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risk informs dementia risk stratification
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Abstract

INTRODUCTION: An integrative polygenic risk score (iPRS) capturing the neurode-

generative and vascular contribution to dementia could identify high-risk individuals

and improve risk prediction.

METHODS: We developed an iPRS for dementia (iPRS-DEM) in Europeans (aged

65+), comprising genetic risk for Alzheimer’s disease (AD) and 23 vascular or
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neurodegenerative traits (excluding apolipoprotein E [APOE]). iPRS-DEM was eval-

uated across cohorts comprising older community-dwelling people (N = 3702),

a multi-ancestry biobank (N = 130,797 Europeans; 105,404 non-Europeans), and

dementia-freememory clinic participants (N= 2032).

RESULTS: iPRS-DEMwas associated with dementia risk independently of APOE in the

elderly (subdistribution hazard ratio [sHR]per1SD= 1.15, 95% confidence interval [CI]:

1.03 to 1.28), which generalized to Europeans (EUR-sHRper1SD= 1.28, 95% CI: 1.09

to 1.51]), East-Asians (EAS-sHRper1SD= 5.29, 95% CI: 1.43 to 34.36), and memory-

clinic participants (sHRper1SD= 1.25, 95% CI: 1.11 to 1.42). Prediction was comparable

to clinical risk factors in older community-dwelling people, with improved perfor-

mance among memory-clinic patients. Risk stratification was enhanced by defining

four genetic risk groups with iPRS-DEM and APOE ε4, reaching five-fold increased risk
in APOE ε4+/iPRS-DEM+memory-clinic participants.

DISCUSSION: Alongside APOE ε4, iPRS-DEM may refine risk stratification for the

enrichment of dementia clinical trials and prevention programs.

KEYWORDS

apolipoprotein E genotype, community-dwelling elderly, competing risk analysis, dementia pre-
vention, incident dementia, longitudinal study, memory clinic, multi-ancestry biobank, polygenic
risk score, transportability of PRS, vascular cognitive impairment

Highlights

∙ iPRS-DEM reflects neurodegenerative and vascular contribution to dementia.

∙ We show iPRS-DEM captures additional dementia genetic risk beyond APOE and

AD-PRS.

∙ iPRS-DEM, in combinationwithAPOE ε4, shows promise for dementia risk stratifica-

tion.

∙ Our results generalize across both population-based andmemory-clinic settings.

∙ We show transportability of iPRS-DEM to East Asian ancestry.

1 BACKGROUND

Dementia, arising froma complex interplay of genetic and environmen-

tal factors, is a major contributor to disability and dependency among

older persons, affecting over 55 million people worldwide.1 Most

dementia cases in the population exhibit “mixed” pathology, with co-

occurrence of neurodegenerative (predominantly due to Alzheimer’s

disease [AD]) and vascular brain injury, including those due to clini-

cal stroke and, more frequently, covert cerebral small vessel disease

(cSVD).2–5 This vascular contribution has been sparsely accounted for

in dementia trials, and the failure to develop disease-modifying ther-

apies has been partly attributed to over-reliance on imprecise AD

biomarkers used to enroll at-risk patients.6 Yet, approximately 40%

of dementia burden is attributable to modifiable risk factors, many

of vascular origin (including hypertension, physical inactivity, obesity,

smoking, and diabetes).7 Multimodal interventions, including man-

agement of vascular risk factors in midlife, have shown promise in

preventing dementia, particularly among high-risk groups.8–10

Polygenic risk scores (PRS), derived from large genome-wide asso-

ciation studies (GWAS), capture genetic risk for complex conditions by

combining the effects of many independent risk variants on a given

phenotype. Theyhaveademonstratedability to identify individuals at a

high genetic risk of multifactorial diseases, with effect sizes approach-

ing those of monogenic disease mutations in the top percentiles of

PRS.11 As PRS can be measured at low cost and early in life, they

could be important tools to tailor preventive interventions for high-risk

individuals12,13 and for predictive and prognostic enrichment of clin-

ical trials.14 PRS derived from AD GWAS (AD-PRS) that combine the

effects of common genetic risk variants other than apolipoprotein E

epsilon 4 (APOE ε4) were shown to predict AD beyond APOE ε4 and are
associatedwith neuroimagingmarkers of neurodegeneration and amy-

loid and tau burden.15,16 However, while some studies have described

AD-PRS to also predict all-cause and vascular dementia,17–21 recruit-

ment in AD GWAS is likely biased toward patients with less exten-

sive contribution of vascular brain disease than in the general

population.22
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We sought to more comprehensively capture polygenic risk of all-

cause dementia by applying a novel integrative PRS (iPRS) approach,

combiningAD-PRSwith PRS for stroke,MRImarkers of cSVD, vascular

risk factors, andneurodegenerativeprocesses. The iPRSmodel is based

on the assumption that the majority of genetic variants exert their

effects on a given disease by affecting intermediate traits and was suc-

cessfully applied to coronary artery disease (CAD) and stroke.23–26 A

similar approach was recently applied to AD,27 but this included a het-

erogeneous set of traits (eg, PRS for psychiatric conditions and sensory

deficits) and did not comprehensively capture genetic susceptibility

to vascular brain disease. Moreover, published AD-PRS were typically

trained and evaluated in case–control datasets and have not explic-

itly investigated association with the probability of dementia over

time (ie, cumulative incidence) while accounting for the competing risk

of death.

Here,we trainedan iPRS for all-causedementia (iPRS-DEM), exclud-

ing the APOE locus, in a population-based, longitudinal cohort of older

community-dwelling persons. Using competing risk models, we char-

acterized the relationship of iPRS-DEM with cumulative incidence of

all-cause dementia and evaluated the predictive performance of iPRS-

DEM against single-trait AD-PRS, in comparison and combination with

APOE and clinical risk factors. We explored the ability of iPRS-DEM to

stratify dementia risk alongside APOE ε4 carrier status and validated

it in memory clinic patients with cognitive complaints or mild cogni-

tive impairment (MCI) to informutility of iPRS-DEMtodifferent stages

of dementia prevention. Finally, we investigated the transportability

of iPRS-DEM in a large, prospective cohort comprising participants

of diverse socioeconomic background and ancestries (Europeans, East

Asian, African-American, and Hispanic).

2 METHODS

2.1 Study populations

The 3C andMemento studies were used to train and validate the iPRS-

DEM. 3C is a population-based cohort comprising community-dwelling

people aged ≥ 65 years from the French cities of Dijon, Montpel-

lier, and Bordeaux, recruited in 1999 to 2001 and followed every 2

to 3 years over 12 to 17 years.28 We split 3C by center into a train-

ing (Bordeaux andMontpellier [3C-BM]) and validation set (3C-Dijon).

Memento participants were recruited from 26 French memory clin-

ics based on subjective cognitive complaints or MCI in 2011 to 2014,

with a follow-up every 6 to 12 months over 5 years.29 The National

Institutes of Health’s All of Us (AoU) is a large ongoing prospective

cohort study of American adults (aged 18+) aiming to enroll up to

one million participants and welcoming participants from all back-

grounds to reduce disparities in medical research.30 Among those who

consent, AoU collects survey questionnaires capturing detailed past

and present medical history data, electronic health records, physical

measurements (ie, blood pressure, height, weight), and genomic infor-

mation (ie, whole genome sequencing).31 Data were available from all

participants who enrolled from the beginning of the program in May

RESEARCH INCONTEXT

1. Systematic review: Using PUBMED and similar sources,

we identified studies investigating dementia PRS. There

were limited studies demonstrating PRS association with

all-cause dementia in longitudinal cohorts. Additionally,

PRS studies focused primarily on AD and have yet to

incorporate genetics reflecting the vascular contribution

to dementia risk.

2. Interpretation: In longitudinal population-based and

memory-clinic cohorts, we found an integrative PRS com-

prising multiple vascular and neurodegenerative traits,

beyond AD-PRS alone, to be associated with risk of all-

cause dementia independent of APOE and clinical risk

factors and to refine stratification of dementia risk. An

integrative PRS for all-cause dementia may capture addi-

tional risk aboveandbeyondADpolygenic risk,APOE, and

clinical risk factors and has potential to identify high-risk

individuals in multiple dementia prevention settings.

3. Future directions: Future studies integrating PRS with

clinical prediction models and further development of

dementia PRS in non-Europeans are warranted.

2018 to June 2022 (release version 7). Participants without viable

genome-wide genotype data, with prevalent dementia at baseline, or

no follow-upwere excluded. Genome-wide genotyping and imputation

are described in the eMethods 1.

2.2 Dementia diagnosis

In 3C, diagnosis of dementia followed a three-step procedure at base-

line and at each follow-up visit.28 First, all participants underwent a

battery of neuropsychological tests at baseline and each follow-up visit

by a trainedpsychologist. Second, a neurologist examined all the partic-

ipants inMontpellier and in Bordeaux at baseline. InDijon, participants

screening positive for dementia basedon their neuropsychological per-

formanceunderwent further clinical examination.At each follow-up, all

participants with suspected dementia were examined by a neurologist

to establish provisional diagnosis. In Memento, trained neurologists

administered a battery of neuropsychological tests at baseline and

assessed dementia status at each follow-up visit.29 In both cohorts,

an independent panel of expert neurologists reviewed and validated

all possible dementia cases according to the Diagnostic and Statistical

Manual of Mental Disorders-Fourth Edition criteria. In AoU, dementia

was ascertained from individual-level electronic health records, clin-

ical notes, and self-report data using a combination of Systematized

Nomenclature of Medicine (SNOMED)32 and International Statistical

Classification of Diseases and Related Health Problems, Ninth and

Tenth Revisions (ICD-9 and 10)33 codes shown in eTable 1.
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2.3 Generation of iPRS

An overview of the derivation and validation of iPRS-DEM is given in

Figure 1. We identified large-scale GWAS summary statistics for 27

dementia-related traits aiming to comprehensively capture both neu-

rodegenerative and vascular contribution to dementia, including AD,

stroke (subtypes), vascular risk factors, MRI markers of cSVD, hip-

pocampal volume, and cerebrospinal fluid levels of phosphorylated tau

and amyloid beta (references for included GWAS in eTable 2). We per-

formed standard quality control recommended for PRS,34 including

addressing sample overlap of 3C or Memento in GWASmeta-analyses

(eMethods 1). As recommended, the APOE region (chromosome 19:

44.4 to 46.5Mb) was excluded from the AD-PRS.35

In 3C-BM, we generated 148 candidate PRS models per trait

using three validated PRS methods: the “clumping and thresholding”

approach36 and two Bayesian approaches, LDPRED237 and PRS-CS38

(eMethods 2). Each candidate PRSmodel was evaluated in a Fine-Gray

regression (FGR)model for cumulative incidence of all-cause dementia

with time since baseline (years) as a time scale and considering death

as a competing event.39 Models were adjusted for age at baseline, age

squared (to account for non-linearity), study center, sex, the first 10

genetic principal components (PCs) of population stratification,40 and

dosage of APOE ε4 and APOE ε2 alleles. Dementia onset was imputed

as the midpoint between the time of diagnosis and last dementia-free

visit. Non-demented individuals, including those who died more than

two and a half years since their last visit, were censored at their last

dementia-free visit. We performed a systematic procedure to select

and integrate the best PRS for each trait and construct iPRS-DEM

(Figure1, eMethods3). Briefly,weevaluatedeachcandidatePRSmodel

based on the lowest integrated Brier score41 across 5, 7.5, and 10

years and then inputed the best PRS for each trait in Fine-Gray elastic-

net regression42 to address overfitting and correlation between PRS

using the glmnet R package43,44 (eMethods 3). Training weights were

extracted from elastic-net for each sPRS and used to re-weight SNP

effect sizes in the iPRS-DEM (eMethods 3).

2.4 Validation of iPRS-DEM

We estimated the effect of iPRS-DEM and AD-PRS (included in iPRS-

DEM) per 1 SD increment on the cumulative incidence of dementia

(referred to interchangeably as dementia risk) in 3C-Dijon using FGR

and the same time scale, censoring, and adjustment variables as

for 3C-BM. We also partitioned each PRS into quintiles, estimat-

ing subdistribution hazard ratios [sHRs] relative to the middle 20%,

and ran sensitivity analyses with cause-specific hazard (Cox) models

for dementia and death.45 As complementary analyses, we assessed

dichotomized versions of each PRS at progressive percentile cutoffs

against the rest of the sample.We verified if iPRS-DEMwas associated

with dementia risk independently of clinical risk factors (hyperten-

sion, smoking, dyslipidemia, diabetes, obesity, history of cardiovascular

disease, and low education; definitions in eMethods 4) and calcu-

lated the percentage change in the FGR coefficient after adjustment

(removing those with missing data; n = 26). Of note, FGR coeffi-

cients correspond to sHR, which only approximate the magnitude

of effect on the cumulative incidence of dementia46 (eMethods 5).

Lastly, we performed subgroup analyses of the association between

iPRS-DEM and dementia risk, stratifying by sex and looking at dif-

ferential associations depending on age at onset (<80, ≥80 years,

eMethods 6).

We also assessed risk stratification ability of iPRS-DEM along-

side APOE ε4 after removing participants with APOE ε2/ε4 genotypes

(n= 70).We first tested the interaction of iPRS-DEMwithAPOE ε4 car-
rier status and obtained APOE ε4 strata-specific sHRs. Then, through

a factorial design, we categorized individuals into four genetic risk

groups based on their APOE ε4 status (APOE ε4+/APOE ε4−) and the

presence of high iPRS-DEM (iPRS-DEM+/iPRS-DEM−) (eMethods 7

for threshold selection). In non-parametric analysis, we compared the

cumulative incidence of dementia at different ages in each genetic risk

stratum, accounting for death as a competing event and left truncation

with the etm R package (etmCIF function)47,48 (eMethods 8). We also

estimated the sHR in each genetic risk stratum relative to non-APOE ε4
carriers with low iPRS-DEM (APOE ε4−/iPRS-DEM−) as the reference
group.

Finally, in FGR models, we compared prediction performance of

iPRS-DEM against AD-PRS, APOE ε4 and ε2 dosage, clinical risk factors
(showing significant association with increased dementia risk), and a

referencemodel containing age at baseline, sex, and 10PCs (eMethods

9). We calculated the time-dependent area under the curve (AUC)49

and Index of Prediction Accuracy (IPA),50 a rescaling of the Brier score

against a null model with no covariates, at 10-year follow-up over

2000 bootstrap replications in 3C-Dijon using the riskRegression R

package.51 Twenty-six individuals with missing clinical risk factor data

were also removed from these analyses.

2.5 External validation in Memento

The iPRS-DEM was generated in Memento and validated by applying

the same methods as described previously. FGR models were simi-

lar to 3C-Dijon validation, except for including only a linear term for

age at baseline. We investigated approximately similar risk factors in

Memento, including family history of dementia (eMethods 10). To esti-

mate cumulative incidence in genetic risk strata, we used time since

baseline assessment, adjusted for baseline covariates (adjustedCurves

R package52) since progression from cognitive complaints or MCI to

dementia is of interest in this clinical population (eMethods 11). Again,

weperformedcomplete case analysis for analyses including clinical risk

factors and removed those with APOE ε2/ε4 genotype (n = 39) from

APOE ε4 stratified analyses (eFigure 1). All statistical analyses were

carried out in R version 4.1.0.53

2.6 Transportability of iPRS-DEM across
ancestries in AoU

We investigated the transportability of iPRS-DEM across ances-

tries in the US population-based All of Us research program. Here,
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F IGURE 1 Overview of derivation and validation of iPRS-DEM. At each step of iPRS-DEM generation, we used Fine-Gray regressionmodels.
LDPRED2, PRS-CS, and C+T are validatedmethods to derive PRS using distinct combinations of tuning parameters. Candidate PRSmodels for
each trait were selected based on integrative Brier score across 5-, 7.5-, and 10-year horizons. For each selected single-trait PRS the penalized
coefficients from elastic-net were divided by the empirical standard deviation to derive training weights. Training weights were used to re-weight
the effect size of SNPs included in their respective single-trait PRS. aUK Biobankwas used as a reference panel for LDPRED2 PRSmodels as
provided by the software. The 1000G European Subset was used as a reference panel for both PRS-CS and C+T. bClinical risk factor analyses
included assessing the change in the estimate of iPRS-DEM after adjustment for risk factors and prediction performance at 10-year follow-up in
3C and 5-years inMemento. InMemento, 1,952 participants had complete clinical risk factor data; however, only family history of dementia and
low education were used in predictionmodels (positively associated with dementia risk) corresponding to 2,021 individuals in this analysis. cIn
analyses stratified by APOE ε4, we removed those with APOE ε2/ε4 genotype. These analyses included interactionmodels and stratifying
individuals into genetic risk groups. AFR, African-American ancestry; C+T, clumping and thresholding; cSVD, cerebral small vessel disease; EAS,
East Asian ancestry; EUR, European ancestry; HIS, Hispanic ancestry; LD, linkage disequilibrium; PRS, polygenic risk score(s); QC, quality control;
sPRS, single-trait polygenic risk score(s).
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we estimated the association of iPRS-DEM (per 1 SD) with cumu-

lative incidence of dementia across European (EUR), East Asian

(EAS), African-American (AFR), and Hispanic (HIS) ancestries, adjust-

ing for baseline variables (age, sex, 5 PCs, and APOE ε4 and

ε2 dosage).

3 RESULTS

3.1 Description of study populations

After excluding participants without viable genotyping, with prevalent

dementia at baseline, or no follow-up (eFigure 1), study populations

comprised 5741 3C participants, 236,201 in AoU, and 2032Memento

participants. 3C-BM (N = 2039; mean age ± SD = 73.9 ± 5.1 years;

60% women) had 301 (14.8%) incident dementia cases over median

(interquartile range [IQR]) years of follow-up of 9.77 (IQR: 5.7 to

11.6), while 3C-Dijon (N = 3702; 74.2 ± 5.5 years; 61.8% women)

had 361 (9.8%) incident dementia cases over 8.4 (IQR: 4.0 to 10.7)

years follow-up. 3C-Dijon participants were slightly more educated

than 3C-BM participants, but other baseline characteristics, includ-

ing clinical risk factors and APOE genotype, were similar (Table 1).

Memento (N= 2032; 70.9± 8.6 years; 61.5%women) had 284 (14.0%)

dementia cases over 5.0 (IQR: 3.0 to 5.1) years follow-up and had

a wider age range, higher education levels, and proportionally more

APOE ε4 carriers than 3C (Table 1). Per ancestry, AoU had a sample

size of 130,797 Europeans (1274 incident dementia cases; 56 ± 17

years, 59.8% women), 5640 East Asians (17 incident dementia cases;

44±17 years; 63.7%women), 55,498African-Americans (282 incident

dementia cases; 49 ± 15 years; 57.6% women), and 44,266 Hispan-

ics (228 incident dementia cases; 45 ± 16 years; 66.8% women). AoU

had a larger age range than 3C-Dijon or Memento, and follow-up time

was shorter (median of 3 years in each ancestry group, Table 2). In

AoU Europeans, the APOE genotype distribution was similar to 3C-

Dijon, while it was markedly different in other ancestries (APOE ε4
being less common in EAS and more common in AFR participants,

Table 2).

3.2 Construction of iPRS-DEM

We selected the best PRS for 27 dementia-related traits (AD, stroke,

vascular risk factors, MRI markers of cSVD, and biomarkers of neu-

rodegeneration), based on their ability to predict dementia risk in

3C-BM, and removed three traits whose best PRS did not improve pre-

diction beyond APOE (eTable 3). Expectedly, there was considerable

correlation between some of the sPRS in the training dataset (eFigure

2). Following elastic-net regression, 12 of 24 sPRS, including a sub-

stantial vascular component, had a non-zero training weight and were

included in the final iPRS-DEM (eTable 4, eFigure 3, weights of top 250

SNPs are available in eTable 5).

3.3 Association of iPRS-DEM with cumulative
incidence of all-cause dementia in 3C-Dijon

In 3C-Dijon, a 1 SD increase in iPRS-DEMwas associated with demen-

tia risk independent of APOE ε4 and ε2 dosage (sHRper1SD = 1.15, 95%

CI: 1.03 to 1.28; p = .01), and participants in the highest iPRS-DEM

quintile had significantly higher dementia risk relative to the mid-

dle 20% (sHR = 1.48, 95% CI: 1.08 to 2.05; p = .016). The AD-PRS

was not significantly associated with dementia risk for both per 1 SD

increase (sHRper1SD = 1.11, 95% CI: 1.00 to 1.23; p = .06) and compar-

ing the upper to middle quintiles (sHR = 1.21, 95% CI: 0.88 to 1.67;

p= .25). Sensitivity analysis in cause-specific Coxmodels revealed simi-

lar associations between iPRS-DEMand dementia incidence (eTable 6).

The sHR increased when dichotomizing iPRS-DEM at increasing per-

centiles, reaching sHR = 1.36 (95% CI: 1.09 to 1.68) in the top 30%,

sHR = 1.53 (95% CI: 1.04 to 2.26) in the top 5% and sHR = 1.82 (95%

CI: 0.92 to 3.62) in the top 1% compared to the rest of the sample

(Figure 2A), while no such trend was observed for AD-PRS, with sHRs

of 1.37 (95% CI: 1.11 to 1.70), 1.32 (95% CI: 0.86 to 2.01), and 0.77

(95% CI: 0.24 to 2.42) for AD-PRS in the top 30%, 5%, and 1% (eFigure

4). The iPRS-DEM sHR per 1 SD was comparable to that of associated

clinical risk factors (sHRper1SD range: 1.14 to 1.24, eTable 7). Adjusting

for education and vascular risk factors only modestly attenuated the

association of iPRS-DEM with cumulative incidence of dementia (by

27%, eTable 8).

In sex-stratified analyses, we found iPRS-DEM tended to be associ-

ated more strongly with dementia risk in women than in men, though

interaction was non-significant (iPRS per 1 SD sHRWomen = 1.23, 95%

CI: 1.07 to 1.41; sHRMen = 1.04, 95% CI: 0.88 to 1.23; interaction

p = .13) (Figure 3, eTable 9). iPRS-DEM showed no difference in asso-

ciation with earlier- versus later-onset dementia (< vs ≥ 80 years)

(Figure 3, eTable 9).

Next, we explored the risk stratification ability of iPRS-DEM along-

side APOE ε4. Across APOE ε4 carriers and non-carriers there were

similar sHRs of iPRS-DEM per 1 SD increase with dementia risk in 3C-

Dijon (sHRAPOE ε4− = 1.130, 95% CI: 0.99 to 1.28; sHRAPOE ε4+ = 1.194,

95% CI: 0.98 to 1.46; interaction p = .648). We then stratified indi-

viduals into four genetic risk groups by APOE ε4 carrier status and

iPRS-DEM+/iPRS-DEM−. The optimal cutoff to dichotomize iPRS-

DEM was at the 56th percentile in APOE ε4+ (sHR = 1.71, 95% CI:

1.11 to 2.62) and at the 94th percentile in APOE ε4− (sHR = 1.95,

95%CI: 1.33 to 2.86). In non-parametric estimation of cumulative inci-

dence, iPRS-DEM+ had a significantly higher cumulative incidence of

dementia than iPRS-DEM−, in both APOE ε4 carriers and non-carriers

by age 85 (eTable 10a-c). Overall, cumulative incidence increased with

age and greater burden of genetic risk; by age 90 cumulative incidence

estimates reached 20.8% (18.0% to 23.6), 24.18% (15.8% to 32.6%),

37.3% (25.6% to 48.7%), and 40.1% (30.7% to 49.4%) in APOE ε4-
/iPRS-DEM-, APOE ε4+/iPRS-DEM-, APOE ε4+/iPRS-DEM+, and APOE
ε4+/iPRS-DEM+, respectively (Figure 2B1, eTable 10a-b). In FGRmod-

els, compared to APOE ε4-/iPRS-DEM-, both APOE ε4+/iPRS-DEM+
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TABLE 1 Baseline characteristics of 3C-Bordeaux-Montpellier, 3C-Dijon, andMemento.

Baseline variables

3C BM 3CDijon Memento

(N= 2039) (N= 3702) (N= 2032)

Follow-up time (years)

Median [IQR]

9.77 [5.66 to 11.6] 8.36 [3.96 to 10.7] 5.00 [3.03 to 5.09]

Status at end of follow-up

Censored 1427 (70.0%) 2910 (78.6%) 1700 (83.7%)

Demented 301 (14.8%) 361 (9.8%) 284 (14.0%)

Deceased (w/o dementia) 311 (15.3%) 431 (11.6%) 48 (2.4%)

Age at baseline assessment

Mean (SD) 73.9 (5.09) 74.2 (5.50) 70.9 (8.62)

Median [min, max] 73.3 [65.0 to 92.2] 73.4 [65.0 to 94.6] 71.7 [32.5 to 92.7]

Sex

Male 816 (40.0%) 1414 (38.2%) 782 (38.5%)

Female 1223 (60.0%) 2288 (61.8%) 1250 (61.5%)

APOE genotype

ε2/ε2 9 (0.4%) 24 (0.6%) 9 (0.4%)

ε2/ε3 249 (12.2%) 444 (12.0%) 200 (9.8%)

ε2/ε4 21 (1.0%) 70 (1.9%) 39 (1.9%)

ε3/ε3 1383 (67.8%) 2460 (66.5%) 1218 (59.9%)

ε3/ε4 364 (17.9%) 664 (17.9%) 495 (24.4%)

ε4/ε4 13 (0.6%) 40 (1.1%) 71 (3.5%)

Low education (primary education only or no formal) 643 (31.5%) 761 (20.6%) 242 (11.9%)

Missing 5 (0.2%) 1 (0.0%) 0

Hypertension 1559 (76.5%) 2946 (79.6%) 1221 (60.1%)

Missing 0 0 39 (1.9%)

Smoking status

Never smoker 1921 (94.2%) 3513 (94.9%) 1892 (93.1%)

Current smoker 117 (5.7%) 188 (5.1%) 139 (6.8%)

Missing 1 (0.0%) 1 (0.0%) 1 (0.0%)

Obesity (> 30 kg/m2) 296 (14.5%) 497 (13.4%) 265 (13.0%)

Missing 23 (1.1%) 9 (0.2%) 36 (1.8%)

Diabetes 209 (10.3%) 332 (9.0%) 177 (8.7%)

Missing 11 (0.5%) 9 (0.2%) 8 (0.4%)

History of CVD 201 (9.9%) 342 (9.2%) 380 (18.7%)

Missing 0 (0%) 2 (0.1%) 8 (0.4%)

Dyslipidemia 1140 (55.9%) 2174 (58.7%) 581 (28.6%)

Missing 2 (0.1%) 5 (0.1%) 0

Family history of dementiaa N/A N/A 850 (41.8%)

Missing N/A N/A 11 (0.5%)

Note: Definitions of clinical risk factors differ slightly between cohorts, see eMethods 4 and 10 for details.

Abbreviations: 3C, Three-Cities study; BM, Bordeaux andMontpellier; CVD, cardiovascular disease; IQR, interquartile range.
aFamily history of dementia was not ascertainable in 3C.
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TABLE 2 Per ancestry baseline characteristics of All of Us.

EAS AFR HIS EUR

Baseline variables (N= 5640) (N= 55,498) (N= 44,266) (N= 130,797)

Follow-up time (years)*

Median [IQR] 3.05 (2.04 to 4.05) 3.05 (3.05 to 3.05) 3.05 (2.04 to 3.05) 3.05 (2.04 to 4.05)

Status at end of follow-up

Censored 5595 (99.2%) 54,760 (98.7%) 43,828 (99.0%) 128,337 (98.1%)

Demented 17 (0.3%) 282 (0.5%) 228 (0.5%) 1274 (1.0%)

Deceased (w/o dementia) 28 (0.5%) 456 (0.8%) 210 (0.5%) 1186 (0.9%)

Age at baseline

Mean (SD) 44 (17) 49 (15) 45 (16) 56 (17)

Median [IQR] 42 (29 to 58) 52 (38 to 60) 44 (31 to 57) 59 (42 to 69)

Sex

Male 2050 (36.3%) 23,521 (42.4%) 14,705 (33.2%) 52,559 (40.2)

Female 3590 (63.7%) 31,977 (57.6%) 29,561 (66.8%) 78,238 (59.8%)

APOEGenotype

ε2/ε2 41 (0.7%) 66 (1.2%) 94 (0.2%) 840 (0.6%)

ε2/ε3 760 (13.5%) 7969 (14.4%) 3161 (7.1%) 16,092 (12.3%)

ε2/ε4 100 (1.8%) 2492 (4.5%) 479 (1.1%) 2791 (2.1%)

ε3/ε3 3827 (67.9%) 25,638 (46.2%) 31,082 (70.2%) 80,765 (61.7%)

ε3/ε4 859 (15.2%) 16,251 (29.2%) 8799 (19.9%) 27,855 (21.4%)

ε4/ε4 53 (0.9%) 2484 (4.5%) 651 (1.5%) 2454 (1.9%)

Abbreviations: AFR, African; EAS, East Asian; EUR, European; HIS, Hispanic.

*Follow-up time is only given on a per-year basis, and not coded as a continuous variable.

and APOE ε4−/iPRS-DEM+ conveyed substantially higher dementia

risk (sHRAPOE ε4+/IPRS-DEM+ = 2.23, 95% CI: 1.64 to 3.03; sHRAPOE

ε4−/IPRS-DEM+ = 1.97, 95% CI: 1.36 to 2.86]), while the APOE ε4+/iPRS-
DEM− group was not significantly associated with dementia risk

(HR= 1.29, 95%CI: 0.91 to 1.83, Figure 2B2).

3.4 Predictive performance of iPRS-DEM in
3C-Dijon

At the 10-year follow-up, there was no discernible difference in

the prediction of dementia between iPRS-DEM and AD-PRS, both

of which performed less well than a model with all clinical factors

associated with increased dementia risk in 3C-Dijon (Figure 2C). Com-

bining all clinical risk factors, APOE ε4 and ε2 dosage, and iPRS-DEM

slightly improved prediction (AUC = 0.756, 95% CI: 0.72 to 0.792;

IPA = +9.2% [4.1% to 13.3%]) over a model comprising clinical factors

only (AUC=0.751, 95%CI: 0.715 to0.786; IPA=+8.7% [3.9 to12.6%]).

3.5 External validation of iPRS-DEM in Memento

The iPRS-DEM in Memento included 1,270,010 of 1,320,229 SNPs

(96.2%). A 1-SD increase in iPRS-DEM was associated with dementia

risk independently of APOE ε4 and ε2 dosage (sHRper1SD = 1.25, 95%

CI: 1.11 to 1.42; p = .0003, eTable 11). Adjusting for family history of

dementia and education, the two clinical risk factors associated with

increased all-cause dementia risk in Memento, resulting in negligible

F IGURE 2 Validation of iPRS-DEM in 3C-Dijon. (A) Association of iPRS-DEMwith cumulative incidence of dementia across percentile groups.
Subdistribution hazard ratios for dementia are per percentile cutoffs relative to the rest of the sample as derived from Fine-Gray regression
models. (B) Comparison of genetic risk strata defined by APOE ε4 status and iPRS-DEM. (B1) Estimated cumulative incidence curves at ages 75 to
95 years across genetic risk strata. (B2) Association across APOE ε4 and iPRS-DEMdefined genetic risk strata with cumulative incidence of
dementia. All models in each analysis were adjusted for age at baseline (including age-squared), sex, and 10 principal components, as well as APOE
ε2 and APOE ε4 dosage (except for APOE ε4 stratified analysis). AD-PRS, Alzheimer’s disease polygenic risk score; APOE4-, APOE ε4 non-carriers;
APOE4+, APOE ε4 carriers; AUC, area under the curve; CVD, cardiovascular disease; IPA, index of prediction accuracy; iPRS, integrative polygenic
risk score; sHR, subdistribution hazard ratio. (C) Comparison of prediction performance at 10 years of iPRS-DEM against APOE, AD-PRS, and
clinical risk factors* based on time-dependent AUC and index of prediction accuracy over 2000 bootstrap replications (*only risk factors showing
significant association with increased cumulative incidence of all-cause dementia in 3C-Dijon are used here).



10 of 16 D’AOUST ET AL.

F IGURE 3 iPRS-DEM association with cumulative incidence of
dementia in 3C-Dijon, including age and sex subgroups. Error bars
represent 95% confidence intervals. All Fine-Graymodels are
adjusted for age at baseline, sex, 10 genetic principal components, and
APOE ε2 and APOE ε4 dosage.<80 refers to analysis censoring at 80
years old,>80 refers to analysis excluding data before age 80; see
eMethods 6 for details.

changes in estimates for the association of iPRS-DEM with dementia

risk (4.4%, eTables 12 and 13). Individuals in the highest quintile of

iPRS-DEM showed a significant increase in dementia risk relative to

the middle 20% (sHR = 1.58, 95% CI: 1.10 to 2.27; p = .01). Further,

iPRS-DEM showed non-linearly increasing association with dementia

risk across higher percentile thresholds, reaching sHRs of 1.79 (95%

CI: 1.04 to 2.26), 1.24 (95% CI: 0.74 to 2.09), and 2.28 (95% CI: 0.82

to 6.33) in the top 30%, 5%, and 1% compared to the rest of the sam-

ple (Figure 4A). Similar to 3C-Dijon, sex-stratified analyses revealed a

non-significant trend toward a stronger association of iPRS-DEMwith

dementia risk in women than in men (iPRS per 1SD sHRWomen = 1.30,

95% CI: 1.10 to 1.54; sHRMen = 1.17, 95% CI: 0.97 to 1.40; interac-

tion p = .37) (Figure 5, eTable 14). Unlike 3C-Dijon, iPRS-DEM showed

an association with earlier-onset dementia cases (<80 years) but not

in later onset (≥80 years) (sHR
<80years = 1.30, 95% CI: 1.11 to 1.52;

sHR≥80years = 1.13, 95% CI: 0.92 to 1.38), although, again, confidence

intervals overlap (Figure 5, eTable 14).

As in 3C-Dijon, the association of iPRS-DEM per 1 SD increase

with dementia risk did not differ significantly between APOE ε4 car-

riers and non-carriers (sHRAPOE ε4+ = 1.33, 95% CI: 1.12 to 1.58;

sHRAPOE ε4− = 1.15, 95% CI: 0.96 to 1.37; pinteraction = .25). For risk

stratification by APOE ε4 carrier status and iPRS-DEM+/iPRS-DEM−,
the optimal cutoff for iPRS-DEM was at the 69.9th percentile in APOE

ε4+ (sHRiPRS-DEM+ = 2.16, 95% CI: 1.54 to 3.02) and at the 74.1th

percentile in APOE ε4− (sHRiPRS-DEM+ = 1.49, 95% CI: 1.02 to 2.18).

Notably, iPRS-DEM+ had a significantly higher cumulative incidence of

dementia than iPRS-DEM− by the 3-year follow-up inAPOE ε4 carriers
and by the 4-year follow-up in non-carriers (eTable 15a-c). Estimated

cumulative incidence of dementia in each genetic risk strata at the

5-year follow up was 9.8% (7.9% to 11.7%), 13.8% (9.7% to 17.8%),

TABLE 3 Association of iPRS andwith dementia within ancestry
sub-groups in All of Us.

Ancestry sHR (95%CI) p

Europeans 1.28 (1.09 to 1.51) .003

East Asians 5.29 (1.43 to 34.36) .016

African Americans 1.06 (0.75 to 1.45) .79

Hispanics 1.09 (0.78 to 1.68) .48

Fine-Graymodels are adjusted for baseline covariates (age, sex, five genetic

principal components) and APOE dosage.

22.1% (17.8%to26.4%), and41.3% (32.9%to49.8%), inAPOE ε4-/iPRS-
DEM−, APOE ε4−/iPRS-DEM+, APOE ε4+/iPRS-DEM+, and APOE

ε4+/iPRS-DEM+, respectively (Figure 4B1). Compared to the APOE

ε4−/iPRS-DEM− reference group, all genetic risk groups conveyed

a significant increase in dementia risk (sHRAPOE ε4−/IPRS-DEM+ = 1.49,

95% CI: 1.03 to 2.15; sHRAPOE ε4+/IPRS-DEM− = 2.62, 95% CI: 1.93 to

3.54; HRAPOE ε4+/IPRS-DEM+ = 5.72, 95%CI: 4.15 to 7.87, Figure 4B2).

At the 5-year follow-up, iPRS-DEM modestly improved prediction

(AUC = 0.758, 95% CI: 0.715 to 0.800; IPA = +10.1% [3.6% to 15.6%])

beyond APOE ε4 and ε2 dosage (AUC = 0.751, 95% CI: 0.707 to 0.793;

IPA = +9.1% [2.6% to 14.4%]) (Figure 4C). Overall, genetic risk (APOE

with and without iPRS-DEM) improved dementia prediction above the

reference model (age, sex, 10PCs) (AUC = 0.682, 95% CI: 0.636 to

0.727) substantially more than known risk factors, education level and

family history, in this setting (AUC = 0.686, 95% CI: 0.641 to 0.731)

(Figure 4C).

3.6 Transportability of iPRS-DEM across
ancestries in AoU

The iPRS-DEM in AoU included 1,318,697 of 1,320,229 SNPs (99.9%).

1 SD increase in iPRS-DEMwas associatedwith dementia risk indepen-

dently ofAPOE ε4and ε2dosage in bothEUR (sHRper1SD =1.28, [1.09 to

1.51]; p= .003) and EAS participants (sHRper1SD = 5.29, 95%CI: 1.43 to

34.36; p= .016), but not in AFR or HIS, although the direction of effect

(+) was consistent (Table 3, Coxmodel sensitivity in eTable 16).

4 DISCUSSION

We developed a novel integrative PRS for all-cause dementia encom-

passing genetic risk for multiple traits, in addition to AD, reflecting

the neurodegenerative and vascular contribution to dementia risk.We

trained iPRS-DEM in an elderly longitudinal population-based cohort

and validated it in older community-dwelling people, across ancestries

in a large-scale population-based cohort, and in dementia-freememory

clinic patients, while accounting for competing risk of death. In older

community-dwelling people, iPRS-DEMwas associated with dementia

risk independently of APOE and only modestly attenuated by clinical

risk factors, while a single-trait AD-PRS was non-significant. Though

improvement in overall prediction was limited, we demonstrated the
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importance of iPRS-DEM to stratify dementia risk in combination with

APOE ε4 status. Having a high iPRS-DEM, regardless of APOE ε4 status
(APOE ε4+/iPRS-DEM+orAPOE ε4−/iPRS-DEM+)was associatedwith
an approximate two-fold increased risk of dementia compared with

APOE ε4−/iPRS-DEM−, while APOE ε4+/iPRS-DEM− did not convey

significantly greater dementia risk. We further validated iPRS-DEM in

thememory-clinic setting, showing significant associationwith demen-

tia risk independent ofAPOE and clinical risk factors andalso improving

risk prediction and stratification. Particularly in the memory clinic,

iPRS-DEM captured substantial genetic risk among APOE ε4 carriers,

distinguishing cumulative incidence of dementia by the 3-year follow-

up, while those with APOE ε4+/iPRS-DEM+ had a 5-year cumulative

incidence of dementia of 40% and nearly six-fold increased demen-

tia risk compared to the APOE ε4−/iPRS-DEM−. We also show strong

validation of iPRS-DEM in European adults of all ages and diverse

socioeconomic backgrounds. Importantly, we attempted to validate

iPRS-DEM across diverse ancestry groups (EAS, AFR, and HIS) and

demonstrated transportability to East Asians despite a small sample

size. Our findings suggest a promising ability of iPRS-DEM to identify

persons at highest genetic risk for dementia in both population and

clinical settings.

Polygenic scores may inform dementia prevention strategies by

identifying high-risk individuals for either clinical trials or future inter-

ventions in the general population.9,54 However, previous AD-PRS did

not explicitly account for the vascular contribution to dementia risk

and showed inconsistent relationwith all-cause dementia across APOE

genotypes in population-based cohorts.19,21,55,56 Our investigations

reveal the utility of more comprehensive polygenic risk prediction

encompassing genetically determined vascular risk over a single-

trait AD-PRS, particularly for all-cause dementia risk stratification in

combination with APOE ε4.
A recent iPRS for AD did not suggest any benefit over an AD-

PRS.27 However, integrative PRS are sensitive to selection of input

traits, methodological choices in PRS derivation, training population,

and phenotype definition. The published iPRS focused on AD risk,

included a heterogeneous set of traits incompletely capturing vascu-

lar risk, and was trained and evaluated in AD case–control datasets

that do not consider competing risk of death. In contrast, iPRS-DEM

includes input traits specifically focused on neurodegenerative and

vascular origins and was trained and evaluated using a longitudinal

population-based cohort to predict the probability of all-cause demen-

tia over time using Fine-Gray models to account for competing risk.

F IGURE 5 iPRS-DEM association with cumulative incidence of
dementia inMemento including age and sex subgroups. Error bars
represent 95% confidence intervals. All Fine-Graymodels are
adjusted for age at baseline, sex, 10 genetic principal components, and
APOE ε2 and APOE ε4 dosage.<80 refers to analysis censoring at 80
years old,>80 refers to analysis excluding data before age 80, see
eMethods 6 for details.

Moreover, the previous integrative AD-PRS27 did not explore risk

stratification in combination with APOE ε4 that highlighted potential

utility of iPRS-DEM in our study.

The limited improvement in prediction performance for all-cause

dementia above and beyond clinical factors in a population-based set-

ting is comparable to PRS for other common age-related neurological

conditions, like stroke,24–26 but overall lags behind cardiovascular con-

ditions such as CAD or atrial fibrillation.11,57 This could be attributed,

at least in part, to greater disease heterogeneity. However, iPRS-DEM

could potentially still be informative for early preventive interventions

at the population level as genetic risk is stable frombirth,whereas clini-

cally defined risk factors suchashighbloodpressureareoftendetected

in mid to late life and may be subject to measurement variability.58

Further, for population-level risk stratification, we showed the ability

of iPRS-DEM to stratify dementia risk in both APOE ε4 carriers and

non-carriers, with dementia risk in APOE ε4 non-carriers with extreme

iPRS-DEMbeing nearly equivalent to that ofAPOE ε4 carrierswith high
iPRS-DEM.

F IGURE 4 External validation of iPRS-DEM inMemento. (A) Association of iPRS-DEMwith cumulative incidence of dementia across
percentile groups. Subdistribution hazard ratios for dementia are per percentile cutoffs relative to the rest of the sample as derived from
Fine-Gray regressionmodels. Models are adjusted for age at baseline, sex, and 10 principal components, as well as APOE ε4 and ε2dosage. (B)
Comparison of genetic risk strata defined by APOE ε4 status and iPRS-DEM. (B1) Estimated cumulative incidence curves at up to 5-year follow-up
across genetic risk strata. (B2) Association across APOE ε4 and iPRS-DEMdefined genetic risk strata with cumulative incidence of dementia. All
models in each analysis are adjusted for age at baseline, sex, and 10 principal components, as well as APOE ε2 and APOE ε4 dosage (except for APOE
ε4 stratified analysis). AUC, area under the curve; APOE4−, APOE ε4 non-carriers; APOE4+, APOE ε4 carriers; EDU, low education; IPA, index of
prediction accuracy; iPRS, integrative polygenic risk score; sHR, subdistribution hazard ratio. (C) Comparison of prediction performance at 5 years
of iPRS-DEM against APOE, AD-PRS, and clinical risk factors* based on time-dependent area under the curve and index of prediction accuracy over
2000 bootstrap replications (*only risk factors showing significant association with increased cumulative incidence of all-cause dementia in
Memento are used here).
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Originally, we extended iPRS-DEM to the memory-clinic setting,

exploring its potential to inform dementia risk assessment in persons

with MCI or subjective cognitive complaints.13 Studies investigating

PRS in a memory clinic setting are scarce, with one study showing

that low single-trait AD-PRS mitigated AD risk in APOE ε4 carriers,

although it was not associated with all-cause dementia.59 We provide

initial evidence that iPRS-DEM, despite being trained in a population-

based setting, is associated with and improves prediction of all-cause

dementia in a memory-clinic population. Notably, high iPRS-DEM was

associated with dementia risk in both APOE ε4 strata and was par-

ticularly strong among APOE ε4 carriers, distinguishing risk by the

3-year follow-up. Taken together,APOE ε4 carrierswith high iPRS-DEM
approximated a nearly six-fold increased dementia risk compared to

APOE ε4 non-carriers with “low” iPRS-DEM representing the majority

of the population. These results support the idea that iPRS-DEMalong-

side APOE could be a powerful tool to identify memory-clinic patients

for targeted preventive interventions or enrollment in clinical trials.

There is mounting, cross-domain evidence for sex differences in

AD pathogenesis,60 which likely extends to polygenic risk.61 Here,

we found in both 3C-Dijon and Memento that iPRS-DEM was asso-

ciated with dementia risk more strongly (and, significantly, in part

due to larger sample size) in women than in men, which is congru-

ent with a recent study investigating AD-PRS in a population-based

German cohort (ESTHER).21 Incidence of AD is known to be higher in

women among older adults likely due to greater longevity in women

and men having healthier cardiovascular risk profiles at older ages.62

Given both 3C and Memento have a higher proportion of women

(∼60%) and comprise largely older individuals, PRS for vascular traits

included in iPRS-DEM may, to some extent, capture genetic risk pre-

dominantly expressed in women. These findings highlight the need

for sex-stratified GWAS of dementia (as well as other relevant traits

included in the iPRS) and that future PRS for dementia should consider

trainingmodels separately in women andmen.

Lastly, iPRS-DEMassociationwith dementia risk strongly replicated

in European ancestry participants of AoU, importantly spanning awide

age range and with substantial geographical and socioeconomic diver-

sity. We also leveraged the unique genetic diversity in AoU to assess

the transportability of iPRS-DEM to non-Europeans, demonstrating

a significant association with dementia risk in East Asians. These

results did not translate to African American or Hispanic ancestry,

although the directionality of effect was consistent. We suggest that

different translatability of iPRS-DEM in EAS compared to AFR or HIS

ancestry could be driven by increased genetic diversity in AFR63 and

admixture effects in HIS.64 A recent study in AoU proposed a frame-

work to develop translatable PRS for non-Europeans across multiple

conditions, although AD/dementia was not investigated.65 Further,

recent developments in PRS methods that leverage cross-ancestry

reference panels (PRSCS-X) and admixture mapping (GAUDI) pro-

pose to enhance PRS transportability.64 Most importantly, our results

highlight the crucial need to increase diversity in GWAS used to gen-

erate PRS,26,66 especially for neurodegenerative traits and MRI-based

endophenotypes.

Weacknowledge the limitations of this study. For certain traits, such

as MRI markers of cSVD and other biomarkers, their contribution to

iPRS-DEM was likely limited by underpowered GWAS. Of note, 3C

was restricted to participants>65 years, stipulating that those at high-

est risk (ie, high genetic burden) of developing earlier-onset dementia

are less likely to be selected for the study. Indeed, APOE ε4 homozy-

gosity has been shown to represent a distinct genetic form of AD,

with an average age of symptom onset of 65.1 years.67 Retraining

in cohorts spanning wider age ranges would help address this selec-

tion issue. Further, we cannot rule out possible bias introduced by

interval censoring or selective survival common to dementia studies

such as 3C or Memento.68 We did not investigate the association of

iPRS-DEMwithdementia subtypesdue to limited sample size.Compar-

ison of iPRS-DEM with more comprehensive risk factors for dementia

and standard neuropsychological assessment should be considered in

future work on larger samples.7 Ultimately, translation into clinical

practice may be optimized by the integration of iPRS-DEM with both

clinical variables and other biomarkers, especially novel plasma AD

biomarkers,69 into risk prediction models based on global, multimodal

biomarker measurements. Promisingly, CAD PRS have shown benefit

alongside clinical risk predictionmodels to inform statin use in primary

prevention.70

By accounting for the vascular contribution to dementia risk, iPRS-

DEM may provide useful guidance for trial enrichment designs that

are more representative of global dementia risk. Our results suggest

that in combination with APOE ε4, it could offer substantial predictive

enrichment by identifying participants at high likelihood of developing

dementia.71 Whether iPRS-DEM could inform prognostic enrichment

as well remains unclear. It will also be interesting to examine whether

iPRS-DEM can help identify individuals especially predisposed to vas-

cular brain disease who are at high risk of developing amyloid-related

imaging abnormalities from amyloid immunotherapy, currently consid-

ered for AD prevention in asymptomatic persons with high amyloid

burden.72

Overall, we provide evidence that an iPRS-DEM incorporating both

neurodegenerative and vascular contributions to dementia is a pow-

erful genetic risk stratification tool in addition to APOE ε4 that could

be applied in both population-based and memory-clinic settings for

dementia precision prevention. Future studies refining and validat-

ing iPRS-DEM in additional, especially non-European, populations are

warranted.
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