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Most soft biological tissues exhibit a remarkable ability to adapt to sustained changes

in mechanical loads. These macroscale adaptations, resulting from mechanobiological

cellular responses, are important determinants of physiological behaviors and thus

clinical outcomes. Given the complexity of such adaptations, computational models

can significantly increase our understanding of how contributions of different cell

types or matrix constituents, and their rates of turnover and evolving properties,

ultimately change the geometry and biomechanical behavior at the tissue level. In this

paper, we examine relative roles of the rates of tissue responses and external loading

and present a new rate-independent approach for modeling the evolution of soft tissue

growth and remodeling. For illustrative purposes, we also present numerical results

for arterial adaptations. In particular, we show that, for problems defined by particular

characteristic times, this approximate theory captures well the predictions of a fully

general constrained mixture theory at a fraction of the computational cost. VC 2018
Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). https://doi.org/10.1063/1.5017842

I. INTRODUCTION

As aptly stated in 1995 by Fung, “Every specialty in biomechanics begins with the study

of constitutive relations,”1 that is, descriptors of material behavior for particular conditions of

interest. Among his many contributions, Fung showed that although soft tissues tend to exhibit

nonlinearly viscoelastic behaviors under certain conditions, they can often be regarded as pseu-

doelastic under physiological conditions. Indeed, it is for this reason that preconditioning is a

fundamental part of most experimental protocols for studying the biomechanical behavior of

soft tissues and the vast majority of constitutive relations for stress are based on hyperelasticity,

not viscoelasticity. When considering the remarkable ability of soft tissues to respond to chang-

ing mechanical conditions, that is to grow and remodel, Fung stated further that “the scope of

constitutive equations broadens: it should now include a mass-and-structure growth-stress rela-

tionship as well as a stress-strain relationship.” For the past 20þ years, a key specialty area of

investigation in soft tissue mechanics has focused on developing and testing constitutive rela-

tions for growth and remodeling (G&R).

Of the different approaches available, we have advocated and employed a constrained mix-

ture theory for soft tissue G&R.2 Briefly, this approach requires identification of three classes

of constitutive relations: a hyperelastic descriptor of the mechanical behavior of each of the

structurally significant constituents, as well as descriptors for mass density production rates and
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related survival functions for these same constituents. The mechanical properties and rates of

production and removal of the individual constituents can depend, in part, on the state of stress/

strain at which they were incorporated within the extant tissue, as well as on the current state

of stress/strain. Hence, this approach is consistent with Fung’s call for “growth-stress” relations.

A special case of tissue maintenance exists when rates of production and removal balance per-

fectly while constituent’s turnover in an unchanging mechanical state. Finally, the term

“constrained” implies that all motions of each constituent correspond with those of the mixture

even though each constituent can possess an individual natural (i.e., stress-free) configuration.

This constrained mixture approach has proven useful in describing a host of evolving vascular

conditions, including the development and resolution of cerebral vasospasms, mechano-

adaptation of arteries to altered blood pressure and flow, arterial aging, the enlargement of

aneurysms, the development of tissue engineered vascular grafts, and the maladaptation of vein

grafts,3–8 as well as other cellular and tissue-level processes.9–11

Because every cell and structurally significant constituent has a finite half-life and pre-

sumed memory associating its loss to the state of stress at which time the constituent was incor-

porated within the extant matrix, the classical constrained mixture theory uses a hereditary inte-

gral formulation similar to that of nonlinear viscoelasticity.2 Albeit motivated directly by the

mechanobiology, this integral formulation can be expensive computationally, including the need

to store all past states over which constituents were deposited. For this reason, there has been a

search for suitable simplifications that preserve advantages of the mixture approach (e.g., the

ability to account for material properties and rates of turnover inherent to the different constitu-

ents that constitute the tissue) while improving computational efficiency. One approach has

been to introduce a temporal homogenization12 while another has been to derive an associated

steady-state form that reveals the final (evolved) state,13 not unlike equivalence derivations in

viscoelasticity that relate integral and rate forms14 or those that focus on long-term responses in

relaxation and creep.15 In contrast, in this paper we consider time scales inherent to the rates of

mechanical loading and G&R responses to determine conditions under which a rate-

independent (“pseudoelastic”) theory can hold throughout G&R. In this sense, our current for-

mulation is similar to concepts introduced by Fung to model tissues that exhibit viscoelastic

behaviors using concepts of hyperelasticity. For purposes of illustration and application, we use

this theory to simulate arterial responses to altered pressure, flow, and axial stretch.

II. RESULTS

A. Long-term, steady-state, tissue maintenance solution

The goal of this first example is to confirm that the rate-independent (pseudoelastic) G&R

model derived in Sec. IV B can compute exactly the long-term response (Sec. IV C) of a thin-

walled bilayered artery (Sec. IV A 1) when subjected to multiple external loads that are sus-

tained for long periods. Consider, therefore, two different combinations of loading consisting of

1.15-fold increases in the applied pressure P and flowrate Q, each sustained following initial

transients. To delineate better the responses to different stimuli, the loads are applied sequen-

tially in the orders P(1)!Q(2) (first case) and Q(1)!P(2) (second case), each taking 21 days

overall to reach steady values and time-shifted from the other by 14 days. See Fig. 1(a).

Panel (b) shows the resulting/evolving stimulus function !c for (both medial M and adven-

titial A) collagen c as an example. Panels (c)–(f) in Fig. 1 show the case-specific evolving

responses (for qc
CR, a, hM, and hA, respectively) predicted by the full model of Sec. IV A for the

different combinations of loads shifted over time. Finally, fold differences in shear, circumfer-

ential, and axial stresses from homeostatic (present in !a
C) are shown separately in panels

(g)–(i). Note, in particular, the complex responses that are obtained by initiating the different

mechanical perturbations at different times. Indeed, such simulations illustrate the importance

of modeling G&R because results are not always intuitive at first given the many parallel non-

linear processes. For example, an instantaneous increase in pressure would be expected first to

increase luminal radius and decrease (isochorically) the wall thickness, whereas an infinitely

slow increase in pressure might result in fully adapted (quasi-equilibrium) restorations of
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luminal radius and increases in wall thickness at each time. Actual G&R would be expected to

fall within these extremes depending on rates and extents of loading and rates of matrix

turnover.

Here, because the characteristic rate of G&R (kG&R¼ 1/7� 0.143 days�1) is greater

than the characteristic rate of change of the external loads (in this example, kext� 0.15/

20� 0.075 days�1, recall Sec. IV C), both G&R processes start [Figs. 1(b)–1(f)] right after the

first external load (either P or Q) increases [Fig. 1(a)]. Note, too, that the mechano-stimulus

functions for collagen !c [Fig. 1(b)] and smooth muscle !m (not shown), which drive the G&R

process, yield different short- and mid-term mass density [Fig. 1(c)] and geometric [Figs.

1(d)–1(f)] evolutions, yet regardless of the order in which the loads are applied, they yield a

common long-term outcome at s¼ 105 days¼ 15sG&R� sG&R¼ 7 days, when mechanobiological

equilibrium is restored [mathematically described by !a
h ¼ 1, recall Eq. (31)] and the mass pro-

duction rates balance perfectly the removal rates in the evolved and now unchanging configura-

tion. Particularly interesting is the resetting of homeostatic stresses (swh 6¼ swo, rhhh 6¼rhho, and

rzzh 6¼ rzzo) at the new evolved state, which, yet satisfy the more general equilibrium condition

!a
h ¼ !a

o ¼ 1.

Importantly, we can also directly compute this long-term, path-independent solution using

the particularized formulation of Sec. IV B, which yields a single solution for the combination

of external loads c¼Ph/Po¼ e¼Qh/Qo¼ 1.15, here computed via a Newton–Raphson method

with initial guess given by an ideal adaptation of the type ah=ao ¼ e1=3; hMh=hMo ¼ hAh=hAo ¼
ce1=3; qc

Mh=q
c
Mo ¼ 1, and fzh=fzo ¼ hhð2ah þ hhÞ=ðhoð2ao þ hoÞÞ, see Sec. IV E. This solution is

shown by solid squares in Fig. 1, which reveals precise correspondence with the full, time-

dependent constrained mixture model at long (fully adapted) times.

FIG. 1. Predictions by the full constrained mixture model (first case, dashed; second case, dash-dotted) for the evolution of

(c) medial and adventitial collagen (referential) mass density, (d) inner radius, (e) medial thickness, and (f) adventitial

thickness, each normalized to original values, which result from two different cases of perturbations in loading [(a), solid

lines] that cause (b) evolving stimulus functions (i.e., stresses different from homeostatic target values). Panels (g)–(i)

show, separately, associated deviations in stress components from original homeostatic values. Note the two different time-

delayed combinations of changes in pressure and flow (a). Shown, too, is the long-term, mechanobiologically equilibrated

solution (solid square), which is the same for each of the two (same final) loading conditions. Note the perfect correspon-

dence of the long-term steady-state solution computed with the present time-independent formulation and the full (heredi-

tary) constrained mixture model.
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B. Instantaneously adapted, quasi-equilibrium, slow evolution

As discussed in Sec. IV C, rate-independent formulations derived in Sec. IV B are also valid

for computing slow G&R if the characteristic rate kG&R is much greater than the characteristic

rate of change of the external stimuli kext, satisfying then the quasi-steady-state relation kext/

kG&R� 1 at any G&R time s. For these particular situations, the arterial adaptation (occurring

over a time scale sG&R¼ 1/kG&R) to different alterations in mechanical loading (occurring over a

time scale sext¼ 1/kext� 1/kG&R¼ sG&R) may be regarded as immediate at any G&R time s. We

confirm this assessment in this example, quantifying at the same time how short the G&R char-

acteristic time sG&R should be with respect to the external loading characteristic time sext so that

the predictions given by both formulations, general and particularized, become (approximately)

equal. We analyze three different cases, one for each type of external perturbation that stimulates

the G&R response of the artery under study (i.e., altered inner pressure, flow rate, or axial

stretch), showing the different adaptive processes that the artery undergoes for each.

Figure 2 shows three different G&R arterial responses (non-solid lines), associated with

three different G&R characteristic times sG&R¼ 1/kG&R¼ 0.1 days, 1 day, or 10 days (with

kG&R ¼ km
o ¼ kc

o ¼ kact), which are computed with the full model of Sec. II A for the particular

increases in inner pressure c(s) � P(s)/Po shown in Fig. 2(a). In order to assess the quasi-

steady-state assumption for each case, these values of sG&R are compared to the characteristic

time of the external load application, which we estimate from Fig. 2(a) as the time taken for P/

Po! 1.15, namely sext� 10 days in this case. We also show in the same figure the single rate-

independent solution of Sec. IV B (pseudoelastic, solid line) computed as a function of the

time-dependent inner pressure ratio P(s)/Po where time s simply plays the role of a simulation-

driver parameter. In this case, we start the iterative solution procedure at each new time step

using the converged solution at the previous time step.

Figure 2 shows that the prescribed increase in pressure provokes simultaneous changes in

referential mass densities qc
MR and qc

AR [Fig. 2(c), with similar tendency for medial smooth mus-

cle], inner radius a [Fig. 2(d)], and layer thicknesses hM and hA [Figs. 2(e) and 2(f)], driven by

mechano-stimulus functions !a [Fig. 2(b) for collagen a¼ c, with similar tendency for smooth

muscle], in four simulations (three rate-dependent based on different characteristic times sG&R

and one rate-independent). In particular, the evolution of inner radius, thicknesses, and masses

FIG. 2. Rate-independent (solid line) and rate-dependent (non-solid lines) evolutions computed, respectively, with the

pseudoelastic and the full constrained mixture models, the latter with different characteristic G&R times sG&R¼ {0.1, 1,

10} days, for an isolated increase in pressure with sext� 10 days. Shown are (a) prescribed load P/Po from 1 to 1.15, (b)

mechano-stimulus function !c, (c) referential mass densities of collagen qc
MR=q

c
Mo ¼ qc

AR=q
c
Ao, (d) relative inner radius a/

ao, (e) relative medial thickness hM/hMo, and (f) relative adventitial thickness hA/hAo. The final total wall thickness is

h¼ 0.0494 mm (with 67% due to medial thickening and 33% due to adventitial thickening). Finally, shown too is the long-

term mechanobiologically equilibrated solution (solid square), which reveals perfect correspondence of all three methods at

the final adapted state. The scales are the same in Figs. 2, 3, and 4 to facilitate comparisons.
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for sG&R/sext� 0.1/10¼ 0.01, for which !a ’ 1 [cf. Eq. (48)], is (in practice) indistinguishable

from the rate-independent evolution, for which !a
h ¼ 1 [cf. Eq. (31)]. For the other two simula-

tions, sG&R/sext� 1/10¼ 0.1 and sG&R/sext� 10/10¼ 1, the mechano-stimulus function no longer

satisfies the quasi-equilibrium condition !a ’ 1 during early times. The evolution of luminal

radius for these two cases initially separates from the mechanobiologically equilibrated solution,

even though all remain close to the initial homeostatic value for our prescribed modest increase

in pressure,22 i.e., a/ao ’ 1¼ e1=3 where e¼Q/Qo. Note, however, that the overall solution

(including medial and adventitial thicknesses and constituent masses) given by the rate-

independent formulation is still in good agreement with that of the full formulation. Finally, we

see again that the rate-independent, all three rate-dependent, and the mechanobiologically equili-

brated (solid square) simulations predict exactly the same long-term, fully equilibrated solution at

s¼ 100 days, reaching a value (not shown) of the evolved total thickness h/ho¼ 1.23 which is

7% greater than that for an ideal mechanoadaptation 1.15¼ ce1=3. This 7% difference between

the final value of relative total thickness (1.23) and the ideal target (1.15) can be attributed to the

relatively high content of elastin within the artery under study (33% overall), which is known to

prevent a perfect adaptation since elastin does not turnover.23 Albeit not shown, the responses of

shear, circumferential, and axial over-stresses allow one to understand the transient, short-term

trends in Fig. 2, as, for example, in the case of comparable timescales (sG&R/sext� 1). Indeed, the

increase in pressure mainly provokes an initial increase in circumferential stress, hence the stimu-

lus functions !a drive a growth process (with parallel increments of thickness and mass) until,

eventually, stresses return close to normal values and !a ! !a
h ¼ 1.

Figure 3 shows the same type of analysis but for a particular increase in flow rate e(s)

�Q(s)/Qo [Fig. 3(a)]. We see that the rate-independent (pseudoelastic, solid line) formulation

again provides a very good approximation to the quasi-static evolution predicted by the full

model (case sG&R=sext � 0:01; 8s) and exactly the same long-term, tissue-maintenance solution

as the full model in all cases (sG&R=sext � 0:01; 0:1; 1f g, s¼ 100 days). If we compare the full

model predictions for sG&R/sext� 0.1 and sG&R/sext� 1 to the single one given by the rate-

independent model, we observe good agreements for the evolution of inner radius, but initially

opposed tendencies for thicknesses and masses. We note that, at s¼ 100 days, a=ao ¼ 1:04

’ 1:05 ¼ e1=3 and h=ho ’ 1:01 < 1:05 ¼ ce1=3 (not shown), indicative of a near but not fully

mechanoadaptive solution again. In the case of comparable timescales (sG&R/sext� 1), the

increase in flow rate mainly provokes an increase in shear stress, and thus a decrease in the

stimulus functions !a [cf. Eq. (11)], which initially attenuates matrix turnover consistent with

nitric oxide slowing collagen production by smooth muscle cells (with parallel decrements of

thickness and mass). This reduced thickness, along with the increase in luminal radius (also

FIG. 3. Similar to Fig. 2, except for an isolated increase in flow rate Q from 1 to 1.15. The final total wall thickness is

h¼ 0.0407 mm (with 70% due to medial thickening and 30% due to adventitial thickening).
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consistent with vasodilation with nitric oxide), provokes an increase in circumferential stress

that, subsequently, drives a growth process via !a> 1. Finally, stresses closely return to normal

values, such that !a ! !a
h ¼ 1.

Similar conclusions regarding quasi-equilibrium (sG&R=sext � 0:01; 8s) and long-term

(sG&R=sext � 0:01; 0:1; 1f g, s¼ 100 days) predictions are obtained for a single increase in the

axial stretch ratio kz(s)/kzo (in this case up to kzh/kzo¼ 1.10, Fig. 4). Regarding short- and

mid-term evolutions, especially for sG&R/sext� 1, we see that all geometric and mass variable

responses separate from the quasi-equilibrium solution. This finding is consistent with prior

results that mechanobiological adaptations are particularly sensitive to changes in axial

length.24,25 Finally, the common mechanobiologically equilibrated state (not fully reached at

s¼ 100 days for sG&R/sext� 1) is such that a/ao ’ 1¼ e1=3 and h/ho¼ 1.05> 1¼ ce1=3. In this

case, for comparable timescales (sG&R/sext� 1), the increase in axial stretch mainly provokes an

increase in axial stress and thus stimulus functions !a, which initially drive a growth process

(with parallel increments of thickness and mass). Yet, the substantial reduction in inner radius

(because of the axial stretch) also provokes an increase in shear stress, which, subsequently,

attenuates G&R via values !a< 1. Finally, because of the decreased thickness, circumferential

stress increases slightly, driving G&R until the artery reaches a mechanobiologically equili-

brated state associated with !a ! !a
h ¼ 1. Interestingly, the mechano-stimulus functions !a

[panel (b) in Figs. 2–4 for the specific case of collagen] go through one extremum only (i.e., a

maximum) in the case of an isolated increase in pressure, two extrema (i.e., a minimum and a

maximum) in the case of an isolated increase in flow rate, and three extrema (i.e., a maximum, a

minimum, and a last maximum) in the case of an isolated increase in axial stretch, which, in any

case, equal the number of primary mechanical stimuli that are being stimulated sequentially.

Finally, Fig. 5 shows results similar to those in Fig. 2 except for three different degrees of

increased luminal pressure c(s)¼P(s)/Po for the slowest response examined in Fig. 2 (sG&R/

sext� 1). As it can be seen, increases in the perturbation in pressure from 1.15 to 1.30 to 1.45

fold results in progressively slower adaptations as expected. Nevertheless, in each case, the

pseudoelastic model (solid curves) provides the same long-term predictions as the full model

(dotted curves) and even provides reasonable predictions over the short-term in some metrics.

III. DISCUSSION

Biological growth (changes in mass) and remodeling (changes in microstructure) processes

are necessarily time dependent due to the finite periods needed for the significant material to be

synthesized, deposited, degraded, and/or reorganized. Moreover, rates of degradation appear to

FIG. 4. Similar to Fig. 2 except for an isolated increase in axial stretch kz from 1 to 1.1. The final total wall thickness is

h¼ 0.0419 mm (with 68% due to medial thickening and 32% due to adventitial thickening).
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depend in part on the conditions present at the time of deposition (e.g., how the constituent was

oriented or cross-linked), hence endowing tissues with a “material memory.” For this reason,

hereditary integral formulations, as commonly used in viscoelasticity, have proven useful in

describing and predicting evolving geometries, compositions, and properties of soft tissues

under diverse conditions.3–9

Nevertheless, such formulations can be computationally expensive and there is strong moti-

vation to identify additional methods for analysis as well as the conditions for which such

methods hold. In this paper, we presented a time-independent (“pseudoelastic”) formulation of

arterial G&R to describe particular behaviors of otherwise time-dependent processes, which par-

allels Fung’s use of pseudoelasticity to describe particular behaviors of otherwise viscoelastic

tissues. We show that this approach, represented by a system of nonlinear algebraic equations

for a bilayered, thin-walled artery, yields the same outcomes as a general constrained mixture

model, represented by a system of nonlinear integro-differential equations, for both long-term

steady state responses in which the external loads are sustained over time13 and quasi-

equilibrium evolutions in which the external loads change slowly enough that the arterial wall

can essentially adapt instantaneously to the given alterations at each G&R time s. In the latter

case, the quasi-equilibrium formulation gives good qualitative results even for some cases in

which rate-dependent effects remain, especially for isolated increases in blood pressure. This

last observation, along with a marked reduction in computational time, makes the present pseu-

doelastic G&R formulation a good starting point for studying more complex situations that

necessitate a general solution given by the full integral model. Importantly, the time needed to

compute the rate-independent formulation (in evolution form) was �10 to 100 times less than

that for the full model (when run in MATLAB on a 12 dual-core processor, and depending on

specific values of sG&R, which affect the time step of the integral formulation).

Obviously, even though (rate-independent) pseudoelasticity will never replace (rate-depen-

dent) viscoelasticity, hyperelastic models describing the pseudoelastic behavior of viscoelastic

tissues continue to play important roles during stages of experimental characterization, the com-

putation of important responses, both analytically and numerically, the delineation of limiting

responses, and in straightforward determinations of long-term outcomes following relaxation

and creep.15,26–28 In parallel, time-independent G&R models as presented herein will never

replace time-dependent G&R models, either fully integrated2 or kinematically motivated.29 We

submit, however, that pseudoelastic G&R formulations can play parallel roles as in Fung’s

pseudoelasticity to better understand complex G&R of soft tissues, in general, and of arteries,

FIG. 5. Rate-independent (solid lines) and rate-dependent (dotted lines) evolutions computed, respectively, with the pseu-

doelastic and the full constrained mixture models, the latter with a single characteristic G&R time sG&R� 10 days, for dif-

ferent increases in pressure with sext� 10 days. Shown are (a) prescribed loads P/Po from 1 to 1.15, 1.30, and 1.45, (b)

respective mechano-stimulus functions !c, (c) referential mass densities of collagen qc
MR=q

c
Mo ¼ qc

AR=q
c
Ao, (d) relative inner

radius a/ao, (e) relative medial thickness hM/hMo, and (f) relative adventitial thickness hA/hAo.
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in particular. Furthermore, because full2 and mechanobiologically equilibrated13 formulations

predict the same long-term steady state outcomes, these simplified formulations can serve as

efficient tools for constrained mixture modeling that includes studies of parameter sensitivity,

uncertainty quantification, and optimization, which tend to be even more demanding computa-

tionally. Regarding material characterization of evolving tissues, the present formulation can

be used, for example, to determine G&R-related material parameters by comparing original

homeostatic and evolved homeostatic configurations [via, for example, Eqs. (39) and (40)],

hence simplifying this important stage of constitutive modeling. Finally, this type of modeling

G&R could also guide the process of engineering new tissues that react to artificially induced

mechanical loading, as in Refs. 30–32.

For purposes of illustration, we included characteristic times (half-lives) for G&R that may be

regarded unrealistic except in cases of extreme adaptations or pathologies (e.g., sG&R� 0.1 days),

which we used as a more stringent test of the concept. Nevertheless, values of sG&R should be

assessed relative to a characteristic time of changes in the loads that stimulate G&R, namely sext.

Thus, a dimensionless number of the type sG&R/sext, comparing characteristic times of G&R and

loading, is what actually determines the goodness of a quasi-static assumption. Regarding actual

arterial behaviors, sG&R may range from �10 to 100 days17,33 whereas changes in loading may

range from seconds to many days,21,34 hence dimensionless numbers sG&R/sext of order unity, or

lower, exist for sext �10 to 100 days or longer. The lower the value of sG&R/sext, the better the

pseudoelastic G&R approximation, as one would expect from viscoelasticity theory. In contrast,

the greater the ratio sG&R/sext, the better the transient “elastic” (without G&R) approximation; see

Example 2 in Ref. 13. Because sG&R is material-dependent, it can change during certain conditions

or diseases,33 hence each situation should be evaluated individually.

Timescales for G&R and mechanical loading can be very different in other situations, but

analyses in terms of orders of magnitude are yet useful.35 Indeed, kinematic models of growth29

ultimately rely on the recognition of these two time scales, with evolution of the growth tensor

Fg depending on the “growth (or) remodeling timescale.”35 Hence, growth laws may be expressed

in kinematic models in terms of rate parameters36 that, alternatively, may depend on problem-

specific growth metrics to prevent unlimited growth,37 with baseline values identified as rates of

initial growth.38 Similarly, the so-called global growth approach39 also postulates evolution equa-

tions for the stress-free state of an artery, where, again, characteristic times associated with the

growth process can be identified.

In conclusion, we emphasize that all of the illustrative results (Figs. 1–5) also depend on

all of the particular constitutive assumptions, including functional forms (Secs. IV A and IV E)

and prescribed values (Table I). Indeed, whereas we must continue to search for mechanobio-

logically appropriate and yet computationally tractable theoretical frameworks, the primary

need—as noted by Fung decades ago—remains identification of the best constitutive relations,

which for constrained mixture theories of G&R includes descriptors of mechanical behaviors,

rates of mass production, mechanisms of incorporation within extant matrix, and rates of mass

removal for each structurally significant constituent. Improved relations for complex pathologies

representing maladaptation remain wanting. Theoretically motivated experiments are thus essen-

tial, which as we show herein should begin to focus more on the time scales over which load-

ing and biological processes occur.

IV. METHODS

A. A bilayered constrained mixture model for arteries

First consider the kinematics and evolution equations of a constrained mixture model2 that

governs G&R processes of an idealized bilayered artery that comprises a medial and an adven-

titial layer. Each layer is modelled as an independent constrained mixture having its own local
variables that must satisfy kinematic compatibility constraints at the medial-adventitial inter-

face. This time-dependent, integral-type formulation will be particularized in Sec. IV B to spe-

cial cases for which the time dependence either vanishes or can be neglected, following ideas

introduced in Ref. 13.
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1. Geometry, mass fractions, and kinematics

Figure 6 illustrates an idealized bilayered cross-section of a normal elastic artery wherein the

media (inner layer, since the normal intima is not expected to carry significant loads) is the func-

tional layer and the adventitia (outer layer) bears increasingly more load as the pressure increases

abruptly.16 Three illustrative in vivo configurations are shown at three respective G&R times (on

orders of days to weeks). Let the (original) homeostatic configuration at time s¼ 0, namely

jo¼j(0), serve as a reference. The configuration at the current G&R time s> 0 is denoted j(s),

while configurations at all intermediate times 0� s� s are denoted by j(s). Hereafter, for the

sake of notational simplicity, we will omit the time dependence when it is not needed explicitly.

TABLE I. Baseline material parameters for a mouse descending thoracic aorta. Best-fit values determined from Ref. 21,

and adapted, for the specific examples performed in this work. In particular, ½km
o ; k

c
o	 values would typically be of order

1/70 days�1 under normal conditions,17 but we consider here a faster rate of turnover33 as a more stringent test for the pseu-

doelastic G&R framework. Superscripts e, m, and c denote elastin, smooth muscle, and collagen, with superscripts/sub-

scripts r, h, z, and d denoting radial, circumferential, axial, and symmetric diagonal directions. Subscripts M and A denote

medial and adventitial layers whereas o denotes original homeostatic values. Subscripts r and s denote intramural and wall

shear stresses, respectively. See Table II for definitions of other variables.

Artery mass density q 1050 kg/m3

Medial mass fractions ½/e
Mo;/

m;h
Mo ;/

c;z
Mo;/

c;d
Mo	 [0.4714, 0.4714, 0.0381, 0.0190]

Adventitial mass fractions ½/e
Ao;/

c;h
Ao ;/

c;z
Ao;/

c;d
Ao 	 [0.0333, 0.0175, 0.3201, 0.6291]

Diagonal collagen orientation a0 45.36


Inner radius, thicknesses [ao, hMo, hAo] [0.6468, 0.0284, 0.0118] mm

Elastin material parameter ce 114.5 kPa

Smooth muscle parameters ½cm
1 ; c

m
2 	 [401.0 kPa, 0.012]

Collagen parameters ½cc
1; c

c
2	 [411.2 kPa, 5.5]

Deposition stretches ½Ge
r ;G

e
h;G

e
z 	 [1/(1.9 � 1.6), 1.9, 1.6]

Deposition stretches ½Gm
h ¼ Gc

h;G
c
z ;G

c
d 	 [1.071, 1.193, 1.192]

Maximum active stress Tmax 100 kPa

Active stretch limits [kM, k0] [1.1, 0.4]

Vasoactive parameters [CB, CS] 0.8326� [1, 0.5]

Vasoactive rate parameter kact 1/7 day�1

Mass production gains ½Km
r ;K

m
s ;K

c
r;K

c
s 	 [1.6, 2, 2, 2.5]

Mass removal rates ½km
o ; k

c
o	 [1/7, 1/7] day�1

FIG. 6. Evolving in vivo configurations of a bilayered arterial wall from time s¼ 0 (original homeostatic reference configu-

ration j(0) � jo) to an arbitrary time s> 0 [current configuration j(s)], showing the different deformation gradients FM and

FA experienced by the medial and adventitial layers over time, in particular at times 0� s� s. Shown, also, are the different

natural configurations ja
nðsÞ for the different structurally significant constituents a (elastin “e,” smooth muscle “m,” and col-

lagen “c”), which are deposited with separate but constant deposition stretches Ga within both layers at the indicated depo-

sition times s (except for the smooth muscle, present in media only), as well as geometric parameters a (luminal radius), hM

(medial thickness), and hA (adventitial thickness) and luminal pressure P, which can also change over time.
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We denote the inner (luminal) radius of the artery in a generic configuration as a, the medial

thickness as hM, and the adventitial thickness as hA. The total wall thickness is thus h¼ hMþ hA.

The length of the artery is l, which is the same for both layers by compatibility of axial displace-

ments at the medial-adventitial interface rMA¼ aþ hM, hence lM¼ lA � l.
We analyze the wall mechanics using a thin-walled approach in which variables within

each layer are uniform, though different, consistent with effects of residual stress [Residual

stresses tend to homogenize transmural distributions of stress (Refs. 16 and 17), thus rendering

this assumption reasonable]. Hence, we separately compute the deformation gradient tensor for

each layer, which quantifies motions between the original homeostatic reference configuration

jo and a generic configuration j. Using cylindrical coordinates Xrhz¼ {r, h, z} to denote the

position of a material point within either the media (M) or the adventitia (A), and assuming that

cylindrical axes coincide with principal directions of strain, the respective layer-specific defor-

mation gradients read

FM½ 	rhz ¼ diag kMr; kMh; kMz½ 	; (1)

and

FA½ 	rhz ¼ diag kAr; kAh; kAz½ 	; (2)

with stretches

kMr ¼
hM

hMo
; kMh ¼

aþ hM=2

ao þ hMo=2
; kMz ¼ kz �

l

lo
; (3)

and

kAr ¼
hA

hAo
; kAh ¼

rMA þ hA=2

rMAo þ hAo=2
; kAz ¼ kz �

l

lo
; (4)

where rMA¼ aþ hM enforces compatibility of radial (and circumferential) displacements at the

medial-adventitial interface. Subscript o refers to the original homeostatic state.

The material composition is also layer-specific. In particular, we consider three primary

types of load-bearing constituents (elastin-dominated “e,” smooth muscle “m,” and fibrillar

collagen-dominated “c”) , with mass fractions /M ¼ ½/e
M;/

m
M;/

c
M	 satisfying

Pe;m;c
a /a

M ¼ 1 in

the media, and /A ¼ ½/e
A;/

m
A ;/

c
A	 satisfying

Pe;m;c
a /a

A ¼ 1 in the adventitia, with /m
A ¼ 0.17

Following a constrained mixture approach for each layer, the motion of each constituent (and

cohort thereof) is constrained to equal the motion of the corresponding layer as a whole, as

given by deformation gradients FM and FA in Eqs. (1) and (2). Each constituent and cohort,

however, has its own evolving natural configuration ja
nðsÞ, where s denotes the instant at which

that constituent mass was produced and deposited within the arterial wall (see Fig. 6). Without

a loss of generality, we let the different constituents deposit in the media and adventitia with

layer-independent deposition (symmetric) stretch tensors G
a, which means that the natural con-

figuration of a constituent a at time s, namely, ja
nðsÞ, is common for both layers (see Fig. 6). In

addition, we assume (in physiologic adaptations) constant and volume-preserving deposition

stretch tensors G
a, with detGa ¼ 1. Following the deformation path shown in Fig. 6, the defor-

mation gradient Fa
CnðsÞðsÞ experienced by constituent a deposited at time s within layer C¼M,

A (when applicable) that survives to current G&R time s reads for smooth muscle and collagen,

which are continuously produced and removed, as4

Fa
Cn sð Þ sð Þ ¼ FC sð ÞF�1

C sð ÞGa; a ¼ m; c; (5)

and for elastin, which is produced perinatally and thus at s� 0 in our case of G&R in matu-

rity,6 as
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Fa
C sð Þ :¼ Fa

Cn 0ð Þ sð Þ ¼ FC sð ÞGa; a ¼ e; (6)

since FC(s¼ 0)¼ I.

2. Mass and strain energy evolutions

Smooth muscle cells and collagen fibers are produced continuously, hence their removal is

usually accounted for in constrained mixtures models through mass survival (exponential decay)

functions qa
Cðs; sÞ 2 ½0; 1	 of the type (we use the form introduced in Ref. 13, but others are

possible18)

qa
C s; sð Þ ¼ exp �

ðs

s
ka
C tð Þdt

� �
; a ¼ m; c; (7)

where the rate “parameter” ka
CðtÞ, with s� t� s, is assumed (constitutively) to increase with

respect to its original homeostatic constant value ka
Co through

ka
C tð Þ ¼ ka

Coð1þ ðDr tð ÞÞ2Þ; a ¼ m; c; (8)

with Dr(t) quantifying any relative difference between a given scalar measure of intramural

Cauchy stress (e.g., magnitude, principal invariant, maximum principal value) acting at time t
at the tissue level, namely ~rðtÞ, and its corresponding homeostatic value ~ro, such that

Dr tð Þ ¼ ~r tð Þ � ~ro

~ro
: (9)

Additionally, production of collagen and smooth muscle is governed constitutively by

respective mass density production relations. Following Ref. 13 for the mass production rate of

cohort a per unit reference volume of the mixture (in this case, within layer C), we have for

both layers (see Tables I and II for nomenclature)

ma
CR sð Þ ¼ ma

CN sð Þ!a
C sð Þ ¼ ka

C sð Þqa
CR sð Þ!a

C sð Þ; (10)

where ma
CNðsÞ ¼ ka

CðsÞqa
CRðsÞ > 0 is an evolving nominal mass production rate including, impor-

tantly, the same function ka
CðsÞ employed for mass removal and the referential mass density qa

CRðsÞ
of constituent a within layer C (i.e., per unit reference volume of the respective layer C). This rela-

tion ensures balanced production and removal in homeostatic states,13 for which ma
CR ! ma

CN .

Moreover, !a
CðsÞ is a “stimulus function” that ultimately drives mass production to rates different

from nominal depending on biochemomechanical stimuli; herein, we consider mechano-stimuli

only. Over the years, we have found that a reasonable form for !a
CðsÞ for arteries subjected to per-

turbed blood pressures and flows, linearized about the initial homeostatic state, reads4

!a
C sð Þ ¼ 1þ Ka

CrDr sð Þ � Ka
CsDsw sð Þ; (11)

TABLE II. Definition of volume-specific variables. MPR, Mass Production Rate; SEF, Strain Energy Function; a¼ {e, m,

c}, C¼ {M, A}.

Mass of constituent a within layer C per unit current volume of layer C qa
C

Mass of constituent a within layer C per unit reference volume of layer C qa
CR

MPR of constituent a within layer C per unit reference volume of layer C ma
CR

Nominal MPR of constituent a within layer C per unit reference volume of layer C ma
CN

Volume-specific SEF of constituent a (defined at the constitutive level) Ŵ
a

SEF of constituent a within layer C per unit reference volume of layer C Wa
CR
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where Ka
Cr and Ka

Cs are constituent- and layer-specific (constant) gain parameters, sw is the

flow-induced shear stress acting over the endothelium, and Dsw¼ (sw – swo)/swo. In particular,

!a
Co ¼ 1 at the original homeostatic state, where Dr¼ 0¼Dsw.

Given constitutive equations for production and removal, the evolution of the layer-specific

referential mass density of the cohort a is4,13

qa
CR sð Þ ¼

ðs

�1
ma

CR sð Þqa
C s; sð Þds: (12)

Assuming that the spatial mass density q of the arterial wall (i.e., its current mass per unit cur-

rent volume of mixture) remains constant, the strain energy function of constituent a within

layer C, also defined per unit reference volume of layer C, reads13

Wa
CRðsÞ ¼

1

q

ðs

�1
ma

CR sð Þqa
C s; sð ÞŴ

aðCa
Cn sð ÞðsÞÞds (13)

where Ŵ
aðCa

CnðsÞðsÞÞ is the volume-specific strain energy function of constituent a and Ca
CnðsÞðsÞ

is the right Cauchy–Green deformation tensor obtained from Fa
CnðsÞðsÞ, which for smooth muscle

and collagen reads

Ca
Cn sð Þ sð Þ ¼ FaT

Cn sð Þ sð ÞFa
Cn sð Þ sð Þ ¼ GaF�T

C sð ÞCC sð ÞF�1
C sð ÞGa; (14)

and for elastin, reads

Ce
C sð Þ :¼ Ce

Cn 0ð Þ sð Þ ¼ FeT
C sð ÞFe

C sð Þ ¼ GeCC sð ÞGe ; (15)

with CC ¼ FT
CFC. Since q remains constant

q ¼
Xe;m;c

a

qa
C sð Þ; 8s; C ¼ M;A; (16)

with qa
C representing the current mass density of constituent a within layer C (i.e., per unit cur-

rent volume of the respective layer C at each time s).

3. Passive and active stresses

The mechanical response of an artery is assumed to be isochoric for transient deformations

at each fixed G&R time s. The layer-specific Cauchy stress tensor thus reads

rM sð Þ ¼
Xe;m;c

a

ra
M sð Þ þ ract sð Þ � pM sð ÞI ; (17)

in the media, and

rA sð Þ ¼
Xe;c

a

ra
A sð Þ � pA sð ÞI ; (18)

in the adventitia, where ra
C is the deformation-dependent part5 of the Cauchy stress for constitu-

ent a within layer C, ract is the active stress tensor generated by the smooth muscle within the

media, and pC are layer-specific pressure-type Lagrange multipliers associated with the incom-

pressibility constraints JM ¼ detðFMÞ and JA ¼ detðFAÞ (transiently constant) that are to be

determined from equilibrium and boundary conditions at fixed G&R times.
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The passive Cauchy stresses for collagen and smooth muscle can be obtained from their

associated second Piola–Kirchhoff stresses, deriving from the layer-specific strain energy func-

tions Wa
CR of Eq. (13)13

Sa
C sð Þ ¼ 2

@Wa
CRðsÞ

@CCðsÞ
¼ 1

q

ðs

�1
ma

CR sð Þqa
C s; sð ÞF�1

C sð ÞGaŜ
a
CðCa

Cn sð Þ sð ÞÞGaF�T
C sð Þds; (19)

with the second Piola–Kirchhoff stress tensor at the constituent level, deriving from

Ŵ
aðCa

CnðsÞ sð ÞÞ, as

Ŝ
a
CðCa

Cn sð Þ sð ÞÞ ¼ 2
@Ŵ

aðCa
Cn sð Þ sð ÞÞ

@Ca
Cn sð Þ sð Þ

: (20)

The push-forward operation over Sa
C sð Þ

ra
C sð Þ ¼ 1

JC sð Þ
FC sð ÞSa

C sð ÞFT
C sð Þ; (21)

yields the respective Cauchy stress tensor ra
CðsÞ to be used further in Eqs. (17) or (18).

If we consider that elastin is neither produced nor degraded for s> 0 (because functional

elastin is produced during the perinatal period, and elastin tends to degrade very slowly except

in pathologies characterized by marked proteolytic activity19) then qe
CRðsÞ ¼ qe

CRð0Þ ¼: qe
CR and

the strain energy function for elastin is

We
CRðsÞ ¼

qe
CR

q
Ŵ

eðCe
C sð ÞÞ : (22)

The resulting second Piola–Kirchhoff stresses are

Se
C sð Þ ¼ 2

@We
CRðsÞ

@CCðsÞ
¼ qe

R

q
GeŜ

e

CðCe
C sð ÞÞGe; (23)

where Ŝ
e

C ¼ 2@Ŵ
eðCe

CÞ=@Ce
C represents the layer-specific stress tensor at the constituent level.

The passive Cauchy stresses in Eqs. (17) or (18) are obtained from Eq. (21), with a¼ e.

The active tensile stress generated by the smooth muscle tone within the media is consid-

ered to be exerted along the circumferential direction eh, namely,3

ract sð Þ ¼ /m
M sð ÞTmax 1� e�C2 sð Þ

� �
km actð Þ

h sð Þ 1� kM � km actð Þ
h sð Þ

kM � k0

 !2
2
4

3
5

eh � eh; (24)

where /m
MðsÞ ¼ qm

MðsÞ=q is the spatial mass fraction, Tmax is the maximum stress that the mus-

cle can generate, C(s)> 0 is a ratio of vasoconstrictors (e.g., endothelin-1) to vasodilators (e.g.,

nitric oxide), kM and k0 are the stretches at which the active force generating capability either

is maximum or vanishes, respectively, and kmðactÞ
h ðsÞ is the current active muscle fiber stretch.

The ratio C(s) is written in terms of wall shear stress through3

C sð Þ ¼ CB � CSDsw sð Þ; (25)

where CB is a basal ratio and CS is a scaling factor, noting that vasodilators are produced by

the endothelium when Dsw> 0 and vasoconstrictors are produced when Dsw< 0. Finally, the

circumferential stretch for the active tone is defined as kmðactÞ
h ðsÞ ¼ aðsÞ=aactðsÞ, with a(s) being

the current luminal radius and aact(s) being an active reference length whose evolution may be

modeled through3
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daact sð Þ
ds

¼ kact a sð Þ � aact sð Þ
� �

; (26)

where 1/kact is a characteristic time of remodeling and aact(0)¼ a(0). An integral-type (convolu-

tion) solution of Eq. (26) for aact(s) reads

aact sð Þ ¼
ðs

�1
kacta �sð Þe�kactðs��sÞd�s : (27)

B. Rate-independent solution for given pressure, flow rate, and axial stretch

We now recognize that the hereditary integral formulation accounts primarily for the finite

half-lives of the cells and matrix that were incorporated within the evolving tissue at different

past times. If, however, the tissue adapts fully to the prior perturbation in loading and all con-

stituents produced during the adaptive period have been replaced with new constituents (contin-

uously) produced in the new homeostatic state, then we can pre-integrate the prior, time-

dependent G&R formulation following Ref. 13. In doing so, we obtain an associated time-

independent solution for the bilayered G&R model outlined above. As we show below, this par-

ticularized formulation yields a system of algebraic equations that can be solved efficiently and

whose solution represents either a steady-state, long-term solution reached at a G&R time s
much greater than a characteristic time sG&R over which the G&R processes take part,13

namely, at s� sG&R, or more importantly a quasi-equilibrium G&R evolution at any time s (in

this case, s playing the role of a parameter), as we explain in Sec. IV C.

Substitution of Eq. (10) into Eq. (12) yields

qa
CR sð Þ ¼

ðs

�1
ka
C sð Þqa

CR sð Þ!a
C sð Þqa

C s; sð Þds; (28)

which can be integrated for constant (i.e., fully evolved homeostatic, denoted by subscript h)

values at times s� sG&R, with ka
C ! ka

Ch; qa
CR ! qa

CRh and !a
C ! !a

Ch, to give

qa
CRh ¼ ka

Chq
a
CRh!

a
Ch

ðs

�1
qa

Ch s; sð Þds ¼ qa
CRh!

a
Ch; (29)

since the integral of qa
Cðs; sÞ ! qa

Chðs; sÞ, as given in Eq. (7) with constant ka
Ch, is

ðs

�1
qa

Ch s; sð Þds ¼
ðs

�1
exp ð�ka

Ch s� sð ÞÞds ¼ 1

ka
Ch

: (30)

Hence, from Eq. (29), a mechanobiologically equilibrated G&R process associates with an equi-

librium value of the mechano-stimulus function for collagen and smooth muscle in Eq. (10),

namely,

!a
Ch ¼ 1; a ¼ m; c: (31)

which, by virtue of Eq. (11), requires either Drh¼ 0¼Dswh or, more generally

Ka
CrDrh � Ka

CsDswh ¼ 0 : (32)

As in Ref. 13, we take sw¼ 4lQ/(pa3), with Q being the volumetric flow rate and l the blood

viscosity, and ~r in Eq. (9) as the first principal invariant of the mean wall Cauchy stress r,

namely, ~r ¼ tr r ’ rhh þ rzz, where we assume a quasi-plane-stress state for which rrr=~r ’ 0.

The mean in-plane (biaxial) stresses rhh and rzz are given in terms of the distending pressure P
and the global axial force on the vessel fz, respectively, through
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rhh ¼
Pa

h
; and rzz ¼

fz

phð2aþ hÞ : (33)

The intramural and shear “over-stresses” expressed in terms of possibly fully evolved (h) or

original (o) homeostatic values (i.e., we allow new homeostatic set-points to evolve) read

Drh ¼
rhhh þ rzzh

rhho þ rzzo
� 1; and Dswh ¼

swh

swo
� 1; (34)

where ah (present in rhhh, rzzh and swh), hMh and hAh (in rhhh and rzzh), and fzh (in rzzh) are

unknowns to be determined for each prescribed alteration in blood pressure, ch¼Ph/Po, blood

flow, eh¼Qh/Qo, and axial stretch kzh¼ lh/lo (note that, in typical biaxial experiments, one usu-

ally prescribes axial stretch rather than axial load and it is not possible to infer fz in vivo17).

For simplicity, let smooth muscle and collagen share the same ratio of gain parameters

gK ¼ Km
Cr=Km

Cs ¼ Kc
Cr=Kc

Cs, despite generally different values of Ka
Cr and Ka

Cs. This means that

the perturbation functions !a
CðsÞ � 1 are proportional,13 hence the linearly dependent equations

resulting from Eq. (32) reduce to

gK

rhhh þ rzzh

rhho þ rzzo
� 1

� �
� swh

swo
� 1

� �
¼ 0 : (35)

So far, we have a single equation with four unknowns, namely Eq. (35) in terms of

ah, hMh, hAh, and fzh. The layer-specific Jacobians JMh and JAh, expressed in terms of the

“unchanging” homeostatic stretches in ½FCh	rhz ¼ diag ½kCrh; kChh; kCzh	, introduce two additional

unknowns (i.e., JMh and JAh), namely,

JMh ¼ kMrhkMhhkzh; and JAh ¼ kArhkAhhkzh ; (36)

where the radial and circumferential stretches are expressed in terms of ah, hMh and hAh through

Eqs. (3) and (4), and we assume a common prescribed axial stretch kzh. Since the mass of elas-

tin does not change in physiologic adaptations, its layer-specific spatial mass density qe
Ch

becomes directly related to its original spatial mass density qe
CR � qe

Co through the correspond-

ing volume ratios

qe
Mh ¼

qe
Mo

JMh
; and qe

Ah ¼
qe

Ao

JAh
; (37)

which provide two additional equations but also two additional unknowns, namely qe
Mh and qe

Ah.

Equation (16) particularized to both the media and adventitia yields two more equations, but

introduces three more unknowns (namely qm
Mh; qc

Mh, and qc
Ah)

qe
Mh þ qm

Mh þ qc
Mh ¼ q; and qe

Ah þ qc
Ah ¼ q; (38)

which leaves four more unknowns than equations. However, as shown previously,13 additional

relations in terms of the different (evolved homeostatic) spatial mass densities of collagen and

smooth muscle can be written as

JMhqm
Mh

qm
Mo

¼ JMhqc
Mh

qc
Mo

� �gm
q gm

!

; (39)

and

JAhqc
Ah

qc
Ao

¼ JMhqc
Mh

qc
Mo

� �gc
qg

c
!

; (40)
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where gm
q ¼ km

Mo=kc
Mo; gm

! ¼ Km
Mr=Kc

Mr ¼ Km
Ms=Kc

Ms; gc
q ¼ kc

Ao=kc
Mo, and gc

! ¼ Kc
Ar=Kc

Mr ¼ Kc
As=

Kc
Ms. We also have, for different layer-specific cohorts i of collagen (e.g., circumferential, axial,

and symmetric diagonal)13

qci

Ch

qci

Co

¼ qc
Ch

qc
Co

; (41)

where qc
C ¼

P
qci

C . Finally, the system of equations is closed by the global equilibrium equa-

tions rhhhhh¼Phah and rzzhphh(2ahþ hh)¼ fzh, where the internal circumferential force rhhhhh

(per unit axial length) in terms of layer-specific stresses in Eqs. (17) and (18), yields

rMhhhhMh þ rAhhhhAh ¼ Phah ; (42)

and the internal axial force yields, similarly,

rMzzhphMhð2ah þ hMhÞ þ rAzzhphAhð2ah þ 2hMh þ hAhÞ ¼ fzh : (43)

The different expressions of the mechanobiologically equilibrated, layer-specific stresses to be

used in Eqs. (17) and (18) are—see details in Ref. 13

ra
Ch ¼ /a

Chr̂
a ¼ qa

Ch

q
GaŜ

aðGaÞGa; a ¼ m; c; (44)

re
Ch ¼ /e

Chr̂
e
Ch ¼

qe
Ch

q
FChGeŜ

eðCe
ChÞGeFT

Ch ; (45)

and

ract
h ¼ /m

Mhr̂
act
h ¼

qm
Mh

q
Tmax 1� e�C2ðahÞ

� �
1� kM � 1

kM � k0

� �2
" #

eh � eh: (46)

Importantly, the nonlinear equations derived in this section do not depend on G&R time s,

which means that they yield a mechano-adapted solution of the artery for a given sustained

altered pressure Ph, flow rate Qh, and axial stretch kzh—hence constituting a truly time- and

rate-independent G&R formulation for an idealized bilayered artery. In practice, this system of

equations and unknowns may be reduced to five equations and unknowns as explained in Sec.

IV E and illustrated in examples addressed above in Results (Sec. II). Of course, other resolu-

tion procedures are possible.

C. The quasi-equilibrium hypothesis

To arrive at the equilibrium condition of Eq. (31), from Eq. (28), we assumed that the

artery preserves a static state for a sufficiently long time such that integration of Eq. (29) is

exact. The same holds for the equilibrium stresses of cohorts of smooth muscle and collagen

given in Eq. (44), which are obtained upon integration of the corresponding integral-type Eqs.

(19) and (21). Considering Eq. (29), we see that ka
C and !a

C, as given in Eqs. (8) and (11),

become constant if the wall stress metric ~r � rhh þ rzz and the shear stress sw remain constant

over long times. Taking into account Eqs. (33) and (34), this requires that the applied external

loads P, Q, and kz remain constant over long times, which are, indeed, the ultimate variables

that stimulate the G&R response in the present mechanoadaptive case.

In what follows, we relax this equilibrium hypothesis to introduce the definition of a quasi-

equilibrium state, which we illustrate by comparing three cases: I, II, and III. Assume a survival

function qa
0ðsÞ ¼ qa

Cðs0; sÞ, as given in Eq. (7), as a function of the deposition time s� s0 for a

fixed G&R time s0. Let T a :¼ ½s0 � Dsa; s0	 be a proper integration domain such that

qa
0 2 ½0þ; 1	, with 0þ a sufficiently small value such that longer integrations of qa

0ðsÞ beyond
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s0–Dsa yield (additional) negligible contributions. Consider, first, the evolution over time of a

generic nondimensional external insult nI
extðsÞ that, qualitatively, includes any mechanical alter-

ation such as PðsÞ=Pðs0Þ 6¼ 1; QðsÞ=Qðs0Þ 6¼ 1, or kzðsÞ=kzðs0Þ 6¼ 1. Obviously, if the rate of

change of qa
0ðsÞ and nI

extðsÞ are comparable within T a, namely, _qa
0 ¼ dqa

0=ds � dnI
ext=ds ¼ _n

I

ext

for s 2 T a, then the associated variations of ka
CðsÞ and !a

CðsÞ over time [assuming gain parame-

ters Ka
Cr and Ka

Cs of order unity, see Eq. (11)] cannot be neglected in the integral of Eq. (28),

and the general formulation cannot be simplified. In this case (I), one needs to keep track the his-

tory of all the involved variables, at least within T a, to compute the G&R solution at any time

s0—that is, one must employ the full (hereditary integral) constrained mixture formulation.2,18

Consider here, however, a case (II) for which _n
II

ext ¼ 0 within T a. Then, if the G&R

response is mechanobiologically stable20 and has relaxed fully, then the variables ka
C and !a

C
reach, after the corresponding characteristic G&R period, constant values ka

Ch and !a
Ch ¼ 1

within the relevant integration domain T a as well. The artery thus reaches a (new) tissue main-

tenance state, for which qa
CR ! qa

CRh is also constant, leading to the result of Eq. (29) and,

eventually, to the mechanobiologically equilibrated formulation detailed above. As explained

in,13 a characteristic time scale for both mass removal and production processes is given by

sG&R ¼ 1=minfka
Co; k

actg, hence mechanobiological equilibrium is attained at s� sG&R. Recall

that gain parameters Ka
Cr¿1 and Ka

Cs¿1 can modify the value of sG&R quantitatively.

Another important case (III) is one for which the rate of change of the external stimuli _n
III

ext

is much less than the rate of change of the removal function _qa
0 within T a. From a mathemati-

cal standpoint, the variables of any integrands can then be regarded constant within the integra-

tion domain T a, hence we recover the previous equilibrium formulation approximately at each

G&R time s, namely a quasi-equilibrium formulation valid during the evolution. For example,

the integral of Eq. (28) yields, for slow _next, at any G&R time s [cf. Eq. (29)]

qa
CR sð Þ ’ ka

C sð Þqa
CR sð Þ!a

C sð Þ
ðs

s�Dsa

qa
C s; sð Þds ’ qa

CR sð Þ!a
C sð Þ; 8s; (47)

whereby the stimulus function resolves, that is, [cf. Eq. (31)]

!a
C sð Þ ’ 1; 8s : (48)

From a physical standpoint, we can equivalently focus on the evolution of an arbitrary mass

deposited at a fixed time s0 that is removed gradually during �T a
:¼ ½s0; s0 þ Dsa	. Hence, if

quasi-equilibrium conditions are satisfied, the differential mass senses an almost constant

mechanical environment during its timespan Dsa, undergoing then a so-called quasi-steady evo-

lution. The evolution is said to be mechanobiologically quasi-equilibrated (rather than mechano-

biologically equilibrated) because the external stimuli nIII
ext may be different at different G&R

times over a time scale much longer than Dsa; that is, nIII
extðs0Þ ’ nIII

extðs1Þ for s1 � s0 � Dsa, but

nIII
extðs0Þ6’nIII

extðs1Þ for s1 – s0�Dsa, in general.

In summary, if _next � _qa
0 within T a, the time-independent formulation derived in Sec. IV B

remains valid throughout the mechanoadaptation, with G&R time s playing the role of a param-

eter while the external stimuli is able to change over a much longer period. Using the decay

function of Eq. (7), we obtain (by the Leibniz integral rule)

dqa
0 sð Þ
ds

¼ exp �
ðs0

s
ka
C tð Þdt

� �
d

ds
�
ðs0

s
ka
C tð Þdt

� �
¼ qa

0 sð Þka sð Þ; (49)

so a characteristic mass-specific rate of removal at a given G&R time s is _qa
0ðsÞ ¼ ka

CðsÞ � ka
Co.

If we include the evolution of the active reference length for the active stress contribution of

smooth muscle, the quasi-equilibrium formulation is valid then if _nextðsÞ � kextðsÞ � kG&R

¼ minfka
Co; k

actg; 8s. Note that this is equivalent to saying that a characteristic time for G&R,

namely sG&R¼ 1/kG&R, is much shorter than a characteristic time of change of the (normalized)

external loads, namely sext¼ 1/kext.
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D. Temporal nondimensionalization of the full model

The concept of a characteristic time scale for a G&R response of a living soft tissue

encourages us to nondimensionalize in the time domain in the full constrained mixture model

outlined in Sec. IV A. Given the characteristic time sG&R ¼ 1=minfka
Co; k

actg, we first define

dimensionless rate parameters

~k
a
Co ¼ ka

Co 
 sG&R; a ¼ m; c; (50)

and

~k
act ¼ kact 
 sG&R; (51)

as well as dimensionless time variables

~s ¼ s=sG&R; ~s ¼ s=sG&R; ~t ¼ t=sG&R; (52)

such that we have equivalent products between original and dimensionless rate parameters and

time variables of the type

ka
Co 
 s ¼ ðka

Co 
 sG&RÞ 
 ðs=sG&RÞ ¼ ~k
a
Co 
 ~s; (53)

and so forth. We can then obtain equivalent integrals for Eq. (7)

qa
C s; sð Þ ¼ exp �

ðs

s
ka
C tð Þdt

� �
¼ exp �

ð~s

~s

~k
a
C

~tð Þd~t

 !
¼ qa

C ~s;~sð Þ; (54)

where [cf. Eq. (8)]

~k
a
C ¼ ka

C 
 sG&R; (55)

and for Eq. (12)

qa
CR sð Þ ¼

ðs

�1
ma

CR sð Þqa
C s; sð Þds ¼

ð~s

�1
~ma

CR ~sð Þqa
C ~s;~sð Þd~s ¼ qa

CR ~sð Þ; (56)

where [cf. Eq. (10)]

~ma
CR ¼ ma

CR 
 sG&R; (57)

and for Eq. (13)

Wa
CRðsÞ ¼

1

q

ðs

�1
ma

CR sð Þqa
C s; sð ÞŴ

aðCa
Cn sð ÞðsÞÞds; (58)

¼ 1

q

ð~s

�1
~ma

CR ~sð Þqa
C ~s;~sð ÞŴaðCa

Cn ~sð Þð~sÞÞd~s ¼ Wa
CRð~sÞ: (59)

Finally, the time-dimensionless counterpart of the evolution equation in the rate form of Eq.

(26) reads

1

kact

daact sð Þ
ds

¼ a sð Þ � aact sð Þ ¼ a ~sð Þ � aact ~sð Þ ¼ daact ~sð Þ
d~s

1

~k
act : (60)

Thus, every time-dependent evolution equation can be equivalently expressed in terms of

dimensionless rate parameters and time variables. This means that, once a time-dependent G&R
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response is computed for a given tissue, say tissue B, with characteristic G&R time sB
G&R, rate-

type parameters kactB and kaB
Co; a ¼ m; c, and prescribed external insults nB

extðsBÞ, the solution

represented in terms of the dimensionless time ~s ¼ sB=sB
G&R is common for any other tissue, say

D, with proportional rate-type parameters kactD ¼ bkactB and kaD
Co ¼ bkaB

Co, with b ¼ sB
G&R=sD

G&R,

and prescribed external insults nD
extðsDÞ ¼ nB

extðsB=bÞ, with common remaining material proper-

ties, because they share the same time-dimensionless formulation.

E. Resolution procedure

For the pre-integrated model of Sec. IV B, we will solve the system of nonlinear equations

formed by Eqs. (35), (38)1, (38)2, (42), and (43), where the unknowns are the (potentially new)

homeostatic inner radius ah, layer thicknesses hMh and hAh, spatial mass density of collagen

within the media qc
Mh, and global axial force fzh, with other variables expressed easily in terms

of the selected unknowns. The resulting system of equations is time-independent and so too its

outcome.

The hyperelastic mechanical response of elastin is modelled using a neoHookean relation

Ŵ
eðCeðsÞÞ ¼ ce

2
CeðsÞ : I� 3ð Þ ; (61)

with ce being the shear modulus. Hyperelastic responses of both smooth muscle and collagen

are modelled using Fung-type relations

Ŵ
aðka

n sð ÞðsÞÞ ¼
ca

1

4ca
2

eca
2
ðka2

n sð ÞðsÞ�1Þ2 � 1
� �

; a ¼ m; c ; (62)

where ca
1 (dimensions of stress) and ca

2 (dimensionless) are material parameters, and ka
nðsÞðsÞ is

the corresponding fiber stretch. We consider four collagen fiber families in both the media and

adventitia: one oriented circumferentially (labelled with h), one oriented axially (z), and two

oriented in symmetric diagonal (d) directions 6 a0 with respect to the axial direction. The con-

tributions of circumferential collagen and smooth muscle are combined in the media16 (referred

to as medial circumferential smooth muscle m). Medial and adventitial collagen are assumed to

share the same hyperelastic, rate, and gain constants, the difference in contributions coming

from different mass fractions. All the material parameters needed to obtain both time-dependent

and time-independent solutions are listed in Table I. The specific values of the parameters are

best-fit values determined from in vitro biaxial data from passive elastic arteries of mice.21 In

order to show the full consistency between both formulations when they include all possible

contributions to stress, however, we take additional values for the active response of smooth

muscle (Table I). Finally, no ethics approval was required since all work was numerical.

ACKNOWLEDGMENTS

This work was supported, in part, by NIH Grant Nos. R01 HL086418, U01 HL116323, R01

HL105297, and R01 HL128602 to JDH, and CAS17/00068 (Ministerio de Educaci�on, Cultura y

Deporte of Spain) and “Ayudas al personal docente e investigador para estancias breves en el

extranjero 2017” (Universidad Polit�ecnica de Madrid) to M.L. Additional support was given to ML

by Grant No. DPI2015-69801-R from the Direcci�on General de Proyectos de Investigaci�on

(Ministerio de Econom�ıa y Competitividad of Spain). ML gratefully acknowledges the support

given by the Department of Biomedical Engineering, Yale University, during his postdoctoral stay.

1Y. C. Fung, “Stress, strain, growth, and remodeling of living organisms,” Theoretical, Experimental, and Numerical
Contributions to the Mechanics of Fluids and Solids, edited by J. Casey and M. J. Crochet (Birkh€auser, Basel, 1995).

2J. D. Humphrey and K. R. Rajagopal, “A constrained mixture model for growth and remodeling of soft tissues,” Math.
Models Methods Appl. Sci. 12(03), 407–430 (2002).

3S. Baek, A. Valent�ın, and J. D. Humphrey, “Biochemomechanics of cerebral vasospasm and its resolution: II.
Constitutive relations and model simulations,” Ann. Biomed. Eng. 35, 1498 (2007).

026108-19 M. Latorre and J. D. Humphrey APL Bioeng. 2, 026108 (2018)

https://doi.org/10.1142/S0218202502001714
https://doi.org/10.1142/S0218202502001714
https://doi.org/10.1007/s10439-007-9322-x


4A. Valent�ın and J. D. Humphrey, “Evaluation of fundamental hypotheses underlying constrained mixture models of arte-
rial growth and remodelling,” Philos. Trans. R. Soc. London, A 367(1902), 3585–3606 (2009).

5A. Valent�ın, J. D. Humphrey, and G. A. Holzapfel, “A multi-layered computational model of coupled elastin degradation,
vasoactive dysfunction, and collagenous stiffening in aortic aging,” Ann. Biomed. Eng. 39(7), 2027–2045 (2011).

6J. S. Wilson, S. Baek, and J. D. Humphrey, “Importance of initial aortic properties on the evolving regional anisotropy,
stiffness and wall thickness of human abdominal aortic aneurysms,” J. R. Soc. Interface 9, 2047 (2012).

7K. S. Miller, R. Khosravi, C. K. Breuer, and J. D. Humphrey, “A hypothesis-driven parametric study of effects of poly-
meric scaffold properties on tissue engineered neovessel formation,” Acta Biomater. 11, 283–294 (2015).

8A. B. Ramachandra, J. D. Humphrey, and A. L. Marsden, “Gradual loading ameliorates maladaptation in computational
simulations of vein graft growth and remodelling,” J. R. Soc. Interface 14(130), 20160995 (2017).

9J. S. Soares and M. S. Sacks, “A triphasic constrained mixture model of engineered tissue formation under in vitro
dynamic mechanical conditioning,” Biomech. Model. Mechanobiol. 15(2), 293–316 (2016).

10F. J. Vernerey and M. Farsad, “A constrained mixture approach to mechano-sensing and force generation in contractile
cells,” J. Mech. Behav. Biomed. Mater. 4(8), 1683–1699 (2011).

11G. A. Ateshian and T. Ricken, “Multigenerational interstitial growth of biological tissues,” Biomech. Model.
Mechanobiol. 9(6), 689–702 (2010).

12C. J. Cyron, R. C. Aydin, and J. D. Humphrey, “A homogenized constrained mixture (and mechanical analog) model for
growth and remodeling of soft tissue,” Biomech. Model. Mechanobiol. 15(6), 1389–1403 (2016).

13M. Latorre and J. D. Humphrey, “A mechanobiologically equilibrated constrained mixture model for growth and remod-
eling of soft tissues,” ZAMM-J. Appl. Math. Mech. (published online, 2018).

14R. A. Schapery, “Nonlinear viscoelastic solids,” Int. J. Solids Struct. 37(1), 359–366 (2000).
15P. Haupt, Continuum Mechanics and Theory of Materials, 2nd ed. (Springer-Verlag, Berlin/Heidelberg, 2002).
16C. Bellini, J. Ferruzzi, S. Roccabianca, E. S. Di Martino, and J. D. Humphrey, “A microstructurally motivated model of

arterial wall mechanics with mechanobiological implications,” Ann. Biomed. Eng. 42(3), 488–502 (2014).
17J. D. Humphrey, Cardiovascular Solid Mechanics: Cells, Tissues, and Organs (Springer Science & Business Media,

2002).
18S. Baek, K. R. Rajagopal, and J. D. Humphrey, “A theoretical model of enlarging intracranial fusiform aneurysms,”

J. Biomech. Eng. 128(1), 142–149 (2006).
19J. E. Wagenseil and R. P. Mecham, “Vascular extracellular matrix and arterial mechanics,” Physiol. Rev. 89(3), 957–989

(2009).
20C. J. Cyron and J. D. Humphrey, “Vascular homeostasis and the concept of mechanobiological stability,” Int. J. Eng. Sci.

85, 203–223 (2014).
21M. R. Bersi, C. Bellini, J. Wu, K. R. C. Montaniel, D. G. Harrison, and J. D. Humphrey, “Excessive adventitial remodel-

ing leads to early aortic maladaptation in angiotensin-induced hypertension,” Hypertension 67(5), 890–896 (2016).
22J. D. Humphrey, “Mechanisms of arterial remodeling in hypertension,” Hypertension 52(2), 195–200 (2008).
23R. L. Gleason, L. A. Taber, and J. D. Humphrey, “A 2-D model of flow-induced alterations in the geometry, structure,

and properties of carotid arteries,” J. Biomech. Eng. 126(3), 371–381 (2004).
24R. L. Gleason and J. D. Humphrey, “Effects of a sustained extension on arterial growth and remodeling: A theoretical

study,” J. Biomech. 38(6), 1255–1261 (2005).
25A. Valent�ın and J. D. Humphrey, “Modeling effects of axial extension on arterial growth and remodeling,” Med. Biol.

Eng. Comput. 47(9), 979–987 (2009).
26Y. C. Fung, A First Course in Continuum Mechanics (Prentice-Hall, Upper Saddle River, 1993).
27M. Latorre and F. J. Mont�ans, “Anisotropic finite strain viscoelasticity based on the Sidoroff multiplicative decomposition

and logarithmic strains,” Comput. Mech. 56(3), 503–531 (2015).
28M. Latorre and F. J. Mont�ans, “Strain-level dependent nonequilibrium anisotropic viscoelasticity: Application to the

abdominal muscle,” J. Biomech. Eng. 139(10), 101007 (2017).
29E. K. Rodriguez, A. Hoger, and A. D. McCulloch, “Stress-dependent finite growth in soft elastic tissues,” J. Biomech.

27(4), 455–467 (1994).
30G. Lemon, J. R. King, H. M. Byrne, O. E. Jensen, and K. M. Shakesheff, “Mathematical modelling of engineered tissue

growth using a multiphase porous flow mixture theory,” J. Math. Biol. 52(5), 571–594 (2006).
31F. J. Vernerey, “A mixture approach to investigate interstitial growth in engineering scaffolds,” Biomech. Model.

Mechanobiol. 15(2), 259–278 (2016).
32J. M. Szafron, C. K. Breuer, Y. Wang, and J. D. Humphrey, “Stress analysis-driven design of bilayered scaffolds for

tissue-engineered vascular grafts,” J. Biomech. Eng. 139(12), 121008 (2017).
33R. Nissen, G. J. Cardinale, and S. Udenfriend, “Increased turnover of arterial collagen in hypertensive rats,” Proc. Natl.

Acad. Sci. 75(1), 451–453 (1978).
34J. F. Eberth, N. Popovic, V. C. Gresham, E. Wilson, and J. D. Humphrey, “Time course of carotid artery growth and

remodeling in response to altered pulsatility,” Am. J. Physiol.-Heart Circ. Physiol. 299(6), H1875–H1883 (2010).
35S. C. Cowin, “Tissue growth and remodeling,” Annu. Rev. Biomed. Eng. 6, 77–107 (2004).
36L. A. Taber and D. W. Eggers, “Theoretical study of stress-modulated growth in the aorta,” J. Theor. Biol. 180(4),

343–357 (1996).
37V. A. Lubarda and A. Hoger, “On the mechanics of solids with a growing mass,” Int. J. Solids Struct. 39(18), 4627–4664

(2002).
38T. J. Truster and A. Masud, “A unified mixture formulation for density and volumetric growth of multi-constituent solids

in tissue engineering,” Comput. Methods Appl. Mech. Eng. 314, 222–268 (2017).
39A. Rachev, N. Stergiopulos, and J. J. Meister, “A model for geometric and mechanical adaptation of arteries to sustained

hypertension,” J. Biomech. Eng. 120(1), 9–17 (1998).

026108-20 M. Latorre and J. D. Humphrey APL Bioeng. 2, 026108 (2018)

https://doi.org/10.1098/rsta.2009.0113
https://doi.org/10.1007/s10439-011-0287-4
https://doi.org/10.1098/rsif.2012.0097
https://doi.org/10.1016/j.actbio.2014.09.046
https://doi.org/10.1098/rsif.2016.0995
https://doi.org/10.1007/s10237-015-0687-8
https://doi.org/10.1016/j.jmbbm.2011.05.022
https://doi.org/10.1007/s10237-010-0205-y
https://doi.org/10.1007/s10237-010-0205-y
https://doi.org/10.1007/s10237-016-0770-9
https://doi.org/10.1002/zamm.201700302
https://doi.org/10.1016/S0020-7683(99)00099-2
https://doi.org/10.1007/s10439-013-0928-x
https://doi.org/10.1115/1.2132374
https://doi.org/10.1152/physrev.00041.2008
https://doi.org/10.1016/j.ijengsci.2014.08.003
https://doi.org/10.1161/HYPERTENSIONAHA.115.06262
https://doi.org/10.1161/HYPERTENSIONAHA.107.103440
https://doi.org/10.1115/1.1762899
https://doi.org/10.1016/j.jbiomech.2004.06.017
https://doi.org/10.1007/s11517-009-0513-5
https://doi.org/10.1007/s11517-009-0513-5
https://doi.org/10.1007/s00466-015-1184-8
https://doi.org/10.1115/1.4037405
https://doi.org/10.1016/0021-9290(94)90021-3
https://doi.org/10.1007/s00285-005-0363-1
https://doi.org/10.1007/s10237-015-0684-y
https://doi.org/10.1007/s10237-015-0684-y
https://doi.org/10.1115/1.4037856
https://doi.org/10.1073/pnas.75.1.451
https://doi.org/10.1073/pnas.75.1.451
https://doi.org/10.1152/ajpheart.00872.2009
https://doi.org/10.1146/annurev.bioeng.6.040803.140250
https://doi.org/10.1006/jtbi.1996.0107
https://doi.org/10.1016/S0020-7683(02)00352-9
https://doi.org/10.1016/j.cma.2016.09.023
https://doi.org/10.1115/1.2834313

	s1
	l
	n1
	cor1
	s2
	s2A
	f1
	s2B
	f2
	f3
	s3
	f4
	f5
	s4
	s4A
	s4A1
	t1
	f6
	d1
	d2
	d3
	d4
	d5
	d6
	s4A2
	d7
	d8
	d9
	d10
	d11
	t2
	d12
	d13
	d14
	d15
	d16
	s4A3
	d17
	d18
	d19
	d20
	d21
	d22
	d23
	d24
	d25
	d26
	d27
	s4B
	d28
	d29
	d30
	d31
	d32
	d33
	d34
	d35
	d36
	d37
	d38
	d39
	d40
	d41
	d42
	d43
	d44
	d45
	d46
	s4C
	d47
	d48
	d49
	s4D
	d50
	d51
	d52
	d53
	d54
	d55
	d56
	d57
	d58
	d59
	d60
	s4E
	d61
	d62
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39

