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1 Abstract 18 

Cephalopods play a central ecological role across all oceans and realms. However, 19 

under the current climate crisis, their physiology and behaviour are impacted, and we are 20 

beginning to comprehend the effects of environmental stressors at a molecular level. Here, we 21 

study the Hawaiian bobtail squid (Euprymna scolopes), known for its specific binary symbiosis 22 

with the bioluminescent bacterium Vibrio fischeri acquired post-hatching. We aim to 23 

understand the response (i.e., developmental and molecular) of E. scolopes after the 24 

embryogenetic exposure to different conditions: i) standard conditions (control), ii) increased 25 

CO2 (∆pH 0.4 units), iii) warming (+3ºC), or iv) a combination of the two treatments. We 26 

observed a decrease in hatching success across all treatments relative to the control. Using 27 

transcriptomics, we identified a potential trade-off in favour of metabolism and energy 28 

production, at the expense of development under increased CO2. In contrast, elevated 29 

temperature shortened the developmental time and, at a molecular level, showed signs of 30 

alternative splicing and the potential for RNA editing. The data also suggest that the initiation 31 

of the symbiosis may be negatively affected by these environmental drivers of change in the 32 

biosphere, although coping mechanisms by the animal may occur.  33 

  34 
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2 Introduction 36 

Since the industrial revolution, oceans are becoming warmer, more acidic, and subject 37 

to extreme events such as marine heatwaves [1–4]. These changes in seawater conditions are 38 

known to impact marine organisms and communities [5–7], from physiology to behaviour [8–39 

14]. As the ocean changes and extreme events are expected to increase in strength and 40 

frequency due to the continuous increase of carbon dioxide (CO2) in the atmosphere 41 

[2,3,15,16], it is important to understand the biological response of species to such stressors. 42 

Cephalopods play an important ecological role in marine ecosystems throughout all 43 

oceans and realms with a central position in trophic food webs [17–19]. They are also 44 

recognized as a keystone group for their economic importance in fisheries [17,20–22]. 45 

However, cephalopods are influenced by environmental changes [14], which can affect their 46 

physiology and behaviour, showing signs of reduced metabolic rates and activity levels [23], 47 

and impairment in predatory behaviour [24]. Moreover, deleterious effects can be observed at 48 

early developmental stages [14], disrupting cephalopod reproduction, embryonic development, 49 

and hatching success [25–27]. In fact, elevated CO2 levels showed a reduction in the number 50 

of eggs laid [28] and the mantle length [29] of squid hatchlings, and to increase the 51 

developmental time as well as reduce the hatching success in cephalopods [12,29]. Such 52 

responses in cephalopods were also observed with the combined exposure to increased CO2 53 

and increased temperature [14,27,30].  54 

To complement the current ecological and physiological knowledge on cephalopod 55 

species, a molecular approach is much needed since differential gene expression can be a major 56 

driver in phenotypic plasticity [31–33]. With the continuous pressure of climate change, 57 

various molecular responses are observed, where cephalopods present differential gene 58 

expression related, but not exclusively, to transcription factors and splicing activity after 59 

exposure to different temperatures [34]. Moreover, potential adaptation is also shown through 60 

the expression of ADAR (adenosine deaminase RNA specific) that is responsible for A-to-I 61 

RNA editing, with temperature playing a major role [34–36]. Finally, cephalopods exposed to 62 

higher CO2 concentrations present also molecular responses, linked to alterations in behaviour 63 

for example [37].  64 

In this study, we investigate the transcriptomic response of the Hawaiian bobtail squid 65 

(Euprymna scolopes) exposed to increased CO2, elevated temperature and the combination of 66 

these two environmental factors, during embryonic development. E. scolopes is a small sepiolid 67 

species from the Hawaiian archipelago’s coastal waters, known for its binary symbiosis with 68 

the bioluminescent bacterium Vibrio fischeri [38]. Bobtail squids hatch without the symbiont 69 

and acquire the bacterial partner in the first hours post-hatching [39]. Whereas we have 70 

extensive knowledge of the animal’s relationship with the bacterial symbiont under standard 71 

laboratory conditions, environmental stress, such as seawater temperature or pH, has only been 72 
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tested to understand the adaptation of V. fischeri in light of this symbiosis [40,41]. In contrast, 73 

the influences of environmental change on the bobtail squid host itself are poorly understood.  74 

Here, we aim to understand the biological response of the Hawaiian bobtail squid 75 

Euprymna scolopes, after being exposed to different environmental conditions (i.e., increased 76 

CO2, warming and a combination of the two) during embryogenesis. Based on our knowledge 77 

of other cephalopods, we expect this species to present a lower hatching success across all 78 

treatment and reduced developmental time when exposed to warmer waters. By evaluating the 79 

transcriptomic response of this species, we aim to reveal the underlying molecular mechanisms 80 

of the response related to each treatment, expecting changes in developmental functions and 81 

metabolism. Understanding these changes in gene expression and the underlying functions 82 

allows the evaluation of the state of the bobtail squid early stages when exposed to near-future 83 

environmental changes.  84 

3 Material and Methods 85 

3.1 Experimental setup 86 

In January 2022, adult Hawaiian bobtail squids were collected from Paikō peninsula 87 

(Oahu, USA) and maintained, as a breeding stock, in a flow-through system at the facilities of 88 

Kewalo Marine Laboratory (Oahu, USA). At the end of 4 months, a single clutch was prepared, 89 

packed in a temperature-insulated box, and shipped one day after being laid to the aquatic 90 

facility Laboratório Marítimo da Guia (Cascais, Portugal). The eggs were carefully separated 91 

and randomly distributed into 9 L plastic tanks (12 tanks in total, 3 replicates per treatment). 92 

These tanks were placed into two recirculating aquaria systems of approximately 92 L each, 93 

both separated into two water baths (4 WB in total, each corresponding to one treatment). As a 94 

semi-open system, the water in each WB was renewed by the constant addition of new water 95 

through a dripping system. After an acclimation of two days at control conditions, the eggs 96 

were reared until hatching in one of the following treatments: i) ‘control’ (25ºC; pCO2 = 97 

320µatm, pH = 8.1), ii) ‘increased CO2’ (25ºC; pCO2 = 910 µatm, pH = 7.7), iii) ‘warming’ 98 

(28ºC; pCO2 = 320 µatm, pH = 8.1), and iv) ‘increased CO2 and warming’ (28ºC; pCO2 = 910 99 

µatm, pH = 7.7). The ‘control’ temperature was based on the average water temperature 100 

observed in March and April in Oahu (i.e., 25ºC). Furthermore, the temperature and high CO2 101 

were based on the IPCC’s RCP scenario 8.5 (i.e., +3 ºC; ∆pH = 0.4 units). Following the 102 

acclimation period, the water parameters were gradually altered to reach the final values for 103 

each treatment. Temperature was increased by +1 ºC per day and the pH lowered to 104 

approximately 0.1 unit per day through the injection of CO2 into the water.  105 

Seawater was pumped directly from the ocean, filtered through a 1-µm mesh, and UV-106 

sterilised (Vecton 120 Nano, TMC-Iberia, Lisbon, Portugal) before entering the aquatic 107 

systems. Filtration and UV-sterilisation systems in the experimental tanks and the control of 108 

seawater temperature and pH were performed following the methods described in Court et al., 109 

2022. The photoperiod was kept under a 12h-light:12h-dark cycle using 8W LED lights. 110 
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Seawater parameters (Supplementary Table 1) were monitored daily using an oximeter VWR 111 

DO220 for oxygen levels and temperature (accuracy ± 1.5% and ± 0.3ºC, respectively), pH 112 

meter VWR pHenomenal for the pH (accuracy ± 0.005) and Hanna refractometer for the 113 

salinity (accuracy ± 1 PSU). The total alkalinity was measured weekly using a digital titrator 114 

(Sulfuric Acid 0.1600 N). The values of bicarbonate and pCO2 were subsequently calculated 115 

using the CO2SYS software.  116 

3.2 Hatching success 117 

To assess the hatching success at the end of the experiment, each egg capsule was 118 

examined under a scope to confirm the number of empty capsules (hatched individuals, 119 

ntotal_hatched = 237) and the number of aborted embryos (ntotal_aborted = 43) across treatments. Since 120 

the hatching success is represented by time-to-event data, we performed a survival analysis on 121 

this hatching success, according to the developmental time (i.e., number of days between eggs 122 

laid and hatching). More specifically, using R v. 4.3.3, the hatching success was assessed using 123 

the R package “survival” v. 3.6-4 [42], through a Cox proportional hazards regression model 124 

using the function “coxph”. The scaled residuals over time (Schoenfeld test; function 125 

“ggcoxzph”) were plotted to test the assumptions of the “coxph” model (proportional hazards, 126 

no over-influential observations and linearity of covariates). Since the requirements for the 127 

Schoenfeld test were not met, a non-parametric “survdiff” model was best fitted 128 

(Supplementary Figure 1, [43]). Moreover, post-hoc multiple comparisons were performed, 129 

and p-values were adjusted through Bonferroni–Hochberg corrections to avoid type I errors 130 

(Supplementary Table 2.A-B). Kaplan-Meier plots were created to illustrate the survival curves 131 

using the function “ggsurvplot” (R package “survminer” v. 0.4.9, [44]). 132 

3.3 RNA extraction and RNA sequencing  133 

Due to the lack of knowledge in the response of this species to climate change stressors 134 

and because hatchlings only measure around 2 mm, whole animals were used in the 135 

transcriptomic analysis. To understand the environmental response during the embryogenesis, 136 

animals were flash-frozen up to 2 h post-hatching and kept at -80ºC until RNA extractions. 137 

RNA was extracted using the AllPrep DNA/RNA Mini Kit (Qiagen), following the 138 

manufacturer's protocol. Because hatching is usually triggered by a light cue [39], only the 139 

RNA of animals hatched 2 h after sunset (n = 8 per treatment) were tested for quality 140 

(Bioanalyzer) and further processed for sequencing by the Centre for PanorOmic Sciences of 141 

the University of Hong Kong. The sequencing libraries were prepared using the KAPA mRNA 142 

HyperPrep Kit, and Illumina NovaSeq 6000 was used for Pair-End 151 bp sequencing. 143 

3.4 RNA-seq read processing 144 

To understand the molecular basis after the embryogenesis exposure to the different 145 

treatments, an average of 66.6 million raw paired-end reads were processed using the following 146 

bioinformatic pipeline. The quality of reads after each processing step was inspected using 147 

FastQC v.0.11.9 [45]. The trimming of low quality reads and adapters was performed using 148 
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Trimmomatic v.0.39 [46] with the following parameters: 149 

ILLUMINACLIP:AllAdaptors.fa:2:30:15:8:true LEADING:3 TRAILING:3 150 

SLIDINGWINDOW:4:20 MINLEN:40. To remove potential contamination, we used Kraken2  151 

with a confidence of 0.5 [47], using the standard database from NCBI RefSeq as reference 152 

(version of the 05/06/2023), which contains libraries for archaea, bacteria, virus, plasmid, 153 

human and vectors [47]. Further filtration of low quality and short reads was performed using 154 

‘filter_illumina’ script from DRAP [48]. Finally, reads from ribosomal RNA (rRNA) were 155 

identified and removed by performing a mapping of the sequences to the SILVA databases 156 

(SILVA_138_SSUParc_tax_silva.full_metadata.gz, SILVA_132_LSUParc.full_metadata.gz, 157 

[49], using bowtie2 v.2.4.1 [50] with very sensitive and local mode. The adapter-free, quality-158 

trimmed, decontaminated and filtered paired-end reads (average 29.3 filtered pair-ended reads) 159 

were then mapped to the reference genome available for Euprymna scolopes [51] using STAR 160 

v.2.7.10b (parameters: --outSAMtype BAM Unsorted SortedByCoordinate --161 

outFilterScoreMinOverLread 0.50 --outFilterMatchNminOverLread 0.50, [52]. On average, 162 

77.03 ± 3.84% reads mapped to the reference genome (Supplementary Table 3). Raw read 163 

counts per gene were obtained using featureCounts v.2.0.6 [53]. Finally, a functional annotation 164 

was also performed using EggNOG-mapper v.2.1.10 [54].  165 

3.5 Differential gene expression analysis   166 

To understand the differential expression of genes between treatments, we used the R 167 

package DESeq2 v.1.40.2 [55] with a Wald test. We examined the count matrix for potential 168 

outliers. Therefore, after normalizing the variance of the count data, we performed a Principal 169 

Component Analysis (PCA), using a confidence level of 95%. Outliers were identified as 170 

samples outside the confidence ellipse of the PCA. Following this method, two samples were 171 

removed from the analysis (i.e., one from the ‘control’ treatment and one from the ‘warming’ 172 

treatment; Supplementary Figure 2). Moreover, low expression genes (< 10 read counts) were 173 

also excluded from the rest of the analysis. To obtain the list of differentially expressed genes 174 

(DEGs), we performed pairwise comparisons between each condition: i) ‘control’ vs. 175 

‘increased CO2’, ii) control vs. ‘warming’, iii) ‘control’ vs. ‘increased CO2 and warming’. We 176 

identified DEGs with FDR adjusted p-value < 0.05 and a baseMean > 10. We used the log2Fold 177 

change as an additional criterion to decrease false positives considering significance only with 178 

absolute log2fold change > 0.3. 179 

3.6 Weighted gene co-expression network analysis (WGCNA) and module 180 

eigengenes correlation to environmental traits 181 

An additional analysis to study the correlation between gene expression and treatments 182 

was performed through the weighted gene co-expression network analysis. We normalized the 183 

count data and removed low read counts (< 10 counts in ≥ 90% samples) using DESeq2. 184 

Subsequently, we performed a step-by-step network construction and module detection using 185 

the WGCNA v. 1.72-5 R package [56]. The selection of the soft-threshold power (SFT) and the 186 

correlation network adjacency was calculated using 8 as the SFT (Supplementary figure 3). 187 
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The adjacency was transformed into a topological overlap matrix (TOM) and the corresponding 188 

dissimilarity was calculated (1-TOM). We produced a hierarchical clustering using the 189 

“average” method and, with the dissimilarity TOM, created a dendrogram containing the 190 

obtained cluster of genes. The modules were identified using a dynamic tree cut with the 191 

following parameters: minClusterSize = 100, deepSplit = 3 and pamRespectsDendro = FALSE. 192 

Modules with a similar expression profile were merged (branch height cut-off of 0.25 193 

corresponding to a correlation of ≥ 0.75) and eigengenes were calculated for each module. 194 

These modules eigengenes (MEs) were correlated to each treatment (i.e., ‘warming’, ‘increased 195 

CO2’, and ‘increased CO2 and warming’) using the Pearson correlation test and a correlation 196 

heatmap was created (Supplementary figure 4). For a given correlation, student asymptomatic 197 

p-values were calculated displaying the correlation values of the modules for each trait. Only 198 

the significant modules displayed in the heatmap (p-value < 0.05) correlated to each trait were 199 

selected for further analysis. 200 

3.7 Gene set enrichment analysis (GSEA) 201 

The GSEA aims to understand if groups of genes that fulfil a similar function [gene 202 

ontology (GO)] showed significant and consistent differences between each treatment and the 203 

control conditions. We created an annotation data package specific for the Hawaiian bobtail 204 

squid Euprymna scolopes based on the GO terms for each gene described in the reference 205 

genome [51], using the R package AnnotationForge v. 1.42.2 [57]. Using the organism-specific 206 

annotation package created, we then performed a gene set enrichment analysis (GSEA) using 207 

the R package clusterProfiler v. 4.8.3 [58]. We performed the GSEA on the outputs from both 208 

the DESeq2 analysis and the significant modules from the WGCNA. Moreover, we performed 209 

additional GSEA on upregulated and downregulated genes under ‘increased CO2’ compared to 210 

‘control’. No enrichment was found using the DEGs between ‘warming’ vs. ‘control’, nor the 211 

DEGs between ‘warming and increased CO2’ vs. ‘control’. Moreover, no enrichment was found 212 

in the modules darkturquoise (correlated to ‘increased CO2’), nor grey (correlated to ‘increased 213 

CO2 and warming’). All GSEA were performed using a minimum gene set size (GSS) of 10 214 

and a maximum GSS of 500. Moreover, p-values were adjusted for multiple comparison using 215 

the method of “Benjamini-Hochberg” and a threshold of significant was set to padj < 0.05. 216 

4 Results 217 

4.1 Hatching success 218 

We observed a significant decrease in hatching success in all treatments compared to 219 

control animals (Supplementary Table 2, 4). 96.4% of bobtail squids raised under control 220 

conditions hatched (nhatching_control/ntotal_control = 54/56), however, there was a decrease to 78.5% 221 

in hatching success for the animals raised under increased CO2 conditions 222 

(nhatching_increasedCO2/ntotal_increasedCO2 = 62/79, p-value = 0.0023), to 85.9% under warming 223 

conditions (nhatching_warming/ntotal_warming = 61/71, p-value < 0.001) and to 81.1% under the 224 

combination of increased CO2 and warming conditions (nhatching_warming/ntotal_warming = 60/74, p-225 
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value = 0.0101; Figure 1). After comparing the hatching success between treatments, we 226 

observed that animals raised under increased CO2 conditions also exhibited lower hatching 227 

success compared to warming conditions (p-value < 0.001) and to the combination of increased 228 

CO2 and warming conditions (p-value < 0.001). However, animals raised in warming 229 

conditions did not have a significantly different hatching success compared to bobtail squids 230 

reared under the combination of increased CO2 and warming (p-value = 0.1891; Supplementary 231 

Table 2). 232 

Animals reared under control temperatures (i.e., ‘control’ and ‘increased CO2’) showed 233 

a hatching time (time when 50% of embryos hatched compared to an expected hatching of 234 

100%, corresponds to the median developmental time) of 19 days. However, bobtail squids 235 

raised under warmer temperatures (i.e., ‘warming’, and ‘increased CO2 and warming’) hatched 236 

2 d earlier (hatching time of 17 days; Figure 1, Supplementary Table 4). 237 

 238 

Figure 1 – Hatching success of the Hawaiian bobtail squid reared under different 239 

environmental conditions. The proportion of hatched bobtail squid was measured according to 240 

the number of days pre-hatching (developmental time). The presence of hatching was verified 241 

daily. The Kaplan-Meier survival trajectories illustrate the survival trajectories according to 242 

each treatment (the colour code for each treatment is shown in the upper-left quadrant of the 243 

figure). The lines represent the rate of hatched bobtail squid, at each given day of exposure. 244 

The shaded area shows the 95% confidence intervals. The dashed lines show the hatching time, 245 

corresponding to the median developmental time. 246 

4.2 Differentially expressed genes 247 

By comparing the expression profile across the four treatments, we observed a higher 248 

variance in the ‘increased CO2’ treatment compared to the ‘control’ than with the other 249 

treatments (Figure 2). We identified a total of 970 differentially expressed genes (DEGs) 250 

between the ‘control’ and the ‘increased CO2’ treatments, 660 genes were upregulated and the 251 

remaining 310 were downregulated under the ‘increased CO2’ condition (Figure 3, 252 
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Supplementary Table 5). On the other hand, a total of 21 DEGs were found between the 253 

‘control’ and the ‘warming’ conditions, seven genes were upregulated, and 14 genes were 254 

downregulated with temperature (Figure 3, Supplementary Table 6). Finally, only three DEGs 255 

were found between the combined treatment (‘increased CO2 and warming’) and the ‘control’ 256 

condition; all three genes were downregulated under the combined treatment (Figure 3, 257 

Supplementary Table 7). Only one of the three DEGs was specific to the combined treatment 258 

and the other two downregulated genes were found under the ‘warming’ treatment alone 259 

(Figure 3).  260 

 261 

Figure 2 – Principal component analysis on the normalized gene expression data. The 262 

ellipses represent the 95% confidence level, and the dots are the data points of each sample. 263 

 264 

Figure 3 – Venn diagram comparing the differentially expressed genes between the 265 

‘control’ and each of the treatment. Green = ‘increased CO2’, yellow = ‘warming’, brown = 266 

‘increased CO2 and warming’, = upregulated genes and  = downregulated genes. 267 

4.3 Transcriptomic response to increased CO2 exposure 268 

Exposure to elevated CO2 provoked the largest number of differentially expressed 269 

genes compared to the other treatments (Figure 3, Supplementary Table 5). We identified seven 270 

key functions related to the DEGs and genes correlated to increased CO2: 1) protein folding 271 

and handling; 2) energy production and metabolism, including electron transport chain; 3) 272 

immune response; 4) vesicle organization and transportation, and neuronal development; 5) 273 
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behaviour and neurotransmitters; 6) developmental processes, cell adhesion and structure 274 

organization; 7) signalling pathways (Supplementary Tables 8-12).  275 

More specifically, protein folding involved DEGs such as heat shock proteins, prolyl 276 

isomerase (PPIase) and several prefoldin subunits as well as a DNA helicases “ATP dependent 277 

5' 3' DNA helicase activity” (ruvbl2). Underlying the same function we also found genes 278 

specifically associated with endoplasmic reticulum (erp29, emc3). On the other hand, DEGs 279 

related to energy production and metabolism were identified as several subunits of the 280 

NADH:Ubiquinone Oxidoreductase complex (nduf). We also detected the differential 281 

expression of Cytochrome c oxidase subunits (cox genes), prohibitin, ATPase with H+ transport 282 

(atp6, also known as V-ATPase) and ATP synthase, involved in the electron transport chain, 283 

associated with ATP synthesis, and oxidative phosphorylation.  284 

Gene upregulation under increased CO2 showed similar functions as described but we 285 

established immune response as an additional function. Such genes included the nicotinamide 286 

phosphoribosyltransferase (naprt) and 26s proteasome subunits (psmd). Moreover, the 287 

functions of neuronal development and vesicle organization and transportation (including 288 

“synaptic vesicle maturation” or “regulation of dendrite development”) were identified through 289 

the presence of positively correlated genes, including genes such as synaptoporin (synpr), 290 

syntaxin-binding proteins (stx) synaptosomal associated protein (snap47) or as a Rab GTPase 291 

activating protein (rabgap1). We also found a protocadherin (pcdh15) associated with the 292 

neuronal function of “visual perception”. Finally, the functions associated with 293 

neurotransmission and behaviour were also involved as seen through the positive correlation 294 

of receptors for dopamine (drd2), serotonin (htr), GABAA and GABAB (gabra4 and gabbr1, 295 

respectively), and for glutamate (grin2b). 296 

Downregulated and negatively correlated genes under increased CO2, on the other hand, 297 

were related to developmental processes (e.g., “endoderm and mesoderm formation and 298 

differentiation”, “gastrulation”, “ossification”, “striated muscle cell development”, etc.), but 299 

also genes for cell adhesion and structure (e.g., “cell-substrate adhesion”, “extracellular matrix 300 

organization”, etc.). Some of these genes were the transcriptional regulator -catenin (apc2) 301 

involved in development, cadherin (fat4), or part of the sox family of transcription factors (e.g., 302 

sox17) involved in cell differentiation. We have also identified a negative correlation with 303 

genes coding for ryanodine (ryr2), fibroblast growth factor activated receptor (fgfr4) and genes 304 

for chains of collagen (col), involved in several aspect of muscle and embryonic development. 305 

Finally, the negatively correlated genes involved in signalling were more specifically belonging 306 

to the Wnt signalling pathway (wnt), which can be involved in developmental processes 307 

dependent on colonisation by microbes [59]. 308 

4.4 Transcriptomic response to increased temperature 309 

Increased temperature did not induce a large response with only 21 DEGs (Figure 3, 310 

Supplementary Table 6). Two of these genes were also identified under increased CO2 and were 311 
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upregulated: one could not be characterized, and the other was a gene coding for an Opioid 312 

growth factor receptor (ogfr). On the other hand, some temperature-specific DEGs were 313 

recognized as a calcium-activated potassium channel (kcnn2; upregulated with temperature), 314 

and a member of the molecular chaperone cytochrome p450 family (cyp4v2; downregulated). 315 

In addition to the DEGs, we identified five main functions underlying gene networks 316 

correlated with temperature: 1) RNA processing and splicing; 2) metabolic and catabolic 317 

processes; 3) detoxification response; 4) reproductive processes; and 5) signalling pathways 318 

linked to the immune response (Supplementary Tables 13-14). RNA splicing was linked to 319 

positively correlated genes coding for splicing factors such as several serine/arginine rich 320 

splicing factors (srsf), and heterogenous nuclear ribonucleoprotein (hnrnpu). Other RNA 321 

processing functions were found through the expression of primary miRNA methylation 322 

(mettl3). We have also discovered a gene for an adenosine deaminase-like (adal), responsible 323 

for the adenosine catabolic process and inosine biosynthetic process. Positively correlated 324 

genes featuring metabolic and catabolic processes were characterized, but not only, as 325 

acetyltransferase and methyltransferase (cat1 and carnmt1, involved in the “amino acid 326 

metabolic processes”) or as a sirtuin (sirt4).  327 

On the other hand, we characterized other metabolic processes (for glutathione, fatty 328 

acid, prostaglandin and prostanoid) linked to negatively correlated genes. These genes included 329 

the glutathione-S-transferase (gst), and the thromboxane-A synthase 1 (tbxas1). Moreover, 330 

detoxification response (i.e., “response to reactive oxygen species”) also involved a negatively 331 

correlated gene related to the 3',5' cyclic GMP phosphodiesterase activity, which plays a role 332 

in the nitric oxide pathway. We also identified another gene for the glutathione-S-transferase 333 

(hpgds), recognized to be involved in reproductive processes such as “regulation of germ cell 334 

proliferation” or “male germ cell proliferation”. Finally, we found that other signalling 335 

pathways related to the immune response to be negatively correlated to temperature. We 336 

observed an enrichment in “TRIF-dependent toll-like receptor signalling pathway”, associated 337 

with the genes for the NF-κB essential modulator NEMO (ikbkg) and the protein tyrosine 338 

kinase ikbke also known as the “I-kappa-B kinase epsilon”. Both genes are involved in the NF-339 

κB signalling pathway related to the immune response. 340 

4.5 Transcriptomic response to the combined exposure of increased CO2 and 341 

increased temperature 342 

Only three genes were differentially expressed under the combined treatment of 343 

‘increased CO2 and warming’ (Figure 3, Supplementary Table 7). The oxidative stress induced 344 

growth inhibitor family member 2 (osgin2) was the only DEG specific to this treatment. The 345 

two other genes were also found to be significantly downregulated in the ‘warming’ treatment. 346 

They were identified as a “leucine-rich repeat-containing protein 74A-like” (lrrc74a), and the 347 

protein coding gene ankar (armadillo/-catenin like repeats). 348 
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Functions that were positively correlated to ‘increased CO2 and warming’ (module grey; 349 

Supplementary Table 15), included immune response and signalling pathways with underlying 350 

genes such as a toll like receptor (tlr2, known for its role in the detection of microbes) and a 351 

member of the protein kinase family (map3k7, also involved in the NF-κB signalling pathway). 352 

Moreover, we found genes involved in RNA/DNA processing and repair as well as 353 

transcriptional regulation. We detected the protein coding gene msl3 (i.e., a methylated histone 354 

binding), RNA polymerase I and II, reverse transcriptase, the pif1 helicase responsible for DNA 355 

replication and repair, as well as the zinc finger transcription factor (snai2). Finally, we also 356 

found the influence of this treatment on neurotransmission, through the positive correlation of 357 

the glutamate receptor gria2. 358 

5 Discussion 359 

Although most cephalopods are known to be affected by climate change-related 360 

stressors, there is a profound lack of knowledge on the sepiolids response to environmental 361 

factors. Here, we show that increased temperature and CO2 are negatively impacting the 362 

hatching success of the Hawaiian bobtail squid, the latter exhibited the lowest hatching success 363 

of all treatments. This decreased hatching shows the vulnerability of this species to changes in 364 

pH, potentially due to the change in the acid-base balance during development and the function 365 

of ion regulatory structures [60]. Moreover, as a tropical species with less seasonal variation, 366 

we observed the Hawaiian bobtail squid is also sensitive to temperature with decreased 367 

hatching success, which is consistent with the decreased number of hatchling in other squid 368 

species [61], with some depending on the season [27]. Since our interpretation relies on a single 369 

clutch only, it could limit the variation in the data, but it may have also restricted the number 370 

of responses for this species. However, together with previous studies, it becomes clear that 371 

hatching and, therefore, the fitness of bobtail squids are likely impacted by near-future climate 372 

change.  373 

Developmental time (i.e., the number of days pre-hatching) varies between cephalopod 374 

species and depends on the exposure to environmental stressors. Temperature always reveals 375 

itself as the main driver for a reduced developmental time, in contrast to increased CO2 376 

exposure leading to an increase in developmental time [12,25,27,30,62,63]. Here, we show the 377 

divergence of bobtail squid compared to other cephalopods. Whereas bobtail squids 378 

developmental time showed the same reduction in time under elevated temperature, bobtail 379 

squid exposed to increased CO2 did not exhibit a longer developmental time. A shorter 380 

developmental time may be related to increased metabolic rates of embryos under elevated 381 

temperature, with an increased oxygen demand [25]. On the contrary, metabolic suppression is 382 

thought to explain a delayed hatching after the exposure to increased CO2 [29]. Therefore, 383 

while we show that bobtail squid may also increase their metabolism under warner temperature 384 

resulting in a shorter developmental time, we suggest that bobtail squid do not reduce their 385 

metabolism under increased CO2, leading to a similar developmental time as ‘control’. 386 
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Hatching success and time of development are direct, measurable and observable, 387 

responses of the animal. Molecular data and the transcriptional response can help us 388 

comprehend these responses, in addition to understand broader changes in the animal. Just as 389 

for hatching success ‘increased CO2’ provoked the largest molecular response of E. scolopes. 390 

Our transcriptomic data may indicate a trade-off in favour of metabolism and energy 391 

production, at the expense of development, which could explain the negative impacts on 392 

hatching success. Changes in seawater pH induce acid-base imbalances which can be 393 

compensated through ion regulation machineries by several species of fishes and cephalopod 394 

[60,64–66]. In fact, cephalopod can actively perform such regulation during embryogenesis 395 

[67]. We found that bobtail squids upregulate genes coding for several subunits of V-type H+-396 

ATPases (VHA), which may be used in counteracting the impact of acid-base changes and are 397 

considered as a key machinery to cope with extracellular pH unbalance [68,69], including in 398 

early ontological stages of cephalopods [70]. Although the implication of VHA as a response 399 

of stress-induced acid-base unbalance should be further characterized, the upregulation of these 400 

genes shows their potential involvement in coping with ocean acidification (i.e., ‘increased 401 

CO2). However, the regulation of the acid-base balance requires the consumption of energy and 402 

a coordination with the metabolism [66,71,72]. Hence, in response to increased CO2, it is not 403 

surprising to find large upregulation of cytochrome-c-oxidase (cox) and NADH dehydrogenase 404 

in the bobtail squid, as in many invertebrates (e.g., oyster [73–75], sea snail [76], spider crab 405 

[77], mussel [78]). Moreover, we found upregulation of prohibitin (PHB) when exposed to 406 

‘increased CO2’, similar to that reported in the Pacific oyster [74]. PHB is a highly conserved 407 

protein across organisms, including marine vertebrates and invertebrates, that can be associated 408 

with the mitochondria [79,80]. We show that, with exposure to ‘increased CO2’, there is an 409 

upregulation of genes involved in metabolism and energy production, potentially indicating an 410 

increased demand of energy needed for acid base regulation.  411 

On the other hand, we observed a downregulation and negative correlation of genes 412 

involved in development and cellular structure in response to ‘increased CO2’. Whereas -413 

catenin play a central role in the Wnt signalling pathway and the cadherin complex [81], Wnts 414 

are signalling proteins implicated in animal development [82,83], and recognized as important 415 

for cellular differentiation and organization [84]. On the other hand, the cadherin complex 416 

provides structural integrity and cell-cell adhesion [84,85]. Here, we show a coordinated 417 

negative response in Wnt, -catenin and cadherin, which is consistent to the general 418 

downregulation of such genes in the Pacific oyster, mussels and corals under ocean 419 

acidification [86–89]. A global downregulation and negative correlation of these three 420 

components (i.e., Wnt, cadherin and -catenin) under ‘increased CO2’, accompanied by 421 

adverse impacts on the hatching success, suggest a negative impact of future CO2 levels on the 422 

embryonic development of bobtail squids.  423 

Elevated temperature exhibited a positive response in catabolic processes, as we 424 

observed a positive correlation to sirtuin. Sirtuins are NAD+-dependent deacylases involved in 425 
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cellular stress response, conserved amongst vertebrates and invertebrates [90,91]. The sirtuin 426 

4 (sirt4), in particular, codes for a mitochondrial protein [90] involved in the regulation of 427 

reactive oxygen species (ROS) production [92] which can reduce mitochondria dysfunction in 428 

mammalian cells and releasing the stress induced by oxidative stress [92]. Our results may 429 

indicate a positive response against heat stress and is consistent with the response of other 430 

organisms showing the importance of sirtuins in the regulation of cellular stress response 431 

[91,93,94]. Another effect of increased temperatures was found through the positive correlation 432 

of genes involved in RNA processing and splicing involving the spliceosome. This may 433 

indicate potential for plasticity and adaptation under heat stress [95]. Alternative splicing (AS) 434 

is deemed important for gene regulation, playing a role in tissue development and involve 435 

proteins acting in opposite ways [96,97]. We show a positive correlation of protein-coding 436 

genes for serine/arginine splicing factors (i.e., srsf), referenced as “splicing activators” and 437 

responsible in exon recognition [96], accompanied by the heterogenous ribonucleoprotein (i.e., 438 

hnrnpu), a “splicing repressor” which blocks the access of the spliceosome [96]. Through the 439 

positive expression of both activator and repressor of AS, we suggest bobtail squids to be 440 

capable of fine adjustments in AS with temperature, wherein an increase in AS is found as a 441 

response after stress exposure, like corals after exposure to marine heatwaves [95] or shrimps 442 

under high alkalinity [98]. Moreover, we also found differential expression in an adenosine 443 

deaminase-like gene (adal). Adenosine deaminase is an enzyme responsible for the RNA 444 

editing of Adenosine-to-Inosine (A-to-I) and is recognized as the most common RNA 445 

modification [99,100]. RNA editing events are known to be abundant in cephalopods [101]. In 446 

fact, it was found that RNA editing in an octopus was temperature dependent, in this case there 447 

was an increase in RNA editing with colder temperature [36]. Although an increased in 448 

temperature did not elicit major changes in gene expression per se, we show that it led to 449 

molecular responses that included the regulation of ROS from the positive correlation with 450 

sirtuins. Moreover, while further investigation into the extent of splicing patterns and RNA 451 

edited sites is needed, the positive correlation of srsf, hnrnpu and adal to increasing 452 

temperature in bobtail squid may indicate a potential for diversifying mRNA through AS and 453 

RNA editing in this species, which could lead to phenotypic plasticity.  454 

In contrast, we identified genes related to the immune response to be negatively 455 

correlated with elevated temperature. More specifically, we show the negative correlation of 456 

protein coding genes ikbkg (coding for IKK/NEMO) and map3k7 (coding for the protein also 457 

known as TAK1), which are both implicated in the activation of the NF-B pathway [102–458 

104]. It is suggested that E. scolopes uses critical components of the NF-B pathway (i.e., 459 

IKK) during the initiation of the symbiosis with the bacterial symbiont Vibrio fischeri [105]. 460 

Because of the negative correlation of the expression of such genes (i.e., ikbkg and map3k7) 461 

with temperature, we hypothesize that the colonisation of the bobtail squid, and subsequently 462 

the initiation of the symbiosis, may be negatively affected by increased temperature. Although 463 

the NF-B pathway was negatively correlated with increasing temperature, this was not the 464 
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case with exposure to the combination of treatments, since the map3k7 was positively 465 

correlated to increased CO2 and warming combined. This finding is consistent with the 466 

enrichment of the MAPK signalling pathway in a cuttlefish, when exposed to combined high 467 

temperature and low pH [106]. Under the same combined treatment, an additional protein was 468 

found through the expression of tlr2, a Toll-like receptor, also implicated in the microbial 469 

detection and the Toll/NF-B pathways [105]. Therefore, increased CO2 and temperature might 470 

have antagonist effects in relation to the immune response. Although future investigations in 471 

understanding the colonisation efficiency of hatchlings when exposed to these stressors is 472 

needed, we show that temperature may negatively affect the initiation of the symbiosis, but not 473 

the combined treatment. 474 

In summary, we show how environmental stressors induced a general adverse 475 

biological response in the Hawaiian bobtail squid, with a decrease in hatching success overall. 476 

We indicate that temperature was the main driver of the reduced developmental time, while 477 

increased CO2 exhibited the strongest molecular response. We identify a trade-off between 478 

metabolism and energy production against development when exposed to increased CO2, 479 

which may explain the lowest hatching success in this treatment. Increased temperature 480 

induced a heat stress response implicating the regulation of ROS and RNA processing. In fact, 481 

as a response to temperature, bobtail squid may alter their RNA through alternate splicing and 482 

RNA editing, which may lead to phenotypic plasticity. Finally, we show that the symbiosis 483 

initiation between the bobtail squid and its bioluminescent symbiont may be altered with 484 

increasing temperatures, but not when exposed to combined increased CO2 and temperature. 485 

Daily variation in coastal seawater temperature may explain the different responses towards 486 

plasticity and variability under increased temperature [107,108]. Such responses may also 487 

apply to other coastal cephalopod species including sepiolids; environmental changes could for 488 

example alter the colonisation of Sepiola spp., which implicates two bacterial symbionts that 489 

have different temperature growth optimum [109]. While future investigations should include 490 

testing for RNA editing and influence on animal-bacteria symbiosis, our results show that 491 

development is affected in early life stages of bobtail squids, whereas there are also signs of 492 

increased phenotypic plasticity in response to environmental stressors. 493 
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