior boundary placement.

The trade-off between smoothness and quality of fit

The smoothing weight s in Eq (7) controls the trade-off between smoothness and quality of fit

under topological condition. Although other studies have attempted to find the optimal s for

linear smoothers [59], the topology constraints made it challenging. We used the following

way to set the proper s: find the largest weight while ensure that the average difference between

the smoothed visual coordinates and the raw data is within a certain range (1˚ in this work).

To empirically determine the s value, we computed the percentage of the non-topological area

and the Normalized-Root-Mean-Square-Error (NRMSE) of the fit to the fMRI time series for

the raw data, when s = 0, and when s was set properly for the first observer. For the raw data:

NRMSE = 0.07944×10−3, 24.7% of the area is non-topological; when s = 0, NRMSE =

0.08546×10−3, 0% of the area is non-topological; and when s = 0.0121, NRMSE = 0.8551×10−3,

0% of the area is non-topological. The NRMSE values for s = 0 and s = 0.0121 were quite close.

Therefore, we prefer the latter result in this work.

Beltrami coefficient vs. Jacobian

In this work, the topological condition is ensured by enforcing kμk1<1. Another geometric

concept, the determinant of the Jacobian matrix J can also be adopted to enforce the topologi-

cal condition. For example, it has been adopted by previous work to monitor the local visual

field signs of retinotopic maps [14], which indicate the trend of visual polar angle changes

(increasing or decreasing) on an iso-level eccentricity curve. Constraining the determinant of

the Jacobian to be positive can also ensure the topological condition and visual field sign

within a neighborhood. Mathematically, the Beltrami coefficient and the determinant of the

Jacobian matrix are related via the following equation: J ¼ jfzj
2
� jf�z j

2
¼ jfzj

2
ð1 � jmj

2
Þ [60].

We prefer the Beltrami coefficient because it is more suitable for retinotopic mapping. First,
with the Beltrami coefficient, we can define the topological constraint as a penalty term to

smoothing energy (Eq 7) because the Beltrami coefficient quantifies angle distortions and reti-

notopic mapping is considerably angle preserving [54,61]. In contrast, J cannot be added as a

term in smoothing energy because it quantifies area changes, and retinotopic mapping is not

area-preserving. Numerically, one must separately treat the constraint and adjust visual coordi-

nates to ensure that J is postive. Second, as indicated by Theorem 1 in S2 Text, the Beltrami coef-

ficient map uniquely determines a diffeomorphic mapping between two 2D surfaces, making it

possible to recover/solve the mapping if we know the Beltrami coefficients. Therefore, we can

divide the smoothing process into two subproblems and solve each separately and efficiently.

To our knowledge, there are no efficient and stable methods to utilize Jacobian J to reconstruct

diffeomorphic mappings. In summary, although it may be possible to use J to quantify the topo-

logical condition, the Beltrami coefficient is more suitable for modeling retinotopic maps.

Smoothness and topological projection

The proposed topological smoother produces topological and smooth retinotopic maps.

Although these two conditions are related, the topological condition does not ensure
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smoothness, nor does smoothness ensure the topological condition. In fact, the topological

condition can be ensured without smoothing. Empirically, no one expects retinotopic maps to

be topological but extremely irregular and rough.

Smoothing does to some degree improve the topological condition. Although we do not

know the exact relationship between visual coordinate smoothing and the topological condi-

tion (monitored by Beltrami coefficient), the Beltrami coefficient quantifies the local deforma-

tions based on its definition. Smoothing can reduce the outliers in Beltrami coefficients.

Because 80% of the triangles in the HCP dataset are orientation preserving (See Table A in S5

Text), smoothing the visual coordinates may reduce the norm of the Beltrami coefficients in

average and improve the topological condition. If the data have more flipped triangles (e.g.,

~50% triangles’ are flipped), smoothing may introduce more non-topological triangles and

make the problem worse.

The topological condition cannot be ensured by reiterative smoothing. As shown in Fig 15D,

repeated Laplacian smoothing did not generate fully topological results. The topological condi-

tion is mainly fulfilled by topological projection. However, after fixing the topological condition,

a major concern is the results could be too irregular or deviate too much from the original pRF

solutions. The proposed Topological smoother can produce results that are both topological and

smooth. Roughly speaking, if the fMRI signal to noise ratio is very high (say SNR>20), the pRF

solutions would be smooth and topological. For example, the pRF solution of the averaged

fMRI signals from many subjects (https://osf.io/bw9ec/wiki/home/) has very few flipping trian-

gles in V1. This is why the energy function in the topological smoother has a term that penalizes

non-smoothness and therefore may improve the fit to the data and improve the topological con-

dition. We believe the approach can balance the topological condition and smoothness.

Extension to higher visual regions

Although we focused on the V1/V2/V3 complex in this study, our method can be in principle

extended to higher visual areas. However, there are some additional challenges. As we move to

higher visual areas, the signal-to-noise ratio of the retinotopic map is further reduced. It is

extremely challenging for all smoothing methods to balance the topological condition and

goodness of fit. As shown in Fig 16, we applied our proposed smoothing method on the V3B

retinotopic maps of the first four observers in the HCP dataset. Instead of smoothing V3B with

V1-V3 together, we performed separate smoothing on V3B and concatenated the results with

those on V1-V3. Although topological smoothing was feasible in higher visual regions, extra

care must be taken because of the low signal-to-noise ratio of BOLD fMRI activation.

Benefits of the extended polar angles

Our previous work on topology correction [29] was only applicable to V1; it could not be used

to improve boundary delineation. In this work, by introducing extended polar angles, we

Fig 16. Smoothing extended to the retinotopic map of V3B (the blue color region) of the first four observers.

https://doi.org/10.1371/journal.pcbi.1009216.g016
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extended the framework to the V1/V2/V3 complex and achieved topology-preserving smooth-

ing in multiple visual areas simultaneously. Although our previous work [29] might be poten-

tially appliable to V2 and V3, accurate V1/V2 and V2/V3 boundaries were necessary. In the

current work, given the out-most boundaries of the V1/V2/V3 complex, our work not only

generated more precise smoothing within the interior of each region, but also automatically

delineated the boundaries between them. The new development on boundary delineation may

significantly improve the robustness and accuracy of retinotopic mapping. In addition, our

prior work was mainly evaluated with visual coordinate the changes. How much impact it had

on the goodness of fit of the fMRI time series was not evaluated. Here we added fits to the

fMRI time series in performance evaluation, which may better justify our work and alleviate

the concern that the proposed method may over-smooth the retinotopic maps. With extensive

evaluation based on both synthetic data and real retinotopic map data from 181 HCP observ-

ers, the current study demonstrated that our proposed method may improve the accuracy and

stability of retinotopic mapping, especially the interior boundary conditions.

Elaboration on the reduced R2 in Table 5

The topological smoother can completely remove topology violations in retinotopic maps.

However, as shown in Table 4, it reduced the measure of explained variance, R2. In general,

the pRF model should have a better R2, since R2 values are computed at each point on the corti-

cal surface. There are no constraints, nor penalty for non-topological results in R2. However,

neurophysiology studies strongly suggested that retinotopic mapping is topological for normal

subjects. If the pRF results are not topological, the problem is very likely caused by the low spa-

tial resolution and SNR of the fMRI data, an issue that cannot be addressed with current MRI

technologies. In this work, we assume that the neurophysiology results are correct and

attempted to fix topological violations in retinotopic maps by slightly updating the visual coor-

dinates. We used pRF results as input data without 1) fine tuning pRF model parameters, such

as the gain or the exponent of the power function [62], and 2) iterating with the pRF model to

search for an optimal solution with balanced fitting quality and topological condition. Our

ongoing work [62] tries to integrate the pRF model and topological conditions by defining a

combined energy term. We expect such a balanced approach may improve topological condi-

tion without sacrificing data fitting quality.

Relation to registration

The Beltrami coefficient (BC) encodes 2D-to-2D mapping up to a normalization [60]. Manip-

ulating the Beltrami coefficients of the registration function between a subject and a template

can also achieve diffeomorphic registration and generate topological results [63]. The benefits

of this approach was discussed in [8]. However, one main issue is that the template itself might

be biased. One potentially promising solution is to combine registration and smoothing: while

registration provides good boundaries, topological smoothing provides good interior smooth-

ing [62].

Conclusion and future work

We adopted the Beltrami coefficients to quantify the topological condition in retinotopic map-

ping, formed a concise but fundamental model, and provided an efficient numerical solver to

generate smooth retinotopic maps. To our knowledge, the proposed topological smoother is

the first method that guarantees the topological condition in retinotopic mapping. Our work

improved the quality of the retinotopic maps and built a solid foundation for future research

based on retinotopy.
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