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Malignant and premalignant ocular surface tumors (OSTs) can be sight-threatening or even life-threatening if 
not diagnosed and treated promptly. Artificial intelligence holds great promise for the early detection of these 
diseases. However, training traditional convolutional neural networks (CNNs) for this task presents challenges 
due to the lack of large, well-annotated datasets containing OST images labeled according to histopathological 
results. Here, we introduce the ocular surface pretrained model (OSPM), a domain-specific pretrained model 
designed to address the scarcity of labeled data. OSPM is constructed utilizing self-supervised learning on 
approximately 0.76 million unlabeled ocular surface images from 10 clinical centers across China and can be 
readily adapted to the OST classification task. We then develop and evaluate an OSPM-enhanced classification 
model (OECM) using 1,455 OST images labeled with histopathological diagnoses to differentiate between 
malignant, premalignant, and benign OSTs. OECM achieves excellent performance with AUROCs ranging from 
0.891 to 0.993 on internal, external, and prospective test datasets, significantly outperforming the traditional 
CNN models. OECM demonstrated performance comparable to that of senior ophthalmologists and increased 
the diagnostic accuracy of junior ophthalmologists. Greater label efficiency was observed in OECM compared to 
CNN models. Our proposed model has high potential to enhance the early detection and treatment of malignant 
and premalignant OSTs, thereby reducing cancer-related mortality and optimizing functional outcomes.

Introduction

   Ocular surface tumors (OSTs) represent a large spectrum of con-
ditions, including benign lesions such as corneoconjunctival 

dermoid, premalignant lesions such as conjunctival intraepithe-
lial neoplasia (CIN), and life-threatening malignant lesions such 
as melanoma [  1 –  3 ]. These tumors, frequently encountered in 
the clinical practice of cornea specialists, ocular oncologists, and 
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comprehensive ophthalmologists [  2 ], typically originate from 
epithelial, stromal, caruncular, and other tissues [ 3 ,  4 ]. Notably, 
premalignant lesions may transform into malignant OSTs and 
malignant OSTs can lead to fatal metastases [ 1 , 2 ]. However, 
timely recognition and proper management of premalignant and 
malignant OSTs can improve the prognosis of patients, resulting 
in minimized cancer-related death and the most functionally 
satisfactory outcomes [ 2 ]. Therefore, accurately distinguishing 
the nature of OSTs at an early stage is paramount due to the 
substantial differences in their management.

   Malignant, premalignant, and benign OSTs sometimes have 
overlapping clinical presentations [ 4 ,  5 ]. Differentiating between 
them presents a clinical challenge and often requires experi-
enced ophthalmologists [ 2 , 4 ]. The challenge of this task is exac-
erbated by a worldwide shortage of ophthalmologists, especially 
in underdeveloped regions [  6 ]. Even in the United States, the 
total supply of full-time equivalent (FTE) ophthalmologists is 
projected to decline by 2,650 (12% drop) between 2020 and 
2035, while demand is expected to increase by 5,150 FTE oph-
thalmologists (24% rise), indicating 30% mismatch between 
supply and demand that equates to a workforce inadequacy [  7 ]. 
It is not practical to quickly solve this problem by increasing 
the training of ophthalmologists, as it takes at least 7 years to 
train an ophthalmic specialist [  8 ]. For this reason, it is urgently 
needed to develop an approach that can discriminate among 
malignant, premalignant, and benign OSTs in an automated 
fashion.

   Artificial intelligence (AI) holds great promise for wide-
spread application in medical practice [  9 –  11 ]. In ophthalmol-
ogy, AI has demonstrated great potential as a primary tool for 
first-line medical care, particularly in scenarios where ophthal-
mologists are not readily accessible [  12 –  14 ]. For instance, deep 
learning has shown robust performance in identifying diabetic 
retinopathy from fundus images [  15 ,  16 ], detecting keratitis 
from slit-lamp images [  17 ,  18 ], and recognizing wet age-related 
macular degeneration from optical coherence tomography 
images [  19 ,  20 ]. An automated deep learning model that can 
diagnose OSTs from ocular surface images may assist ophthal-
mologists in early discerning malignant and premalignant OSTs. 
However, the development of such an AI model has remained 
relatively underexplored.

   In this study, we aim to establish an AI-assisted system to facili-
tate the rapid and robust diagnosis of malignant, premalignant, 
and benign OSTs. For the classification task, traditional deep 
learning models generally require substantial quantities of labeled 
data for effective training [  13 ,  21 ]. However, OSTs are rare oph-
thalmic conditions, with malignant and premalignant OSTs being 
even more uncommon. The scarcity of OST images annotated 
based on histopathological results cannot meet such an exhaustive 
requirement. To address the challenge of limited labeled data, we 
developed a domain-specific pretrained model, the ocular surface 
pretrained model (OSPM), using large quantities of unlabeled 
data to learn ocular surface feature representations that could 
enhance OST classification. Specifically, we trained OSPM with 
self-supervised learning (SSL) on approximately 0.76 million 
unlabeled ocular surface images. We then adapted OSPM for the 
diagnostic classification of OSTs (malignant, premalignant, and 
benign) by fine-tuning it with labeled OST images and evalu-
ated the capability of the OSPM-enhanced classification model 
(OECM) on an external dataset of slit-lamp images. A dataset 
that included OST images captured by common digital cameras 
was utilized to verify the generalization ability of OECM. In 

addition, we conducted comparisons between OECM and models 
trained with other pretrained approaches, SSL methods, and con-
volutional neural network (CNN) architectures. Moreover, we 
compared the performance of OECM against ophthalmologists 
with various levels of expertise and explored the potential of 
OECM for assisting junior ophthalmologists in discriminating 
among malignant, premalignant, and benign OSTs.   

Results

Data characteristics for developing OSPM
   After excluding 4,132 poor-quality images, a total of 756,077 
unlabeled ocular surface images collected from 10 independent 
clinical centers across China were used to construct OSPM. 
Detailed information on the data from each clinical center is 
provided in Table  S1 .   

Data characteristics for developing OECM
   After excluding 666 OST images without histopathological 
results and 87 low-quality images, a total of 1,455 OST images 
from 840 patients [mean age, 43.6 years (range, 0.92 to 94), 
45.3% women or girls] were used to establish and evaluate 
OECM. Specifically, OECM was trained and internally assessed 
using 669 images from Ningbo Eye Hospital (NEH). Then, it 
was externally evaluated on 298 images from the Eye Hospital 
of Wenzhou Medical University (EHWMU) and 351 images 
from Jiangdong Eye Hospital (JEH). Furthermore, OECM was 
assessed on 137 images prospectively acquired at NEH. The 
details of the datasets used for OECM development and evalu-
ation are listed in Table  S2 .

   The top 3 benign OSTs in our datasets are dermoid (179/914, 
19.6%), nevus (167/914, 18.3%), and conjunctival cyst (149/914, 
16.3%). Other benign OSTs, such as squamous epithelial papil-
loma, account for 45.8% (419/914). The top 3 malignant OSTs are 
squamous cell carcinoma (137/346, 39.6%), conjunctival lym-
phoma (73/346, 21.1%), and carcinoma in situ (CIS) (65/346, 
18.8%). Other malignant OSTs, such as conjunctival melanoma, 
account for 20.5% (71/346). Our datasets contain 3 types of pre-
malignant OSTs: primary acquired melanosis with atypia (149/195, 
76.4%), CIN (37/195, 19.0%), and actinic keratosis (9/195, 4.6%).   

Performance of OSPM and other pretrained models
   Among all pretrained models, the performance of OSPM and 
SSL-OS (ocular surface) ranked in the top 2 in all datasets (Fig.  1 ). 
Specifically, in the internal test set, OSPM achieved area under 
the receiver operating characteristic curves (AUROCs) of 0.986 
[95% confidence interval (CI): 0.967 to 0.998], 0.977 (95% CI: 
0.951 to 0.996), and 0.993 (95% CI: 0.980 to 1.000) for the iden-
tification of malignant, premalignant, and benign OSTs, respec-
tively, similar to those of SSL-OS (all P > 0.05). In the EHWMU 
dataset (external evaluation), OSPM attained AUROCs of 0.959 
(95% CI: 0.931 to 0.981), 0.960 (95% CI: 0.919 to 0.991), and 
0.957 (95% CI: 0.928 to 0.980) for the identification of malignant, 
premalignant, and benign OSTs, respectively, comparable to 
those of SSL-OS (all P > 0.05). In the JEH dataset (external evalu-
ation), OSPM reached AUROCs of 0.927 (95% CI: 0.892 to 
0.959), 0.891 (95% CI: 0.797 to 0.963), and 0.940 (95% CI: 0.910 
to 0.965) for the identification of malignant, premalignant, and 
benign OSTs, respectively, significantly better than those of 
SSL-OS (all P < 0.001). In the prospective test dataset, OSPM 
achieved AUROCs of 0.945 (95% CI: 0.898 to 0.982), 0.887 (95% 
CI: 0.749 to 0.990), and 0.965 (95% CI: 0.931 to 0.990) for the 
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Fig. 1. Performance of models using different pretraining approaches for the detection of malignant, premalignant, and benign ocular surface tumors (OSTs). (A) Internal 
test. Models are internally evaluated on OST images captured by slit-lamp imaging at Ningbo Eye Hospital (NEH). (B) External test. Models are externally evaluated on OST 
images captured by slit-lamp imaging at the Eye Hospital of Wenzhou Medical University (EHWMU). (C) External test. Models are externally evaluated on OST images captured 
by common digital cameras at Jiangdong Eye Hospital (JEH). (D) Prospective test. Models are prospectively evaluated on OST images captured by slit-lamp imaging at NEH. 
All models utilize different pretraining approaches but share the same architecture and fine-tuning processes for downstream tasks. The performance of OSPM is compared 
with the most competitive model to assess the presence of a statistically significant difference. AUROC, area under the receiver operating characteristic; PTD, prospective 
test dataset; MOST, malignant ocular surface tumor; POST, premalignant ocular surface tumor; BOST, benign ocular surface tumor; OSPM, ocular surface pretrained model; 
SSL, self-supervised learning; SL, supervised learning.
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identification of malignant, premalignant, and benign OSTs, 
respectively, which were significantly better than those of 
SSL-OS, except for premalignant OSTs (all P < 0.001). The area 
under the precision–recall curve (AUPRC) results and corre-
sponding confusion matrices of the models in these datasets are 
shown in Figs.  S1  and  S2 , respectively. Further information on 
sensitivities, specificities, accuracies, and AUPRCs of the models 
is shown in Tables  S3  to  S6 . Overall, OSPM outperformed other 
pretrained models in screening for malignant and premalignant 
OSTs. The unweighted Cohen’s κ values for the OSPM-based 
classification model, when compared to the reference standard 
of the internal test set, EHWMU dataset, JEH dataset, and pro-
spective test dataset, were 0.834 (95% CI: 0.736 to 0.932), 0.771 
(95% CI: 0.702 to 0.839), 0.781 (95% CI: 0.717 to 0.845), and 
0.840 (95% CI: 0.758 to 0.923), respectively.           

Performance of different SSL approaches
   In the OSPM framework, we investigated the performance of 
various SSL approaches, including masked autoencoder, DINO, 
EVA, and iBOT. As illustrated in Fig.  2  and Figs.  S3  and  S4 , the 
masked autoencoder, the main SSL strategy in the OSPM frame-
work, significantly outperformed other approaches in the major-
ity of OST detection tasks. A detailed listing of all quantitative 
results can be found in Tables  S7  to  S10 .           

OECM versus CNN models
   Compared to CNN models, OECM demonstrated superior per-
formance across all datasets (Fig.  3 ). For example, on discrimi-
nating malignant OSTs from premalignant and benign OSTs, 
OECM achieved AUROC of 0.986 (95% CI: 0.967 to 0.998), 0.959 
(95% CI: 0.931 to 0.981), 0.927 (95% CI: 0.892 to 0.959), and 
0.945 (95% CI: 0.898 to 0.982), respectively, in the internal test, 
EHWMU, JEH, and prospective test datasets, significantly out-
performing ConvNeXt and DenseNet121 (all P < 0.001). OECM 
also achieved consistently high performance in the detection 
of premalignant and benign OSTs. In terms of AUPRC, OECM 
significantly outperformed the CNN models (Fig.  S5 ). The con-
fusion matrices of the models in these datasets are shown in Fig. 
 S6 . A detailed listing of all quantitative results is presented in 
Tables  S11  to  S14 . In the JEH external test set (OST images cap-
tured by common digital cameras instead of slit-lamp imaging), 
both OECM and traditional CNN models showed varying 
degrees of performance degradation, with AUROCs ranging 
from 0.694 to 0.940. It is worth noting that among these models, 
OECM has the smallest performance drop.        

   As depicted in Fig.  S7 , all models exhibited similar conver-
gence speeds, with training loss stabilizing after 22 epochs. 
Notably, OECM achieved a lower final training loss than those 
of the 2 traditional CNN models.   

Label efficiency of OECM and CNN models
   As shown in Fig.  4 , OECM exhibited higher label efficiency than 
that of CNN models in identifying malignant, premalignant, 
and benign OSTs. In detecting malignant OSTs, OECM outper-
formed CNN models with only 35% to 57% of the labeled train-
ing data, indicating its potential to address the challenges of 
limited data availability. OECM also demonstrated superior 
label efficiency in detecting both premalignant and benign 
OSTs. In addition, the training efficiency (defined as the epochs 
necessary for the model to reach training convergence) of 
OECM was higher than that of the CNN models, indicating that 

OECM required fewer epochs to adapt to the downstream task 
(Fig.  S8 ). To be specific, OECM can reduce the number of train-
ing epochs by 10 to 13 to reach convergence in differentiating 
between malignant, premalignant, and benign OSTs.           

Classification errors of OECM
   The comparative analysis revealed a discordance between the 
OECM outputs and the reference standard in 101 of 889 images 
(11.4%) across all 3 validation datasets (internal, external, and 
prospective). In the class of malignant OSTs (241 images), 14 
images (5.8%) were misclassified by OECM as premalignant 
tumors, and 14 images (5.8%) were misclassified as benign 
tumors. For the malignant OSTs incorrectly classified as prema-
lignant, 50.0% (7/14) images are CIS located at the limbus. These 
cases share similar features with CIN, which may have contrib-
uted to the misclassification. For the malignant OSTs misclas-
sified as benign, 57.1% (8/14) of the images show tumors located 
at the conjunctival fornix with inadequate exposure. In the class 
of premalignant OSTs (112 images), 12 images (10.7%) were 
misclassified by OECM as malignant tumors, and 6 images 
(5.4%) were misclassified as benign tumors. For the premalig-
nant OSTs misclassified as malignant, 58.3% (7/12) of the images 
show CIN with features similar to CIS. For the premalignant 
OSTs misclassified as benign, the most common reason is the 
presence of a small tumor near the limbus, observed in 50.0% 
(3/6) of the images. In the class of benign OSTs (536 images), 
26 images (4.9%) were misclassified by OECM as malignant 
tumors and 29 images (5.4%) were misclassified as premalignant 
tumors. For the benign OSTs incorrectly classified as malignant, 
more than half of the images (65.4%, 17/26) show conjunctival 
hyperemia around the tumor. For the benign OSTs misclassified 
as premalignant, 51.7% (15/29) of the images show relatively 
large tumors near the inner or outer canthus. Representative 
examples of misclassified images are presented in Fig.  S9 .

   As depicted in Fig.  S10 , a strong inverse relationship was 
observed between the predicted probability scores of the OECM 
and the corresponding classification error rates. The figure 
demonstrates that both the error rates for individual categories 
and the total classification error rate rise as the predicted prob-
abilities diminish. When the predicted probabilities exceed 
0.87, the misclassification rates of malignant and premalig-
nant OSTs are around 10%, while the misclassification rate 
of benign OSTs is approximately 5%. The analysis revealed 
that classification error rates exceeded 20% when predicted 
probabilities fell below 0.6. As a 3-class classifier, OECM main-
tains a minimum predicted probability threshold of >0.33 for 
all outputs.   

Interpretability of OSPM and OECM
   To understand the mechanisms behind OSPM’s superior per-
formance and label efficiency in the OST classification task, 
qualitative analyses were conducted on the pretext task utilized 
for self-supervised pretraining, as well as on the task-specific 
decisions made by OSPM. The pretext task in OSPM enables 
models to capture the distinct context of the ocular surface, 
integrating knowledge of both anatomical structures and lesions. 
As depicted in Fig.  5 A, OSPM successfully reconstructed key 
anatomical structures (such as the cornea and conjunctiva) and 
tumors, even with 75% of the ocular surface image masked. This 
illustrates that OSPM has acquired the ability to discern and 
infer representations of disease-related regions through SSL, 
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thereby improving both classification performance and label 
efficiency in OST diagnosis. Furthermore, to generate interpre-
table visual explanations of the OECM’s classification decisions 

for malignant, premalignant, and benign OSTs, we employed 
the RELPROP technique to create discriminative heatmaps. 
These heatmaps consistently highlighted tumor regions in the 

Fig. 2. Performance of models using different SSL approaches for the detection of malignant, premalignant, and benign OSTs. (A) Internal test. Models are internally evaluated 
on OST images captured by slit-lamp imaging at NEH. (B) External test. Models are externally evaluated on OST images captured by slit-lamp imaging at the EHWMU. 
(C) External test. Models are externally evaluated on OST images captured by common digital cameras at JEH. (D) Prospective test. Models are prospectively evaluated 
on OST images captured by slit-lamp imaging at NEH. Models pretrained with different SSL approaches, including masked autoencoder (MAE), DINO, EVA, and iBOT, undergo 
the same fine-tuning processes for downstream tasks. The performance of the OSPM, pretrained with MAE, is compared with the most competitive model to assess the 
presence of a statistically significant difference.
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images, regardless of their location, shape, or size. Representative 
heatmap visualizations for malignant, premalignant, and benign 
OSTs are shown in Fig.  5 B.           

OECM versus ophthalmologists
   We conducted a comparative evaluation of the OECM against 
practicing ophthalmologists using a balanced contest dataset 

Fig. 3. Performance comparison of the OSPM-enhanced classification model (OECM) and CNN models in detecting malignant, premalignant, and benign OSTs. (A) Internal test. Models 
are internally evaluated on OST images captured by slit-lamp imaging at NEH. (B) External test. Models are externally evaluated on OST images captured by slit-lamp imaging at the 
EHWMU. (C) External test. Models are externally evaluated on OST images captured by common digital cameras at JEH. (D) Prospective test. Models are prospectively evaluated on OST 
images captured by slit-lamp imaging at NEH. The performance of OECM is compared with the most competitive model to assess the presence of a statistically significant difference.

https://doi.org/10.34133/research.0711
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consisting of 150 images randomly selected from external test 
datasets (50 malignant, 50 premalignant, and 50 benign OSTs). 
Four board-certified ophthalmologists participated in the study, 

stratified into 2 experience-based groups: junior (6 to 15 years 
of clinical experience) and senior (16 to 25 years of clinical 
experience) practitioners.

Fig. 4. Label efficiency of the OECM and CNN models in detecting malignant, premalignant, and benign OSTs. Label efficiency refers to the quantity of labeled training data 
required to achieve optimal performance for a specified downstream task. The dashed gray line indicates the disparity in training data between OECM and the most competitive 
CNN model used for comparison. (A) Label efficiency of the models on the NEH dataset. (B) Label efficiency of the models on the EHWMU dataset. (C) Label efficiency of the 
models on the JEH dataset. (D) Label efficiency of the models on the prospective test dataset.

https://doi.org/10.34133/research.0711
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   Overall, OECM demonstrated significantly better diagnos-
tic performance than junior ophthalmologists while achiev-
ing non-inferior results compared to senior specialists in OST 
classification. The comprehensive performance comparison 
between OECM and the ophthalmologists is detailed in Table 
 S15 . Additionally, we leveraged predicted errors, based on 

penalty scores (Fig.  6 D and E), to create a metric to assess 
and compare performance between OECM and the ophthal-
mologists. OECM yielded a weighted error of 14.7% com-
pared to a range of weighted errors from the ophthalmologists, 
which varied from 13.7% to 42.9%, with a mean of 28.2% 
(Fig.  6 D).        

Fig. 5. Visual interpretation of the OSPM and the OECM. (A) Reconstructed ocular surface images from highly masked photographs in the pretext task. Despite the limited 
visibility of the patches, OSPM successfully infers ocular surface anatomical structures (e.g., the cornea and conjunctiva), as well as tumors, which serve as markers for the 
subsequent classification task. (B) Heatmaps highlighting the regions that contribute most to the decisions made by OECM. The tumor areas in the images, irrespective of 
their location, shape, or size, are detected and utilized for classification.

https://doi.org/10.34133/research.0711
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   To evaluate OECM’s potential as a diagnostic decision-
support tool, we provided junior ophthalmologists with the 
model’s probability outputs (Fig.  S11 ) for each test image and 
assessed subsequent performance improvements. To avoid a 
potential memorization bias, the follow-up OECM-assisted 
diagnostic test conducted by the ophthalmologists was sched-
uled 4 weeks after the initial test. With the aid of OECM, the 
performance of the junior ophthalmologists showed a marked 
enhancement over their previous results, as illustrated in Fig. 
 6 . Specifically, the assistance of OECM significantly increased 
the accuracies of junior ophthalmologist 1 in identifying pre-
malignant and benign OSTs (P < 0.05) and improved the accu-
racies of junior ophthalmologist 2 in detecting malignant and 
premalignant OSTs (P < 0.05), as presented in Table  S15 .    

Discussion
   This study was designed to develop a robust AI-based diagnos-
tic system for detecting malignant and premalignant OSTs 
from ocular surface images captured using multiple commer-
cial digital cameras. The key finding of this study was that our 
OECM, built upon OSPM—a novel SSL-based domain-specific 
pretrained model established using 0.76 million unlabeled ocu-
lar surface images from 10 independent clinical centers across 

China—demonstrated excellent performance in the OST clas-
sification task. In external and prospective test datasets, the 
sensitivities for identifying malignant and premalignant OSTs 
ranged from 80.0% to 90.9%, while the specificities ranged from 
91.9% to 95.9%, demonstrating the robustness of OECM. In 
addition, the unweighted Cohen’s κ coefficients indicated sub-
stantial agreement (all κ > 0.77) between OECM classifications 
and the reference standard, confirming the system’s diagnostic 
reliability. Given its reliable performance, OECM has the poten-
tial to assist ophthalmologists in the early detection of malig-
nant and premalignant OSTs, thereby facilitating timely medical 
intervention.

   The OSPM-based model (OECM) and the SSL-OS-based 
model ranked in the top 2 across all datasets for discriminating 
among malignant, premalignant, and benign OSTs (Fig.  1 ). 
Both OSPM (which applied SSL to natural and ocular surface 
images) and SSL-OS (which used SSL exclusively on ocular 
surface images) were fine-tuned using labeled OST images cap-
tured via slit-lamp imaging. In the NEH internal test dataset 
and the EHWMU external test dataset, both comprising slit-
lamp images, these 2 models demonstrated comparable per-
formance in the OST classification task. However, in the JEH 
external dataset, which consists of OST images acquired using 
standard digital cameras, the OSPM-based classification model 

Fig. 6. Diagnostic performance comparisons between the OECM and ophthalmologists. (A to C) Performance of OECM and 4 ophthalmologists (2 junior and 2 senior). Receiver 
operating characteristic (ROC) curves for identifying the different types of OSTs. Filled dots represent the performance of junior and senior ophthalmologists, while hollow 
dots depict the performance of junior ophthalmologists assisted by OECM. Dashed lines connect the performance metrics of each junior ophthalmologist in pairs. (A) ROC 
curve for the diagnosis of MOST versus other categories. (B) ROC curve for the diagnosis of POST versus other categories. (C) ROC curve for the diagnosis of BOST versus 
other categories. (D) Weighted errors calculated using penalty scores. (E) Penalty scoring matrix. (F to I) Confusion matrices of 3-category classification. (F) Confusion 
matrix representing the average performance of 2 junior ophthalmologists. (G) Confusion matrix representing the average performance of 2 junior ophthalmologists with 
OECM assistance. (H) Confusion matrix representing the average performance of 2 senior ophthalmologists. (I) Confusion matrix representing the performance of OECM.
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demonstrated significantly superior performance compared to 
the SSL-OS-based model. This result illustrates that incorporat-
ing natural images along with ocular surface images for SSL 
can improve the model’s adaptability to heterogeneous capture 
devices.

   In the JEH external test set, both the OECM and traditional 
CNN models exhibited varying levels of performance degrada-
tion, with AUROCs ranging from 0.694 to 0.940 (Table  S13 ). 
Notably, the OECM model experienced the smallest decline 
in performance among the models tested. This indicates that 
OECM demonstrates superior generalization and broader rec-
ognition capabilities compared to traditional AI approaches 
that rely on CNNs trained with supervised learning methods.

   Compared to the CNN models, OECM demonstrated higher 
label efficiency in identifying malignant, premalignant, and 
benign OSTs (Fig.  4 ). Specifically, OECM achieved better per-
formance than the CNN models while using only 35% to 50% 
of the labeled training data, highlighting its potential to over-
come the challenges associated with limited data availability. In 
addition, the training efficiency of OECM was also superior to 
that of the CNN models. This illustrates that OECM can decrease 
the number of training epochs by 10 to 13 to achieve conver-
gence in the OST classification task (Fig.  S8 ), particularly when 
utilizing optimization techniques such as early stopping.

   OECM sustained competitive performance in the OST clas-
sification task, even when different contrastive SSL methods were 
integrated into the framework (Fig.  2  and Fig.  S3 ). The masked 
autoencoder outperformed other approaches such as DINO, EVA, 
and iBOT. The comparative analysis demonstrated that the ocular 
surface-specific representations learned through masked autoen-
coding—which effectively encoded anatomical structures (cornea, 
conjunctiva) and pathological features (tumors) (Fig.  5 A)— 
provided critical discriminative power for differentiating between 
malignant, premalignant, and benign OSTs.

   To assess the clinical performance of OECM, we compared 
it with ophthalmologists of varying experience levels. Our find-
ings demonstrated that the OECM achieved diagnostic parity 
with senior ophthalmologists while significantly enhancing the 
accuracy of junior ophthalmologists (Fig.  6 ). This dual capability 
positions the OECM as a valuable decision-support tool, poten-
tially enhancing diagnostic efficiency in overburdened health-
care systems requiring rapid diagnostic triage and in underserved 
regions with limited access to specialist ophthalmologists.

   Although OECM demonstrated robust performance, mis-
classifications were still observed. Quantitative analysis revealed 
a negative correlation between OECM’s predicted probabilities 
and misclassification rates, indicating that cases with lower 
confidence scores had substantially higher likelihood of diag-
nostic error (Fig.  S10 ). Therefore, cases with low predicted 
probability scores (<0.6) should be flagged for physician review 
to ensure diagnostic accuracy. An optimal AI diagnostic system 
should minimize both false positives and false negatives while 
preserving clinical utility. Further research is warranted to elu-
cidate the mechanisms underlying errors and to refine model 
performance.

   Recently, Yoo et al. [  22 ] trained a model using low-shot deep 
learning to identify patients with conjunctival melanoma, nevus, 
pterygium, and normal conjunctival based on 398 raw ocular 
surface images and 400 synthetic images created through gen-
erative adversarial networks. The accuracy of the model reached 
87.5% in this 4-class classification task. Since their model was 
specifically optimized for conjunctival melanoma detection, its 

generalizability to other malignant OSTs may be limited. Taki 
et al. [  23 ] developed an intelligent system named CorneAI, 
which was based on the YOLO V5 architecture and used 357 
anterior segment images to detect corneal diseases, including 
corneal tumors. Although the positive predictive value of 
CorneAI in detecting corneal tumors was 0.77, it cannot dif-
ferentiate the nature of the tumor. Compared to previous stud-
ies, our research presents several important features. First, to 
our knowledge, we developed the first SSL-based domain-spe-
cific model, OSPM, using over half a million unlabeled ocular 
surface images and leveraged it to enhance the OECM in dis-
tinguishing malignant, premalignant, and benign OSTs. The 
ground-truth labels for all images in the OECM development 
dataset were obtained from definitive histopathological diagno-
ses. OECM presented robust performance in images collected 
from multiple clinical centers using various imaging devices. In 
addition, OECM performed effectively on images captured with 
ordinary digital cameras. This denotes that OECM can be used 
with such cameras, providing a cost-effective and convenient 
way for high-risk groups to proactively detect malignant and 
premalignant OSTs through self-photography. Third, we con-
firmed that OECM exhibited higher label efficiency and training 
efficiency compared to the CNN models. This indicates that 
OECM may substantially reduce the manual annotation work-
load for specialists, perform well in tasks with limited data, and 
offer excellent fine-tuning efficiency. Fourth, we validated that 
OECM improved junior ophthalmologists’ ability to differenti-
ate OSTs, which may lead to more rapid and effective treatment 
planning for premalignant and malignant cases.

   The current study has several limitations. First, OECM was 
developed using data from Chinese cohorts. Its effectiveness 
in other racial populations needs further verification. Additional 
training with data from diverse demographic cohorts could 
enhance the model’s performance across a wider range of popu-
lations. Moreover, the human–AI comparative analysis was 
limited to single-image evaluations, which offer substantially 
less diagnostic information than comprehensive clinical assess-
ments that incorporate patient history and physical examina-
tion. However, this experimental design intentionally matched 
the informational constraints of OECM, thereby enabling a 
rigorous, controlled comparison between human and AI per-
formance under equivalent conditions. Future research could 
explore the development of multimodal AI systems incorporat-
ing clinical history, comprehensive examination findings, and 
diverse imaging modalities to improve diagnostic precision.

   In conclusion, our study developed OECM that showed 
excellent performance and broad generalizability in distinguish-
ing between malignant, premalignant, and benign OSTs. As a 
preliminary screening tool, OECM could potentially be deployed 
with both specialized slit-lamp cameras and ordinary digital 
cameras, enabling the early detection of malignant and prema-
lignant OSTs. This approach may help patients receive timely 
referrals and effective medical interventions, reducing cancer-
related mortality and maximizing functional outcomes.   

Methods

Study approval
   Our study protocol received ethical approval from the NEH 
Ethics Committee (identifier, 2022-49K-SB34) and was under-
taken in accordance with the Declaration of Helsinki guidelines. 
All photographic data (file sizes: 0.2 to 9 MB per image) were 
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stripped of any patient-related information before researchers 
accessed them. The NEH Ethics Committee granted a waiver 
for informed consent for the use of retrospectively collected 
images, whereas informed consent was secured for images col-
lected prospectively. The study was conducted in compliance 
with the CONSORT-AI extension guidelines, the recently devel-
oped standards for AI-related clinical research [  24 ].   

Datasets
   For the development of OSPM, we used 756,077 unlabeled ocular 
surface images that were retrospectively collected from 10 clini-
cal centers across China using a variety of imaging devices. For 
the establishment of OECM, we utilized 1,455 OST images that 
were labeled according to definitive histopathological confirma-
tion. The images were acquired across multiple clinical environ-
ments (outpatient, inpatient, and surgical settings), exhibiting 
natural variations in illumination and background conditions 
that enhanced the dataset’s diversity and clinical representative-
ness. Images were considered low quality if they met any of the 
following criteria: (a) more than one-fifth of the ocular surface 
was covered by the eyelids; (b) the image was not focused on the 
ocular surface; or (c) more than one-fifth of the ocular surface 
appeared blurred due to misalignment with the imaging plane. 
All low-quality images were initially excluded from the study by 
our previously established AI-based image quality monitoring 
system [  25 ]. Detailed information on datasets utilized in this 
study is described in Tables  S1  and  S2 .   

OSPM development
   Data preprocessing was conducted prior to the development 
of OSPM. First, we resized all unlabeled slit-lamp images to 
224 × 224 pixels using cubic interpolation. Next, to enhance the 
diversity of the training dataset, mitigate bias, and improve the 
model’s generalization capability, we applied identical data aug-
mentation techniques used for masked autoencoder training 
[  26 ] to all images, including (a) random resized cropping, 
(b) horizontal flipping, and (c) pixel value normalization.

   We developed OSPM using a unique configuration of the 
masked autoencoder, consisting of both an encoder and a 
decoder. The architecture of OSPM is illustrated in Fig.  S12 . The 
encoder architecture utilized a large vision Transformer (ViT-
large) comprising 24 transformer blocks with 1,024-dimensional 
embeddings, while the decoder implemented a smaller variant 
(ViT-small) with 8 transformer blocks and 512-dimensional 
embeddings. Unmasked 16 × 16 pixels were transformed by the 
encoder into 1,024-dimensional latent space vectors. The 24 
Transformer blocks, each containing multi-head self-attention 
mechanisms and multilayer perceptrons (MLPs), progressively 
transformed these feature vectors into higher-level representa-
tions. In the decoding phase, masked placeholder patches were 
combined with the encoded high-level features, which were then 
transformed through a linear projection layer to reconstruct the 
image patches. The training objective focused on reconstructing 
ocular surface images from heavily masked inputs, challenging 
the model to recover morphological details from limited visual 
information. The detailed parameter settings for developing 
OSPM are provided in Table  S16 . We preserved the network 
weights from the concluding epoch as the reference checkpoint 
for transfer learning to downstream applications (i.e., construc-
tion of the OSPM-enhanced model for discriminating among 
malignant, premalignant, and benign OSTs). Six NVIDIA Tesla 
A40 GPUs (44 GB each) were used to develop OSPM.   

Construction of OECM
   The reference standard for each OST image used in OECM 
development is determined by an unequivocal histopathologi-
cal diagnosis. All cases were classified by the study steering 
committee according to the latest World Health Organization 
(WHO) diagnostic criteria (5th edition, 2023) [  27 ], establishing 
3 diagnostic categories: (a) malignant OSTs, (b) premalignant 
OSTs, and (c) benign OSTs. Malignant OSTs included squa-
mous cell carcinoma, conjunctival melanoma, conjunctival lym-
phoma, etc. Premalignant OSTs encompassed CIN, primary 
acquired melanosis with atypia, conjunctival actinic keratosis, 
etc. Benign OSTs comprised conjunctival squamous papilloma, 
nevus, conjunctival epithelial cyst, etc.

   In constructing OECM for identifying malignant, prema-
lignant, and benign OSTs, we only utilized the encoder of the 
OSPM, which could create high-level features from ocular sur-
face images. These features were fed into an MLP, which then 
outputted the probability for each disease category. The final 
diagnostic classification was assigned based on the highest pre-
dicted probability among all candidate categories. The details 
of OECM are described in Fig.  7 .        

   For OECM development, we randomly allocated the OST 
images from the NEH dataset following a stratified 70:15:15 
ratio for training, validation, and internal testing respectively. 
The data splitting was performed at the patient level to prevent 
any potential data leakage. All model training was conducted 
on a computational cluster equipped with 4 NVIDIA GeForce 
RTX 3090 GPUs (CUDA 11.3) supported by an Intel Xeon Gold 
6248R CPU (3.00 GHz). All computational operations were 
performed within an Ubuntu 20.04 LTS environment equipped 
with 754 GB of system memory. Each input image was prepro-
cessed and standardized to a resolution of 224 × 224 pixels. The 
same data augmentation procedures used in OSPM develop-
ment were applied to enhance training dataset diversity. The 
model was trained for 50 epochs with a batch size of 32. Model 
optimization was performed using stochastic gradient descent 
with an initial learning rate of 0.01 and a weight decay coeffi-
cient of 1 × 10−4. The model was evaluated on the validation 
set after every epoch, with weights corresponding to the peak 
AUROC retained as the optimal checkpoint.

   The performance of OECM was assessed on OST images cap-
tured by digital slit-lamp imaging at EHWMU and on OST 
images captured by common digital cameras at JEH. These 2 
external datasets provided a stringent test of the OECM’s gener-
alization ability, as they included images from different patients, 
imaging conditions, and devices not encountered in the develop-
ment dataset. We performed a prospective pilot study at NEH 
between June 2024 and October 2024 to further evaluate the 
performance of OECM in a clinical setting. The development 
and evaluation workflow of OECM is shown in Fig.  S13 .   

Performance of different pretrained models
   We compared the performance of OSPM with 3 other pretrained 
models: SL-ImageNet, SSL-ImageNet, and SSL-OS. Despite 
varying pretraining approaches, all models had the same struc-
ture and downstream task fine-tuning procedures. SL-ImageNet 
utilized supervised pretraining on ImageNet-1k (1.3 million 
labeled natural images), whereas SSL-ImageNet employed SSL 
on the same dataset without labels. In contrast, SSL-OS applied 
self-supervised pretraining directly to ocular surface images. 
OSPM initialized with SSL-ImageNet weights before fine-tuning 
on ocular surface images, mirroring the 2-stage self-supervised 
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pretraining approach (natural images followed by domain-
specific images). The pretraining process of each model is illus-
trated in Fig.  S14 .   

Comparison between different SSL approaches
   To investigate the performance of utilizing different SSL app-
roaches, we modified the OSPM architecture by integrating 
DINO, EVA, and iBOT as alternative SSL strategies, replacing 
the baseline masked autoencoder. This step generated a range 
of variations of the pretrained model for comparative analysis. 
The network architectures and hyperparameters were adopted 
from the respective original studies to ensure the optimal per-
formance of each contrastive learning method. The models 
were initialized with ImageNet-1k pretrained weights, followed 
by contrastive learning-based pretraining on 760,000 unlabeled 
ocular surface images. Subsequently, we applied the same fine-
tuning protocol used for the masked autoencoder to adapt these 
pretrained models for the OST classification task.   

Performance comparison of OECM with CNN models
   In recent years, CNNs have shown remarkable performance in 
disease diagnosis from medical images [ 13 ]. A comparative 
performance analysis was conducted between OECM and other 
CNN architectures using both internal and external test sets. 
We used ConvNeXt and DenseNet121, pretrained using super-
vised learning on ImageNet-1k (approximately 1.3 million labeled 
natural images), as representative models.   

Label efficiency comparison between OECM and  
CNN models
   Label efficiency quantifies the minimum amount of annotated 
training data required to achieve optimal performance on a target 
task, directly reflecting the annotation burden on clinical experts 
[  28 ]. To demonstrate the superior label efficiency of OECM in OST 
classification, we compared it with that of CNN models (ConvNeXt 
and DenseNet121) on both internal and external test sets.   

Interpretations for OECM
   To ensure that human experts trust OECM, a transparent deci-
sion-making process is essential in clinical practice. RELPROP 
[  29 ], a technique that employs layer-wise relevance propagation 
to calculate and integrate relevance scores for each attention 
head across the attention graph, was used to provide promising 
explanations for model decisions. As a result, a heatmap of 
attention was generated to highlight the regions that OECM 
referenced when performing OST classification.   

Misclassification by OECM
   We conducted a post hoc evaluation of OECM’s performance, 
enumerating misclassified images by OST type and analyzing 
the nature of classification errors. To elucidate these discrepan-
cies, we systematically analyzed image characteristics under-
lying misclassifications and documented potential causative 
factors. Additionally, we investigated the association between 
prediction errors and the system’s output probability values.   

Fig. 7. Overview of the OECM. In stage 1, OSPM is constructed using masked autoencoders trained on 0.76 million unlabeled ocular surface (OS) images. The detailed architecture 
of OSPM is illustrated in Fig. S12. In stage 2, OSPM is adapted to the OST classification task through supervised learning. The OECM consists of a pretrained transformer 
encoder and a multilayer perceptron (MLP) head, with the encoder initialized from OSPM.
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Performance comparison between OECM and 
ophthalmologists
   To compare OECM’s performance against ophthalmologists, we 
assembled a comparative dataset of 150 images (50 malignant, 
50 premalignant, and 50 benign OST cases) randomly sampled 
from external test datasets. These images were shuffled and ano-
nymized before evaluation by the ophthalmologists. Four prac-
ticing ophthalmologists (independent of image annotation) were 
recruited and stratified into 2 cohorts: junior (6 to 15 years’ expe-
rience) and senior (16 to 25 years’ experience) groups. Each 
ophthalmologist independently classified the images into malig-
nant, premalignant, or benign OST categories based solely on 
visual assessment, without access to any ancillary clinical data. 
To preclude competition bias, the ophthalmologists were not 
informed about their comparison with the AI system. Moreover, 
to eliminate the influence of prevalence disparities among vari-
ous OST types, they were notified that the dataset might not 
reflect the true distribution of different OST types in real-world 
clinical settings. We used a weighted error based on a penalty 
score to evaluate the clinical performance of OECM and the 
ophthalmologists. Misdiagnosis of malignant and premalignant 
OST as benign OST was assigned scores of 2 and 1.5, respectively, 
as these errors could lead to the worst outcomes. In contrast, 
misdiagnosing benign OST as malignant or premalignant OST 
was assigned a score of 1. In addition, a score of 1 was consistently 
assigned to all additional classification errors.

   Subsequently, we designed a complementary study to evaluate 
OECM’s potential to augment diagnostic performance among 
junior ophthalmologists. This involved the reevaluation of the 
same images 4 weeks after their initial inspection, with OECM 
providing the predicted probabilities for different types of OST 
for each image. The ophthalmologists were then instructed to 
reaffirm their diagnoses, thereby assessing the influence of 
OECM on their diagnostic proficiency by comparing their find-
ings with the reference standard.   

Statistical analyses
   To assess the models’ performance, we used sensitivity, specific-
ity, accuracy, AUROC, and AUPRC. These metrics were calcu-
lated using the one-versus-rest strategy, where the performance 
of each category was compared against all other categories. 
Specifically, a multiclass categorization issue was disaggregated 
into a sequence of binary classification problems. These assess-
ments evaluated the model’s capability to differentiate each class 
from the remaining classes. For all performance metrics, we 
calculated 95% CIs to quantify the estimated uncertainty embed-
ded within the metrics. All plots were created with the follow-
ing tools: Matplotlib v3.5.1, Seaborn v0.11.2, and R v4.2.1. The 
DeLong test [  30 ], a statistical method designed for quantifying 
the differences between 2 AUROCs derived from an identical 
pool of individuals, was employed to compare the AUROC val-
ues of the models. We employed the McNemar test [  31 ] to evalu-
ate differences in diagnostic performance metrics (sensitivity, 
specificity, and accuracy) both between models and between 
OECM and clinical experts. The degree of agreement between 
OECM outputs and the reference standard was quantified using 
unweighted Cohen’s κ values, with interpretation based on estab-
lished benchmarks: ≤0 (no agreement), 0.01 to 0.20 (slight), 0.21 
to 0.40 (fair), 0.41 to 0.60 (moderate), 0.61 to 0.80 (substantial), 
and 0.81 to 1.00 (almost perfect agreement). All statistical analy-
ses were performed using Python 3.7.8, with statistical signifi-
cance defined as a 2-tailed P value < 0.05.    
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