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Free fatty acid receptors in the
endocrine regulation of glucose
metabolism: Insight from
gastrointestinal-pancreatic-
adipose interactions

Yu-Feng Zhao *

Institute of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
Glucose metabolism is primarily controlled by pancreatic hormones, with the

coordinated assistance of the hormones from gastrointestine and adipose

tissue. Studies have unfolded a sophisticated hormonal gastrointestinal-

pancreatic-adipose interaction network, which essentially maintains glucose

homeostasis in response to the changes in substrates and nutrients. Free fatty

acids (FFAs) are the important substrates that are involved in glucose

metabolism. FFAs are able to activate the G-protein coupled membrane

receptors including GPR40, GPR120, GPR41 and GPR43, which are

specifically expressed in pancreatic islet cells, enteroendocrine cells as well

as adipocytes. The activation of FFA receptors regulates the secretion of

hormones from pancreas, gastrointestine and adipose tissue to influence

glucose metabolism. This review presents the effects of the FFA receptors on

glucose metabolism via the hormonal gastrointestinal-pancreatic-adipose

interactions and the underlying intracellular mechanisms. Furthermore, the

development of therapeutic drugs targeting FFA receptors for the treatment of

abnormal glucose metabolism such as type 2 diabetes mellitus is summarized.

KEYWORDS

free fatty acid receptors, glucose metabolism, pancreatic islet cells, gastrointestinal
hormones, adipose tissue
Introduction

Glucose homeostasis ensures continuous energy supply to all the cells of the body. It

protects the body against hypoglycemic shock and hyperglycemia-induced damage to the

cells such as vascular cells and neurons. In general, the uptake of glucose is intermittent

while its consumption is a continual process. The fluctuation of blood glucose is well

restricted to a limited range by the neuronal and hormonal regulatory molecules, which
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constitute a complex network to target on the organs that are

critical for the intake, absorption, storage, conversion and

consumption of glucose (1, 2). In this regulation network, the

hormones from pancreatic islet cells locate in the central

position, with the assistance of hormones from gastrointestinal

enteroendocrine cells (EECs) and adipocytes (3–5).

Similarly, to glucose, free fatty acids (FFAs) are important

substrates and their metabolism is entangled with glucose for

energy supply. FFAs show diverse regulatory effects on glucose

metabolism according to their length and saturation (6). It is well

known that FFAs enter into cells for b-oxidation and generate

acetyl-CoA to link glucose metabolism via tricarboxylic acid

cycle in mitochondria. Increasing studies have demonstrated

that FFAs also function as extracellular ligands to activate G

protein-coupled receptors (GPCR) on the plasma membrane.

GPR40, GPR120, GPR84, GPR41 and GPR43 are identified as

FFA receptors, and they are differently activated by long-chain,

medium-chain, and short-chain FFAs (7–9).

FFA receptors are expressed in the cells that are critical to

glucose metabolism. Pancreatic islet cells, EECs and adipocytes

are equipped with FFA receptors in a cell-specific manner. At

present, studies have shown that FFA receptors activation

regulates the endocrine function of pancreatic islet cells, EECs

and adipocytes, which takes part in the regulation of glucose

homeostasis (8, 10). The integrated effects of FFA receptors on

glucose metabolism via the hormonal gastrointestinal-

pancreatic-adipose (G-P-A) interactions and the underlying

intracellular molecular mechanisms are summarized in this

review. The drug development targeting FFA receptors for the

therapy of abnormal glucose metabolism such as type 2 diabetes

mellitus (T2DM) is also discussed.
G-P-A interactions and
glucose homeostasis

Insulin is secreted from islet b-cells and plays vital role in

lowering blood glucose levels by acting on insulin-sensitive

tissues and organs such as liver, skeletal muscles and adipose

tissue. It stimulates the synthesis of glycogen and triglyceride

and inhibits lipolysis to force the entry of blood glucose into cells

(11). In contrast, glucagon is secreted from islet a-cells to elevate
blood glucose levels by stimulating glycogenolysis ,

gluconeogenesis and lipolysis (12). Somatostatin (SS) and

pancreatic polypeptide (PP) that are respectively secreted by

islet d-cells and g-cells modulate insulin and glucagon secretion

in a paracrine manner (13). The secretion of insulin and

glucagon is primarily regulated by blood glucose, while it is

also finely modulated by gastrointestinal hormones (GI

hormones) and adipokines (14, 15).

GI hormones are a number of peptides that are secreted by

different EECs (16). Glucagon like peptide-1 (GLP-1),
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cholecystokinin (CCK), gastric inhibitory peptide (GIP),

ghrelin, gastrin and secretin are the well-known hormones

that related to metabolism, and most of them take part in

glucose metabolism by regulating insulin secretion or by acting

directly on adipose tissue, liver, skeletal muscle and

hypothalamus in central nervous system (CNS) (14) (17, 18).

Adipokines are another group of proteins that are released by

adipocytes. Among adipokines, leptin and adiponectin are well-

known for their role in glucose metabolism (19). Leptin acts on

CNS to inhibit appetite and stimulate sympathetic system to

increase thermogenesis, and it also acts on islet b-cells to inhibit
insulin secretion (20, 21). Leptin induces the loss of fat mass and

the improvement of insulin sensitivity, which is beneficial to

blood glucose control (22–24). However, leptin resistance occurs

in obese subjects, which may contribute to the development of

obesity and insulin resistance (25, 26). Adiponectin protects

pancreatic islet b-cells against apoptosis and prevents islets loss

after transplantation (27–29). Adiponectin also increases insulin

sensitivity to improve glucose metabolism (30). The expression

of leptin and adiponectin is regulated by islets hormones and GI

hormones. For instance, leptin expression is increased by insulin

(31), and adiponectin expression is upregulated by GLP-1 but

inhibited by GIP (32–34).

The hormonal signals link pancreatic islet cells, EECs and

adipocytes together to constitute a regulatory system for glucose

metabolism (Figure 1). The G-P-A network responds to the

fluctuation of blood glucose through a negative feedback

mechanism to maintain glucose homeostasis. When the blood

glucose level elevates after ingestion, insulin and some GI

hormones increase to lower blood glucose by stimulating

glycogen synthesis, inhibiting appetite, and reducing

gluconeogenesis (35). Thus, the blood glucose is finely

controlled in the normal range. Adipokines influence appetite,

insulin secretion, insulin sensitivity and glucose utilization,

which may be involved in the long-term mechanism for

glucose metabolism.
The effects of FFAs on
glucose metabolism

Glucose and FFAs are entangled in energy metabolism, and

their interaction is crucial to the maintenance of glucose

homeostasis. Fatty acids can be divided into short-chain (C2-

C5), medium-chain (C6-C12) and long-chain fatty acids (C14-

C26). All of them regulate insulin secretion. LCFFAs are divided

into saturated and unsaturated FFAs, both of which are involved

in insulin secretion. In general, FFAs exhibit rapid potentiation

of glucose-stimulated insulin secretion (GSIS) on the basis of

elevated blood glucose levels (6, 36, 37). Meanwhile, FFAs

enhance the secretion of gastrointestinal hormones such as

GLP-1, CCK and GIP, which are able to promote insulin
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secretion (38). The acute potentiation of insulin secretion may

be helpful for the control of postprandial elevation of blood

glucose. However, long-term elevation of FFAs in combination

with glucose damages GSIS, induces insulin resistance, and leads

to the elevation of basal blood glucose (39). In addition, FFAs in

long-term incubation induce lipotoxic b-cell damage and

contribute to the occurrence of T2DM (40, 41).

During fasting, FFAs show the beneficial effects on glucose

metabolism. LCFFAs are used as the main energy fuel and go to

b-oxidation to generate energy during fasting, and they are also

converted to ketone bodies for energy supply. Then blood

glucose is saved, and the hypoglycemia is prevented. Blood

glucose can not remain stable without the usage of LCFFA

during fasting and starvation. LCFFAs are also vital for the

recovery of high insulin-secreting ability of pancreatic b-cells in
response to glucose after ingestion (42, 43), which is crucial to

the control of glucose homeostasis after refeeding.

In summary, the influence of FFAs on glucose metabolism

can be physiologically beneficial to remain glucose homeostasis

at low glucose levels. On the other hand, they lead to the

pathological change and the occurrence of metabolic diseases

at high concentrations in accompanying high glucose.
Frontiers in Endocrinology 03
FFA receptors

It was previously considered that FFAs regulate glucose

metabolism through intracellular metabolism. The discovery

of FFA receptors that include GPR40 (FFA1), GPR120

(FFA4), GPR41 (FFA3) and GPR43 (FFA2) unveils a new

mechanism of FFAs for their regulation of glucose

metabolism. GPR40 and GPR120 are activated by LCFFA,

while GPR43 and GPR41 are activated by SCFAs (8). Being

members of the GPCR family, all the FFA receptors couple to

heterotrimeric G proteins that are composed of a-subunit, b-
subunit and g-subunit (44). FFA receptors have been reported

to activate multiple signaling pathways that are mediated by

Gas, Gai/o, Gaq/11 subunits and b-arrestins (8). In a cell

specific manner, GPR40 is coupled to Gas, Gai/o and Gaq/11
subunits, while GPR120 is coupled to Gaq/11, Gai/o and b-
arrestin2, respectively. GPR41 and GPR43 are coupled to

Gai/o, and GPR43 also couples to Gaq/11 subunit (8). The

diversity of linkage between FFA receptors and G proteins

enables the FFA receptor to execute flexible regulatory

functions. The signaling pathways for FFA receptors have

not been fully discovered, and the details of the relationship
FIGURE 1

The gastrointestinal-pancreatic-adipose (G-P-A) interactions and hormonal regulation of glucose metabolism. When the blood glucose levels
elevate after ingestion, insulin and certain GI hormones increase and act on the main target organs that include liver, skeletal muscle and central
nervous system to lower blood glucose. Adipokines regulate glucose metabolism by altering appetite, insulin secretion, insulin sensitivity and
glucose utilization, which may be a long-term mechanism for glucose metabolism.
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between intracellular signaling molecules and cellular

responses needs to be further clarified.

It is well known that Gas and Gai/o affect the activity of

adenylate cyclase (AC) and regulate intracellular cAMP levels

and the relative signaling pathways (45). Gaq/11 is linked to

phospholipase C (PLC) and activates the phosphatidylinositol

signaling pathway (46). These signaling pathways regulate

hormone secretion by altering the active state of many

proteins including ion channels, vesicle trafficking proteins

and exocytosis-related proteins. GPCR activation can recruit

b-arrestins to the membrane for their binding to GPCR. b-
Arrestins mediate the endocytosis of GPCR and negatively

regulate GPCR signaling. Meanwhile, b-arrestins also interact

with the intracellular signaling proteins (47). Mitogen-activated

protein kinases (MAPK) cascade is an important signaling

pathway for b-arrestin-activated intracellular signaling

molecules (48).
GPR40 and glucose metabolism

GPR40 is distributed in pancreatic islet cells and EECs. The

hormonal regulation of glucose metabolism by GPR40 is
Frontiers in Endocrinology 04
summarized in Figure 2. GPR40 activation by FFAs after fat

ingestion potentiates the secretion of insulin, GLP-1, CCK and

GIP, which restrain the elevation of blood glucose by acting on

CNS, liver and skeletal muscle. Although GPR40 is not expressed

in adipocytes, insulin and GI hormones act on adipocytes to

improve glucose uptake and util izat ion as well as

adipokine secretion.
GPR40 and islet hormone secretion

GPR40 was first discovered as a FFA receptor in

pancreatic islet b-cells (49). GPR40 activation was reported

to potentiate insulin secretion in primary cultured murine b-
cells, INS-1 cells, MIN6 cells and human islets in vitro as well

as in human and rodents in vivo (50–53). GPR40 knockout

mice show approximately 50% reduction in FFAs-induced

insulin secretion in vivo. It is suggested that postprandial

increase of blood FFAs activates GPR40 to potentiate GSIS.

The activation of PLC via Gaq/11 subunit and the increase in

intracellular Ca2+ concentrations ([Ca2+]i) mediate GPR40-

potentiated insulin secretion (51, 54). The coupling of GPR40

to Gas subunit and the activation of AC are also suggested to
FIGURE 2

GPR40 regulates glucose metabolism via the G-P-A regulatory system. The activation of GPR40 by FFAs after fat ingestion potentiates the
secretion of insulin, GLP-1, CCK and GIP, which contributes to the restrain of blood glucose elevation by acting on CNS, liver and skeletal
muscle. Although GPR40 is not expressed in adipocytes, GPR40-potentiated insulin and GI hormones act on adipocytes to improve glucose
uptake and utilization as well as adipokine secretion.
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mediate the effects of GPR40 agonists on ion channels

activities (55).

The potentiation of insulin secretion by GPR40 activation is

glucose dependent. GPR40 activation increases insulin secretion

at high glucose levels while it does not stimulate insulin secretion

at low glucose levels (56). A conversion mechanism for GPR40

activation and insulin secretion may exist. Exocytosis of insulin

granules is a complex process that is regulated by membrane

potential, intracellular ATP levels, intracellular signaling

molecules, and [Ca2+]i in b-cells (57, 58). Studies showed that

GPR40 activation in rat pancreatic islet b-cells results in the

opening of ATP-sensitive potassium channels (KATP channels)

(59, 60). It is proposed that the intracellular environment of b-
cells at low glucose levels facilitates the opening of KATP

channels and GPR40 activation results in the opening of KATP

channels. The opening of KATP channels hyperpolarizes

membrane potential and then blocks insulin secretion. When

the blood glucose level is up the stimulatory concentration for

insulin secretion, there may be mechanism for the blockade of

GPR40-induced opening of KATP channels. It is proposed that

the state of KATP channels may be the reason for the glucose-

dependence of GPR40 activation to stimulate insulin secretion.

GPR40 is also expressed in islet a-cells, and GPR40

activation potentiates glucagon secretion in rodent islets in

vitro (61, 62). GPR40 agonists elicit the oscillatory increase in

[Ca2+]i in a-cells by activating intracellular Ca2+ release from ER

stores and the influx of extracellular Ca2+, and the increase in

[Ca2+]i triggers exocytosis of glucagon granules (63, 64). When

high fat diet (HFD) without sufficient glucose is consumed,

hypoglycemia may occur, provided that glucagon does not

elevate while insulin secretion increases. GPR40 activation by

high FFAs promotes insulin secretion to store energy substrates.

Meanwhile, GPR40 activation stimulates glucagon secretion to

prevent hypoglycemia. Thus, the elevation of both insulin and

glucagon after GPR40 activation may be a mechanism to

harmonize between the uptake of energy in the forms of FFAs

and the prevention of hypoglycemia under the intake of HFD.
GPR40 and GI hormone secretion

GPR40 is expressed in L cells, and its activation stimulates

GLP-1 secretion, and the activation of Gaq/11-PLC-Ca2+

signaling pathway medicates GPR40-stimulated GLP-1

secretion (65). Some GPR40 agonists such as AM-1638 and

AM-5262 also activate Gas-AC-cAMP signaling pathway to

potentiate GLP-1 secretion (65). GPR40 is also expressed in I

cells in mouse small intestine, and GPR40 activation by LCFFAs

induces the secretion of CCK in mice. The GPR40 knockout in

mice leads to 50% reduction of linoleic acid-induced CCK

secretion (66, 67). The Gaq/11/-PLC-Ca2+ signaling pathway

mediates the effects of GPR40 activation on CCK secretion (66).
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Moreover, GPR40 is expressed in K cells and its agonists

stimulate GIP secretion (68, 69).

GLP-1, CCK and GIP regulate glucose metabolism through

multiple pathways. They potentiate insulin secretion by acting

directly on b-cells in a glucose-dependent manner (70).

Meanwhile, GLP-1 and CCK act on hypothalamus to inhibit

food intake, which is a negative feedback mechanism for

metabolic regulation (71). They also act on adipocytes. GLP-1

increases insulin sensitivity and promote fatty acid synthesis in

adipocytes (72). Meanwhile, GLP-1 stimulates brown adipose

tissue (BAT) thermogenesis and browning of white adipose

tissue (WAT), which accelerate energy production and

contributes to the lowering effects of GLP-1 on blood glucose

levels (73–77). CCK and GIP promote fat deposit in adipocytes

(78–81). The effect of CCK and GIP on fat deposit is a double-

edged sword affecting glucose metabolism. To a certain extent,

the induction of fat deposit may lower fatty acid levels and be

beneficial to glucose metabolism. However, in the long run, it

leads to obesity and insulin resistance and damage glucose

metabolism. The action of GI hormones on adipocytes may be

not involved in the acute regulation of blood glucose, but it may

regulate glucose homeostasis in the long-term by changing the

metabolic and secreting state of adipocytes.

Along with regulating adipocyte metabolism, GI hormones

modulate the expression of adipokines. GLP-1 inhibits leptin

expression in adipocytes. CCK antagonists increase leptin

secretion from adipocytes (82). The physiological and

pharmacological significance of GLP-1-inhibited leptin

expression remains uncertain (83). GLP-1 and CCK upregulate

adiponectin expression in adipocytes (33, 84, 85). Adiponectin

exerts protective effects against inflammation and enhances

insulin sensitivity in obese animals and humans (86, 87).

Adiponectin also regulates glucose metabolism by stimulating

fatty acids oxidation and glucose utilization in the skeletal

muscle (88). The upregulation of adiponectin expression is

suggested to be involved in GPR40-regulated glucose

metabolism (86).
GPR120 and glucose metabolism

GPR120 is expressed in adipocytes, EECs, pancreatic islet

cells, immune cells and pulmonary Clara cells (89). GPR120 was

first found as an orphan receptor and later was identified as a

FFA receptor in enteroendocrine L cells (7, 90). As shown in

Figure 3, the postprandial activation of GPR120 by LCFFAs

stimulates the secretion of GLP-1, CCK and GIP, with the

inhibition of ghrelin secretion. The GI hormones, directly or

indirectly though regulating the secretion of insulin and

adipokines, regulate glucose homeostasis by acting on liver,

skeletal muscle and CNS. GPR120 regulates the secretion of SS

and PP in islets and then may bring about paracrine regulation

of insulin and glucagon secretion. In addition, GPR120 regulates
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the function of adipocytes directly and indirectly viamodulating

the cytokine release from macrophages in adipose tissue. Thus,

GPR120 activation excites the G-P-A regulatory system and

regulates glucose metabolism.
GPR120 and GI hormone secretion

GPR120-deficient mice developed more severe obesity and

glucose intolerance when fed HFD compared with the wild type

(WT) mice (91). GPR120 activation promotes GLP-1 secretion

from enteroendocrine L cells in vitro (7). The increase in [Ca2+]i

and the activation of extracellular signal-regulated kinase

(ERK1/2) are involved in GPR120-stimulated GLP-1 secretion

(7). It was suggested that GLP-1 is responsible for the acute

blood glucose-lowering effects of GPR120 agonists (92).

However, other reports showed that GLP-1 secretion after fat

ingestion did not differ between WT mice and GPR120-

knockout mice (93, 94). In GPR120 and GPR40-double

knockout mice, GLP-1 secretion is not induced by oil

ingestion, indicating GPR120 and GPR40 are essential for fat-

induced GLP-1 secretion. These results also suggest that GPR40
Frontiers in Endocrinology 06
activation may compensate for the defect of GPR120 in

enteroendocrine L cells.

In intestine, GPR120 is also expressed in K cells and I cells, and

its activation stimulates the secretion of GIP and CCK (93, 95). It

has been known that FFAs stimulate CCK secretion in humans in

vivo. Knockdown of GPR120 expression significantly attenuates

FFA-induced CCK secretion (95), which indicates that GPR120

medicates the stimulatory effects of FFA on CCK secretion. Cellular

analysis in STC-1 cells and GLUTag cells indicates that FFAs

increase [Ca2+]i through the stimulation of intracellular Ca2+

release and extracellular Ca2+ influx (96). The activation of Gaq/
11-PLC signaling pathway and the resultant opening of monovalent

cation-specific transient receptor potential channel type 5 (TRPM5)

to increase [Ca2+]i are responsible for GPR120-induced CCK

secretion (97). GPR120 is expressed in K cells of the upper small

intestine and mediate FFAs-stimulated GIP secretion in mice (93).

Another study suggests that GPR120 activation stimulates CCK

secretion and CCK acts on the K cells to stimulate GIP secretion

(94, 98). Hormone secretion of endocrine cells such as K cells is

finely controlled by many signal molecules. Some signal molecules

are primary while the others are secondary, and they interrelate to

regulate hormone secretion coordinately. Although the mechanism
FIGURE 3

GPR120 regulates glucose metabolism via the G-P-A regulatory system. GPR120 activation after fat ingestion potentiates the secretion of GLP-
1, CCK and GIP with the inhibition of ghrelin. Meanwhile, GPR120 activation increases adiponectin secretion. The GI hormones and adiponectin
may act on CNS, liver and skeletal muscles to inhibit appetite, increase autonomous nerve activity, stimulate glycogen synthesis, and promote
glucose utilization. GPR120 regulates the secretion of SS and PP in islets, which may influence the secretion of insulin in a paracrine manner. In
addition, GPR120 regulates the function of adipocytes directly and indirectly via modulating the cytokine release from macrophages.
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of GPR120-regulated GIP secretion is inconclusive, it is clear that

GPR120 activation stimulates GIP secretion.

In stomach, GPR120 is expressed in ghrelin-secreting P/D1

cells, and its agonists inhibit ghrelin secretion in mice in vivo (99).

GPR120 activation inhibited ghrelin secretion by activating the

pertussis toxin-sensitive Gai/o protein and inhibiting cAMP-

mediated signaling pathways (100). Ghrelin is an orexigenic

protein and its blood level increases during fasting to motivate

ingestion. Ghrelin administration enhances appetite and increases

food intake in humans and in rodents (101, 102). The inhibition of

ghrelin secretion by GPR120 activation is suggested to be

postprandial negative feedback to stop ingestion, which

coordinates with the increase in the anorexigenic hormones such

as GLP-1, CCK and GIP to regulate glucose metabolism.

Since GLP-1 and CCK inhibit appetite while ghrelin

motivates ingestion, GPR120-induced changes in GI hormones

are proposed to reduce appetite (103). However, GPR120

knockout mice did not show significant changes in food

intake, indicating that GPR120 is physiologically dispensable

for appetite regulation (91, 104). GPR120 is expressed in

hypothalamus and maybe take part in unsaturated fatty acids-

induced improvement of hypothalamic inflammation in obesity

(105). Intracerebroventricular injection of GPR120 agonist

(TUG1197) exerts anti-inflammatory activity but has no effect

on body mass and caloric intake in 6-days treatment in obese

mice (106). In another study, chronic intracerebroventricular

injection of GPR120 agonist (GPR120 agonist III) also does not

affect the intake of HFD in 15-days treatment in normal-weight

mice (107). However, intracerebroventricular injection of

GPR120 agonist acutely inhibits food intake in 4 hours after

the administration (107). It is suggested that GPR120 plays a role

in hypothalamus, but its pharmacological regulation of appetite

remain to be fully investigated in the future.
GPR120 and adipocyte function

GPR120 is expressed in white adipose tissue including

subcutaneous and visceral WAT as well as BAT (108). In adipose

tissue, it is expressed both in adipocytes and in macrophages (109).

The expression level of GPR120 increases with the differentiation of

preadipocytes. It is previously considered that GPR120 is expressed

in mature adipocytes but not in preadipocytes. A study showed that

GPR120 is expressed in the ciliary structure of preadipocytes and

senses the extracellular FFAs and activate cAMP/EPAC (the

exchange protein activated by cAMP)/CTCF (CCCTC binding

factor) signaling pathway, which results in remodeling of

chromosome and promotion of expression of differentiation-

related genes (110). 3T3-L1 cells exhibit a low differentiation rate

when GPR120 is knocked down. Although GPR120-deficient mice

exhibit an obese phenotype, they have decreased differentiation of

adipocytes (91, 111). It is concluded that GPR120 activation in

adipose tissue promotes the differentiation of preadipocytes. The
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adipocyte differentiation and triglyceride accumulation may benefit

the decrease in blood glucose levels via the promotion of glucose

transformation to triglyceride. Meanwhile, GPR120 activation in

macrophages inhibits the release of inflammatory factors such as

interleukin-6 (IL-6), tumor necrosis factor-a (TNF-a) and

interleukin-1 (IL-1) to improve insulin sensitivity of adipocytes

(112, 113), which promotes glucose entry into adipocytes and

inhibits FFA release to favor the control of blood glucose (114,

115). Moreover, GPR120 activation promotes the browning of

WAT via stimulating the secretion of fibroblast growth factor 21

(FGF21), and GPR120-deficient mice have impaired browning of

WAT in response to cold exposure (116). The browning of WAT

increases the thermogenesis and benefits the control of postprandial

blood glucose levels. GPR120 is also highly expressed in BAT with

upregulation by cold exposure in mice. A study showed

that GPR120-deficient neonatal mice had reduced neonatal BAT

activity and thermogenesis (117). GPR120 agonists have been

shown to increase fatty acid uptake and oxidation, augment

mitochondrial respiration, and reduce fat mass in mice (118).

Thus, the promotion of thermogenesis is one mechanism of

GPR120-regulated glucose metabolism.
GPR120 and islet hormone secretion

In pancreatic islets, GPR120 is not expressed in b-cells and
a-cell. It is expressed in SS-secreting d-cells PP-secreting g-cells
(119–122). GPR120 activation inhibits SS secretion but

stimulates PP secretion in mouse islets (121, 122). The

pertussis toxin-sensitive Gai/o protein and its linked signaling

pathway are suggested to mediate GPR120-inhibited SS

secretion (121). The Gaq/11-PLC-Ca2+ signaling pathway is

indicated to mediate GPR120-stimulated PP secretion (122).

The physiological significance of this kind of cellular specificity

of GPR120 expression in islets remains to be demonstrated. A

recent study indicates the paracrine regulation of insulin

secretion via GPR120-inhibited SS secretion (119).
GPR43/GPR41 and
glucose metabolism

GPR43/GPR41 and hormone secretion

The SCFA receptor GPR43 and GPR41 are expressed in

pancreatic b-cells and enteroendocrine L cells. GPR43-deficient

mice showed a reduction of insulin secretion and developed more

severe glucose intolerance when fed HFD compared with WT mice

(123). GPR43 agonists increased insulin secretion viaGaq/11-PLC-
Ca2+ signaling pathway in murine and human islets (123). Thus,

GPR43 agonists directly act on b-cells to potentiate insulin secretion
and regulate glucose metabolism. In addition, GPR43 agonists

stimulate islet b-cell proliferation, and GPR43 deficiency caused a
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reduction in b-cell mass due to increased b-cell death (124). GPR43
agonists are suggested to enhance the compensatory capacity of b-
cells to insulin resistance, which makes them potential therapeutic

candidates for T2DM (123).

In contrary to GPR43, loss of GPR41 enhances glucose tolerance

in mice, and GPR41 overexpression has opposite effects (125). The

islets from GPR41-deficient mice have increased insulin secretion

under high glucose although the islets from GPR41-overexpressing

transgenic mice did not show significant changes in insulin secretion

under high glucose (125). GPR41 is coupled to the Gai/o subunit,

and its activation leads to the inhibition of AC activity and the

decrease in cAMP levels, which may be responsible for the reduction

of insulin secretion. Therefore, although bothGPR43 andGPR41 are

activated by SCFAs, they mediate opposite effects on insulin

secretion in b-cells. It is interesting to demonstrate the dominant

type of receptors and the net effect of SCFAs on insulin secretion.

GPR43/GPR41 double knockout improves glucose tolerance and

insulin secretion (126). It is suggested that GPR41 has a negative but

dominant effect over GPR43 and GPR43/GPR41 mediate a net

inhibition on insulin secretion under normal conditions.

GPR43 is expressed in enteroendocrine L cells and mediates

SCFAs-stimulated GLP-1 secretion in the mixed colonic cell

cultures in vitro and in vivo (127, 128). GPR43-deficient mice

show reduced SCFAs-induced GLP-1 secretion and impaired

glucose tolerance (127). Gaq/11-PLC-Ca2+ signaling pathway

was reported to mediate the effects of GPR43 activation on GLP-

1 secretion in L cells (127). Although GPR41 is expressed in

enteroendocrine L cells (129), its role in GLP-1 secretion

remains to be demonstrated.
GPR43/GPR41 and adipocyte function

GPR43 is expressed in adipocytes, but its role in adipocytes is

not clear (130). GPR43 expression levels in WAT are higher in

HFD-induced obese mice than in normal chow-fed mice. It was

reported that SCFAs treatment suppresses lipolysis in 3T3-L1

adipocytes and adipocytes isolated from mice adipose tissue and

that GPR43 knockdown inhibits adipogenesis (131). However,

another report showed that GPR43-deficient mice tend to

become obese easier when fed HFD than WT mice and

GPR43 overexpression in adipose tissue leads to the lean

phenotype in mice (132). Further studies are needed to

elucidate the role of GPR43 in white adipose tissue. As to

BAT, the other type of adipose tissue, GPR43-deficient old age

mice exhibit the increase in BAT activity and increased energy

expenditure, which may be responsible for the improved insulin

sensitivity in the mice (133). GPR43 mediates the stimulatory

effects of SCFAs on adipogenesis and mitochondrial biogenesis

in brown adipocytes (134). It is proposed that the stimulation of

BAT contributes to the lean phenotype of GPR43

overexpression. However, GPR43 expression in adipose tissue

is not different between obese patients and lean subjects, and
Frontiers in Endocrinology 08
GPR43 agonists do not induce the differentiation of human

preadipocytes isolated from omental adipose tissue (135). This

study indicates that a species difference has to be considered

between humans and mice in the study of GPR43 actions.

The role of GPR41 in regulating adipocytes function is also

unsettled. GPR41 expression was found in adipocytes, and its

activation stimulated leptin secretion from adipose tissues (136).

However, other studies did not detect GPR41 expression in mouse

adipose tissue, and the stimulation of leptin secretion by SCFA is

suggested to be mediated by GPR43 rather than GPR41 (137).

Male GPR41-deficient mice show higher body fat mass and

plasma leptin levels as well as higher glucose levels than WT

mice (138). Although this study does not resolve the controversial

about the expression of GPR41 in adipocytes, it demonstrates that

GPR41 surely regulates fat and glucose metabolism via direct or

indirect actions on adipocytes. Immune cells such as macrophages

distribute in adipose tissue and modulate adipocyte function via

paracrine signaling cytokines such as IL-6, IL-1, and TNF-a (139,

140). GPR41 and GPR43 are expressed in macrophages (141,

142). Therefore, the involvement of macrophages in the regulation

of fat accumulation and adipokine secretion in adipocytes may

complicate the observation of GPR43/GPR41-regulated

adipocyte function.
Differences between SCFAs AND LCFFAs
in metabolic regulation

SCFAs are very different to LCFFAs in characteristics and its

source in human body. SCFAs in humans are mainly obtained

from colon as the products of bacterial fermentation from

insoluble fiber and proteins but not from food intake (143,

144). Thus, the physiological significance of SCFAs in regulating

metabolism is surely different to LCFFAs. Although both SCFA

receptors and LCFFA receptor are involved in the regulation of

glucose metabolism through targeting the secretion of insulin

and GLP-1 as well as the function of adipocytes, they should

have distinct effects on glucose metabolism in physiological and

pathophysiological conditions. The details in differences of FFA

receptors in glucose metabolism in different metabolic states are

worth of further exploration.
Targeting FFA receptors for
drug development

The development of drugs targeting FFA receptors has been

going on for decades, and the earliest is the development of

GPR40 agonists for the treatment of T2DM. GPR40 agonist TAK-

875 exhibits the ability to improve blood glucose control in

patients with T2DM. However, it stopped in clinical trial III

because of its hepatotoxicity (145). The other GPR40 agonists

including LY2881835, AMG837, CPL207280, SCO-267, CPU-014
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and AM-1638 are in the pipeline of drug development for T2DM

treatment. Eli Lilly and Amgen initiated phase I/II clinical trials

with LY2881835 and AMG837, respectively (146). Interestingly,

GPR40 antagonists also have been developed for T2DM

treatment. GPR40 antagonist DC260126 inhibits LCFA-

stimulated increased in [Ca2+]i and protect b-cells against

palmitate-induced ER stress and cell apoptosis (147, 148).

GPR120 agonists have been shown to improve insulin

sensitivity in obese subjects. GPR120 agonist TUG-891 has

been indicated as therapeutic agent of diabetes and obesity (8,

146). The other GPR120 agonists including NCG75,

GSK137647A, AZ13581837 and CpdA all improve glucose

tolerance in HFD-induced obese mice by increasing insulin

sensitivity (146, 149, 150). Although a number of GPR120

agonists have been discovered, they have not moved to clinical

trials. The insufficiency in both the understanding of GPR120

biology and the discovery of specific agonists with efficient

effects in vivo may obstruct the development of drugs

targeting GPR120.

GPR43 not only regulates glucose metabolism but also plays

an important role in regulating immune function. GPR43

antagonists have been in development for anti-inflammation

(151, 152). Since patients of T2DM are in the state of

noninfectious microinflammation in multiple tissues such as

adipose tissue, heart and liver (153), it is proposed that GPR43

antagonists may improve T2DM through anti-inflammation.

GPR41 is also the therapeutic target for inflammatory diseases,

but the development of drugs targeting GPR41 is relatively few

compared with the other FFA receptors. There is still a long way

to go for the development of drugs targeting GPR43/GPR41 for

the treatment of metabolic diseases such as T2DM.
Conclusion and prospect

FFA receptors distribute in metabolism-related tissues to sense

the fluctuation in extracellular FFAs and then regulate glucose

metabolism through G-P-A regulatory system. The overlapping

distribution of different types of FFA receptors in intestine indicates

the importance of FFA receptors in nutrient sensing and metabolic

regulation. This phenomenon also suggests that different FFA

receptors may function differently and are distinguishingly

activated in different nutritional states such as food intake, fasting,

and obesity. Thus, the cells are able to response specifically to the

changes in the level and composition of blood FFAs, which ensures

the optimal fine-tuning of regulatory system for the maintenance of

metabolism homeostasis. To date, the research in FFA receptor

activation by different FFAs in vivo under different nutritional states

is deficient. In the future, the detailed analysis of FFA receptor

activation in different nutritional states will increase the

understanding of FFA-regulated metabolism.

The regulatory effects of ligand-receptor interaction depend

on not only the levels of ligands but also the levels of receptors.
Frontiers in Endocrinology 09
The changes in cellular expression of FFA receptors certainly

influence the actions of FFAs on metabolism. It was found that

HFD-induced obesity leads to the downregulation of GPR120 in

intestine and in pancreatic islets in mice (122, 154). Due to the

differentiation of adipocytes, GPR120 levels in subcutaneous fat

and omental fat are increased in obese human subjects compared

with those in lean subjects (91). However, morbidly obese

human subjects (BMI 54.0 ± 5.7 kg/m2) have lower GPR120

levels in visceral adipose tissue than nonobese subjects,

indicating that the enlarged adipocytes goes to the other side

for GPR120 expression (154). Demonstration of the expression

level of FFA receptors in different nutritional states is essential

for understanding their physiological and pathophysiological

role and the strategies to regulate metabolism through FFA

receptors. It is suggested that compounds that upregulate the

expression of FFA receptors may improve metabolic disorders

synergistically with FFA receptor agonists. A recent study shows

that PPAR-g agonist upregulates GPR120 expression in

adipocytes and synergistically enhances the effects of GPR120

agonists on metabolism (114). This study gives an example of

how-to strength FFA receptors-FFAs interaction to regulate

metabolism. More studies are expected to demonstrate the

regulatory mechanism of the expression of FFA receptors in

the future.
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