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Acute Lymphoblastic Leukemia (ALL) is the most common cancer in childhood. Despite

a significantly improved prognosis over the last decade with a 5-years survival rate of

∼90%, treatment-related morbidity remains substantial and relapse occurs in 10–15%

of patients (1). The most common site of relapse is the bone marrow, but early

colonization and subsequent reoccurrence of the disease in the central nervous system

(CNS) also occurs. Integrins are a family of cell surface molecules with a longstanding

history in cancer cell adherence, migration and metastasis. In chronic lymphoblastic

leukemia (CLL), the VLA-4 integrin has been acknowledged as a prognostic marker

and mounting evidence indicates that this and other integrins may also play a role in

acute leukemia, including ALL. Importantly, integrins engage in anti-apoptotic signaling

when binding extracellular molecules that are enriched in the bone marrow and CNS

microenvironments. Here, we review the current evidence for a role of integrins in the

adherence of ALL cells within the bone marrow and their colonization of the CNS, with

particular emphasis on mechanisms adding to cancer cell survival and chemoresistance.
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INTRODUCTION

Integrins comprise a family of heterodimeric cell adhesion receptors, each composed of one alpha
and one beta subunit. In hematopoietic and epithelial cells, integrin adhesion to stromal cells or
extracellular matrix (ECM) components induces signaling essential for cell survival, proliferation
and migration. Integrins are also vital to cancer cells, that exploit the integrins to favor their
own survival, invasion and migration within tissues, endothelial cell binding, extravasation and
metastatic colonization of distal organs (2). In hematological cancers, expression of integrin α7 was
shown to be associated with acute myelogenous leukemia (AML) with granulocytic sarcoma (3)
and integrin α4:β1 (VLA-4) is an independent prognostic factor in chronic lymphoblastic leukemia
(CLL) (4) and has been associated with chemoresistance in CLL, multiple myeloma, AML and acute
lymphoblastic leukemia (ALL) (5–7). Thus, integrin-mediated chemoresistance is perceived as a
form of adhesion-mediated drug resistance (CAM-DR) (8).
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ALL is a malignant disorder of lymphoid progenitor B- or
T-cells, representing the most common form of pediatric cancer
(patients < 15 years of age) (9). ALL is largely a bone marrow
(BM) disease and thus diagnosis and treatment stratification
using disease monitoring by minimal residual disease (MRD)
(10), are done optimally in BM samples. BM constitutes the most
frequent site of relapse (11) and has been proposed as a protective
niche for ALL (12). In addition, ALL has a marked tendency
to disseminate to the central nervous system (CNS) and survive
therapy. At the time of diagnosis, 8–13% of ALL patients have
measurable leukemic blasts within the CNS (13–15) and despite
of the CNS prophylaxis in current treatment protocols, 10–30%
of relapses involve the CNS (16–18).

At present, several integrins have been proposed as likely
contributors to CAM-DR in ALL and different routes of
dissemination from BM to the CNS have been suggested (19, 20).
Here, we review the current evidence linking individual integrins
to the adherence and chemoresistance of ALL cells within the BM
and their dissemination to CNS.

INTEGRIN STRUCTURE AND SIGNALING

In humans, 18 alpha subunits and 8 beta subunits are known,
which assemble into 24 different heterodimers. Of these, only
half have been identified in immune cells (21, 22). Each integrin
consists of a large ectodomain responsible for ligand binding,
a transmembrane domain, and an intracellular domain making
contacts with the cytoskeleton. Integrins differ considerably
with respect to ligand specificity. For example, α6:β1 only
binds laminin (23) whereas α4:β1 (VLA-4) can bind the ECM
molecules fibronectin, thrombospondin, and osteopontin as well
as the cell surface molecules vascular cell adhesion molecule
1 (VCAM-1) and mucosal addressin cell adhesion molecule 1
(MadCAM-1) (21, 24). Today, integrin subunits may be referred
to according to the CD (Cluster of Differentiation) nomenclature
and integrin dimers may be named according to the scheme α: β
or as very late antigens (VLA) in the case of dimers containing
β1. Previous reviews by Bertoni et al. and Humphries et al. serve
as convenient sources of information on integrin nomenclature
and binding partners (21, 24).

Integrins adopt different conformations with distinct ligand-
binding affinities. The shift to the extended-open conformation
allows for high-affinity ligand binding and constitutes integrin
activation (25). This may be achieved via “inside-out” signaling,
i.e., intracellular signals received from other receptors or
tensile forces acting on the integrin heterodimers through their
cytoskeletal connections. Alternatively, activationmay arise from
“outside-in” signaling through ligand-binding or mechanical
forces (26), conferred by e.g., blood- or cerebrospinal fluid
(CSF) flow. The latter may induce so-called catch-bonds, which
prolongs bond lifetime and allows for more stable adhesion.
It plays a role in αL:β2 integrin-mediated adhesion to ICAM-
1 during leukocyte arrest on the inner side of inflamed blood
vessels (27–29).

When binding ECM molecules, integrins initiate
reorganization of these molecules and undergo clustering

on the plasma membrane. In the case of α5:β1 binding to
fibronectin, clustering of integrins leads to the assembly
of fibronectin molecules into larger insoluble fibrils (30).
Coinciding with the clustering, multiprotein complexes form
on the cytoplasmic side, which serve as a hub for outside-in
signaling (31). In general, outside-in signaling commences with
recruitment and activation of the non-receptor tyrosine kinases
focal adhesion kinase (FAK) and the Src kinase, or alternatively
the FAK-related kinase PYK2 and the spleen tyrosine kinase
(SYK) (32, 33). Subsequently, these kinases activate multiple
pathways involving MEK-MAPK/ERK, PI3K-AKT, JAK-STAT,
mTOR, and NFkB proteins (34) thereby affecting a range of
cell fate decisions including cell cycle progression (35, 36) and
survival vs. apoptosis (37, 38). Interestingly, integrin dynamics
involves a continuous recycling of transmembrane integrins to
the cytoplasm and FAK kinase remains active when associated
with integrins in endosomal membranes. This mechanism
contributes to the survival of metastasizing breast cancer cells
(39) and could explain how integrins mediate survival signaling
also in circulating leukemic blasts.

The ability of outside-in signaling to suppress the
apoptotic response is of key importance in integrin-mediated
chemoresistance. Many of the agents used as first-line
cancer therapeutics, incl. the ALL induction therapy drugs
doxorubicine/adriamycin and vincristine, are strong inducers
of DNA damage, causing cancer cell elimination by triggering
apoptosis (40, 41). Across different cancer types, MAPK/ERK
and PI3K-AKT signaling have been shown to increase drug
resistance via altered expression of Bcl-2 family proteins (42, 43)
or increased activity of the ATP-binding cassette C 1 (ABCC1)
transporter/multidrug resistance-associated protein 1 (MDR1)
(44, 45). In accordance, the binding of α2:β1 integrin to collagen
I has been shown to promote resistance to doxorubicine in
Jurkat T-ALL cells by activating ERK and maintaining high levels
of the anti-apoptotic Bcl-2 protein Mcl-1 (46) or upregulating
ABCC1/MRP-1 (47). Furthermore, activation of integrin β1 by
different ECM molecules initiated RAFTK/PYK2-AKT signaling
and increased chemoresistance in different leukemic cell lines
(48, 49), which was linked to the activation of the ABCC1/MRP-1
(50). In addition, AKT can promote survival signaling along
several pathways, e.g., via the mTOR kinase and NFkB and STAT
transcription factors (51–55).

The above-mentioned studies show that the interaction
between integrins and ECM ligands activates pro-survival
pathways that are shared by cancer cells across type. However,
some studies suggest more unorthodox mechanisms. Jacamo
et al. used an ectopic BM model in mice and described how
drug resistance in leukemic cells depended on VLA-4:VCAM1-
mediated NFkB activation in stromal cells (56) whereas, Polak
et al. showed integrin-dependent cell-cell signaling through
tunneling nanotubes between BCP-ALL cells and mesenchymal
stromal cells, inducing pro-survival cytokine secretion and
prednisolone resistance (57). Another study found that integrin
β1 existed in a multi-protein membrane complex together with
the potassium channel protein hERG1 (human Ether-à-go-go-
Related-Gene 1) and the C-X-C chemokine receptor type 4
(CXCR4) and that stromal cell-mediated chemoresistance in
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TABLE 1 | Important works demonstrating roles or associations of integrins with chemoresistance, tissue localization or clinical outcome.

Tissue ALL Integrin(s)

involved

Key finding References

BM BCP-ALL α4:β1 (VLA4)

α5:β1 (VLA5)

High expression correlates with homing to BM in xenograft mouse model Messinger et al. (69)

BCP-ALL α4:β1 (VLA4) Variant of NALM-6 cell line lacking VLA-4 expression showed reduced BM infiltration

in xenograft mouse model

Filshie et al. (70)

BCP-ALL β1-integrins Regulation by SDF-1 and CXCR4 chemokines and its role in BM localization in

xenograft mouse model

Bendall et al. (71)

Shen et al. (72)

BCP-ALL α6 (CD49f) Over-expressed in B-ALL, potential MRD-marker (Clinical BM samples, N < 20) DiGiuseppe et al. (73)

BCP-ALL α4 (CD49d) Natalizumab sensitizes primary ALLs to chemotherapy in xenograft mouse model Hsieh et al. (74)

BCP-ALL α4:β1 (VLA4) High expression at first relapse is a marker of poor prognosis. (clinical BM samples

from patients with relapsed ALL, N = 56)

Shalapour et al. (75)

BCP-ALL α4:β1 (VLA4) Lower affinity states correlate with high WBC (clinical samples, N = 36) Blenc et al. (76)

Ph+BCP-ALL α5:β1 (VLA4) Different strategies to interfere with α5 integrin function impair BM engraftment in

xenograft mouse model

Hu et al. (77)

BCP-ALL α4:β1 (VLA4)

αL:β2 (LFA-1)

Increased integrin expression and adhesion to ECM ligands in Sup-B15 cell line

overexpressing 5T4 oncofetal antigen. Dissemination studied in xenograft mouse

model.

Castro et al. (78)

BCP-ALL α4:β1 (VLA4) Drug resistance in leukemic cells depended on VLA-4:VCAM1-mediated NFkB

activation in stromal cells. A xenograft mouse model was used involving

extramedullary BM.

Jacamo et al. (56)

BCP-ALL α6 (CD49f)

α4 (CD49d)

α6 (CD49f) but not α4 (CD49d) associates with persistent MRD (clinical BM and CSF

samples, N > 100)

Scharff et al. (79)

T-ALL α2:β1 (VLA2) α2:β1/ERK pathway promotes chemoresistance in T-ALL (include studies of

chemoresistance in primary T-ALL cultures from patient BM, N = 3)

Naci et al. (46)

T-ALL β1 (CD29) Blockade of β1 integrin diminishes leukemic burden in BM (use of xenograft mouse

model and primary T-ALL cultures from patients, N = 3)

Berrazouane et al. (50)

CNS BCP-ALL β2 Increased in BCP-ALL cells capable of brain infiltration, highlights role of CD7/integrin

β2 axis (use of xenograft mouse model)

Kondoh et al. (80)

BCP-ALL α6 (ITGA6) Downregulated in NALM-6 cells isolated from CNS compared to BM (in a xenograft

mouse model)

Gaynes et al. (81)

BCP-ALL α6:β1 (VLA6) Blasts migrate on abluminal side of emissary vessels to invade CNS (use of xenograft

mouse model and clinical samples)

Yao et al. (20)

BCP-ALL/T-ALL VCAM-1 binding

integrins

Me6TREN treatment downregulates VCAM-1, disrupts leukemia-meningeal adhesion

and increases drug sensitivity of CNS leukemia (use of xenograft mouse model)

Jonart et al. (82)

BCP-ALL α5 Associates with CSF colonization (clinical CSF samples, N > 100) Scharff et al. (79)

Listed are only clinical studies involving patient samples or preclinical studies involving the study of human leukemic cells in xenograft mouse models. Preclinical studies only focusing

on leukemic cell lines in vitro are described in the text.

ALL cells was overcome by hERG1 blockade or inhibition of
the CXCR4/CXCL12 axis (58). Finally, in various non-leukemic
tumor models, β1 integrin binds the proto-oncogenic receptor
c-Met whereby it contributes to sustained pro-survival signaling
from this receptor in a manner that appears to be independent of
ECM ligands (59, 60).

ADHESION AND CHEMORESISTANCE OF
ALL WITHIN THE BONE MARROW

In healthy BM, the localization of hematopoietic stem cells
(HSCs) is highly influenced by the microenvironment, including
chemokines/cytokines, extracellular matrix proteins and cell
surface proteins within both the endosteal and vascular niches.
Notably, the endosteal niche is rich in fibronectin and collagen

type I (61) whereas laminin and collagen type IV are enriched
within the vascular niche (62). Not surprisingly, integrins
binding these ECM molecules are expressed on CD34+ stem
cells and essential for sustaining hematopoiesis (63). In vivo
experiments including gene ablation and function blocking
antibodies indicate that β1-containing integrins are particularly
important and emphasize roles of both α4 and α6 (64–67).

In leukemias, cellular proliferation, maturation, adhesion
and migration are dysregulated leading to high numbers of
premature, malignant cells in the BM as well as in the blood. As
for normal hematopoiesis, the homing, survival and egression of
leukemic blasts are largely controlled by the microenvironment
of the BM and an important role is afforded to the integrin family
(68). Table 1 summarizes the most important studies showing
integrin-mediated adhesion or chemoresistance in ALL. Overall,
studies have pointed to the importance of BM stromal cells in
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the survival of BCP-ALL cells and the role played by integrins
in this interaction (83, 84). In SCID mice, both α4:β1 and α5:β1
have been shown to be important for binding of patient-derived
BCP-ALL cells to BM stromal cells (69) and in patients, lower
affinity states of α4:β1 on BCP-ALL cells appear to correlate with
higher numbers of blasts in circulation, i.e., white blood cell count
(WBC) (76). The latter suggests that the retainment of blasts
within the BM is largely dictated by α4:β1-mediated adhesion in
agreement with studies of hematopoietic stem cells (85, 86).

Shalapour et al. studied 56 BCP-ALL patients with BM
relapse and correlated the expression of α4:β1 in BM samples
with clinical outcome. They found that high α4:β1 expression
associated with shorter event-free and overall survival (75).
Later, Hsieh et al. studied 207 cases of BCP-ALL with
detectable MRD at end of induction, confirming a poorer
outcome for patients showing high compared to low integrin
α4 expression. Furthermore, they provided strong evidence for
the chemoprotective function of integrin α4 showing that drug
resistance of BCP-ALL in vivo was overcome by either ITGA4
gene knock-out or α4 blockade using the humanized anti-α4
monoclonal antibody natalizumab (74). Natalizumab inhibits
bothmembers of the α4 integrin family, α4:β1 and α4:β7, whereas
the small non-peptidic molecule inhibitor TBC3486 is 200-fold
more potent toward α4:β1 than α4:β7. Using this inhibitor, Hsieh
et al. was able to show that the chemoresistant phenotype of ALL
was mainly due to α4:β1 (87).

Apart from α4:β1, reports also point to chemoprotective
roles of other integrins. In Philadelphia chromosome positive
ALL (Ph+-ALL), inhibition or knock-down of α5 reduced the
leukemic engraftment of BM in NOD/SCID gamma (NSG) mice
and reduced the survival of leukemic cells treated with tyrosine
kinase inhibitors (77). It is noteworthy, that altered integrin
expression patterns have been reported in different types of
cancers and in some cases contradictory data for the same
integrin are found within the same cancer type (2). A recent
study investigating the mRNA and protein surface expression
of integrins in ALL failed to confirm the proposed association
between MRD and α4/CD49d or α5 mRNA in a large patient
group. The strongest association with MRD was instead found
for α6/CD49f (79). The reason for these discrepancies is currently
unknown. However, integrin regulation is highly complex and
what defines integrin function is integrin activation and the
resulting ligand affinity of specific integrin heterodimers, rather
than the levels of individual integrin subunits per se. Hence,
studies addressing affinity states of α4:β1, such as the work of
Shalapour et al. (75) are likely closer to revealing the association
of α4:β1with MRD than studies based entirely on expression
profiles, such as the work of Scharff et al. Also, the work of
Scharff et al. did not specifically address Ph+ ALL, which may
be the reason why an association between MRD and α5 was not
seen (79).

ADHESION AND CHEMORESISTANCE OF
ALL WITHIN THE CNS

The CNS is an immunologically privileged site to which
access is limited by the blood-brain barrier (BBB) and the

blood-cerebrospinal fluid barrier (BCSFB). The BBB is composed
of the endothelial cell (EC) lining and the EC basement
membrane of CNS microvessels plus a second underlying
parenchymal basement membrane, which is formed by astrocytes
and part of the glia limitans. At the level of CNS capillaries,
the glia limitans and the EC basement membrane form a
composite layer; whereas at the level of post-capillary venules
the two layers are separated by a CSF-filled perivascular space
that fuses with the leptomeningeal/subarachnoid space (88). In
contrast, the BCSFB exists at the choroid plexus (CP), comprising
villous structures bulging from the walls in certain parts of
the four ventricles of the brain. The outer layer consists of
specialized epithelial cells, known as ependymal cells, that are
interconnected by tight junctions and underneath, an extensive
network of microcapillaries exists composed of fenestrated
endothelial cells (89).

As part of immunosurveillance of the CNS, normal immune
cells cross the BCSFB but generally remain in the CSF. In healthy
individuals, these immune cells are predominantly central
memory CD4+ cells (90). However, in response to antigens and
ensuing neuroinflammation, proinflammatory cytokines alter
the microvessels allowing passage of the BBB at the site of
the post-capillary venules by both T cells and myeloid cells
(91, 92). Integrins appear to be involved in the trafficking
of normal immune cells across the brain barriers during
neuroinflammation. Hence, in multiple sclerosis (MS) patients,
the α4-inhibitor natalizumab reduced the number of CD4+ cells
in CSF (93) as well as relapse frequency (94), and in assays that
use immune cells from MS patients, natalizumab blocked the
transmigration across layers mimicking BBB (93). These studies
suggest that α4-containing integrins, e.g., α4:β1 or α4:β7, are
involved in the transmigration process across the BBB and/or
BCSFB. With respect to crossing the BCSFB, VCAM-1 binding
on the basolateral side is less likely, as it is not expressed by
endothelial cells of the CP (95) and although expressed in CP
ependymal cells, it is primarily localized to the villi on the apical
side of these cells (96).

ALL has a marked tendency to disseminate to the CNS with
T-ALL showing a higher incidence of CNS relapse than BCP-
ALL (13, 17). Contrary to solid cancer metastatic cells, which
invade the brain parenchyma, disseminated ALL is typically
isolated to the leptomeninges. Early studies demonstrated that of
126 brains from autopsied leukemia patients, 42% had leukemic
infiltration confined to the superficial/perivascular arachnoid
while only 13% had signs of leukemic blasts within the brain
parenchyma (97). Later studies, using xenograft mouse models,
have shown that the ability to enter the CNS is a generic
property of human ALL and not the result of rare selection
of particular clones. It is difficult to ascertain the degree to
which mouse-man differences contribute to the outcome of such
xenotransplantation experiments. However, the histopathology
accompanying the studies by Williams et al. showed striking
similarities to the findings in patients, including leukemic
infiltration around the dural venous sinuses (Figure 1A) and
CP but not of brain parenchyma (19). Collectively, these data
argue that leukemic blasts primarily transit the BCSFB rather
than the BBB, similar to normal immune cells during immune
surveillance in healthy brains (Figure 1B). In vitro culture
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FIGURE 1 | Entry routes and localization of ALL cells within the CNS. Simplistic drawing highlighting main entry routes and localization of ALL cells within the central

nervous system and the proposed contribution of specific integrin-ligand interactions. (A) Leukemic cells are commonly found within the superficial arachnoid or seen

pinched in the perivascular space around the post-capillary venules. At these sites, integrins may be involved in the binding to basal membrane proteins or VCAM-1

expressed by astrocytic feet processes. (B) The blood-cerebrospinal fluid barrier (BCSFB) is located at the choroid plexus (CP) located in the brain ventricles. The

BCSFB is proposed as a main entry site for ALL cells into the CSF. The ALL cells in BM egress to peripheral blood circulation and subsequently arrive at microvessels

underneath the CP, cross the layers of fenestrated endothelium and CP epithelial cells and can be seen adhering to VCAM-1 positive villi on the apical side. The latter

suggests the involvement of integrins, such as VLA-4 (α4:β1). (C) Leukemic cells in the skull/vertebral bone marrow may migrate on the abluminal side of the

endothelial cells of small vessels, thereby traversing through channels in compact bone and subsequently enter the meningeal space. This process may involve

integrins binding basal membrane proteins as found for integrin α6 binding to laminin. For clarity, the drawing is disproportionate and anatomical details have been

omitted. Black arrows indicate flow of CSF and green arrows indicate movement of leukemic blasts.

models mimicking BCSFB have been developed based on rodent
CP epithelial cells immortalized by SV40 large T antigen and
immortalized CP epithelial cells from a human papilloma patient.

Using such models, it was formally demonstrated that T-ALL
and BCP-ALL cell lines can cross monolayers of CP epithelial
cells in response to CSF-borne chemokines (98–100). In contrast,
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investigations of leukemic transmigration across BBB suggest
that this form of crossing requires expression of particular
adhesion molecules, not ubiquitously expressed by ALL cells
(101), and only occurs secondary to endothelial activation
by factors secreted from leukemic blasts or treatment-related
neurotoxicity (102, 103).

As for normal lymphocytes (21), leukemic cells express most
if not all integrins (79, 104). This provides ample possibilities for
adhesion to the basal membranes of EC as well as ICAMs and
VCAM-1 expressed on the surface of astrocytic foot processes
(105), when leukemic cells are pinched in the perivascular
space of post-capillary venules (Figure 1A). In addition, the
integrin repertoire of leukemic cells would also allow adhesion
to ICAMs and VCAM-1 on the apical side of the CP epithelial
cells after traversing the BCSFB (96) (Figure 1B). Recently,
Yao et al. proposed a non-hematogenous route into the CNS
where leukemic blasts use integrin α6 to migrate on the
laminin that is part of basal membranes on the abluminal
site of emissary vessels (20) (Figure 1C). Such vessels connect
vertebral or calvarial BM and the subarachnoid space of the
spine and brain, respectively, and represent pathways employed
by neural progenitors during neural development (106, 107).
Yao et al. used a xenograft model based on Nalm-6 cells and
primary human ALL cells combined with detailed histological
examination and intravital fluorescent microscopy to provide
compelling evidence for the migration of leukemic blasts on
the outside of vessels. Their focus on integrin α6 resulted
from the use of the PI3Kδ inhibitor GS-649443, which not
only reduced CNS involvement in their xenograft model but
also caused a reduction in ITGA6 mRNA levels (20). However,
blocking antibodies to α6 reduced but did not abolish CSF
involvement in Nalm-6 engrafted mice (20) and therefore, the
question remains whether α6 is actually alone in facilitating
this form of non-hematogenous dissemination. In the work
by Scharff et al., dissemination of BCP-ALL to the CSF was
negatively correlated to surface α6/CD49f in clear contradiction
of the results of Yao et al. Instead, a significant association
was found between blasts in CSF and ITGA5 mRNA levels
(79). Possibly, man-mouse differences could explain different
outcomes in the mouse xenograft model used by Yao et al.
and patient material investigated by Scharff et al. Furthermore,
the latter work correlated the blast count in CSF with the
leukemic integrin expression in BM samples, which may have
overlooked subpopulations of ITGA6-expressing blasts that are
actively engaged in adhesion and migration on the abluminal
side of vessels connecting BM and CNS. With respect to ITGA5,
functional studies are warranted to determine whether ALL blasts
employ α5:β1 to migrate on the outside of vessels as proposed by
Yao et al. (20).

Only few studies have addressed the role of the CNS
microenvironment in conferring chemoresistance to leukemic
cells and its link to integrin expression. Akers et al. used
co-culture models to show that astrocytes, CP epithelial cells
and meningeal cells increased the resistance of four ALL cell
lines to cytarabine, dexamethasone and methotrexate commonly
included in prophylactic regimens (108). Similarly, Gaynes
et al. (81) found that CP epithelial cells conferred resistance

to Nalm-6 cells to cytarabine and methotrexate. Of note, this
study also investigated the differential impact of CNS and
BM microenvironments on the transcriptome, finding that
ITGA6 was downregulated in Nalm-6 cells isolated from CNS
compared to BM (81). The latter argues against the role of
integrin α6/CD49f in facilitating the CNS involvement proposed
by the work of Yao et al. (20), also based on Nalm-6 cells
(20). The transcriptomic profile provided by the Gaynes et al.
highlights the impact of microenvironment on the expression of
integrins. Furthermore, the recent work of Jonart et al. showed
that reducing leukemia-meningeal adhesion with Me6TREN
(Tris[2-(dimethylamino)ethyl]amine) not only reduced leukemia
chemoresistance but also the expression levels of several genes
including VCAM-1 (82). Since the expression levels of integrins
and their ligands are influenced by microenvironment and
adhesion, caution is warranted in the interpretation of expression
studies associating expression of integrins with chemoresistance
or tissue distribution.

PERSPECTIVES

Although the current therapeutic regimens in ALL yield a
5-years overall survival of around 90%, 10–15% of patients
continue to experience relapse (1). As illustrated in this
review, compelling evidence exists for key roles of integrins
in ALL cell survival, chemoresistance and CNS colonization,
albeit clinical studies of integrins as therapeutic targets in
ALL, and CNS involvement in particular, remain scarce. A
wide variety of anti-integrin drugs are in clinical evaluation,
among which a few are in clinical use for other diseases (8,
109), but at present, no integrin-targeted drugs have entered
clinical trials in the treatment of CNS disseminated ALL.
The integrin α4-inhibitor Natalizumab, has shown promising
effect on ALL survival in mouse models in combination
with chemotherapy (74, 87), but even though Natalizumab
is known to prevent immune cell entry into the CNS in
multiple sclerosis (94), it remains unclear whether it could
also reduce CNS relapse frequency in ALL. Moreover, the
risk of progressive multifocal leukoencephalopathy makes the
compound potentially unsuitable for ALL patients (110). In
general, integrins play important roles in normal immune cell
functions, both inside and outside the CNS, making the risk
of side effects of integrin-targeted therapy a real concern.
Accordingly, further studies on the therapeutic role of integrins
in ALL with CNS colonization are warranted.

In particular, ALL entry routes into the CNS need to be
further elucidated. Recent, intriguing studies have suggested
direct ALL/immune cell entry from calvarial bone marrow to
the subarachnoid space along small vessels penetrating compact
skull bone (20, 111), through specific interactions of adhesion
molecules (20) and possibly driven by chemotactic signals (112).
In support of this concept are post-mortem studies of ALL
patients showing the meninges as a predilection site for ALL
cells (97), as well as studies showing calvarial BM involvement
as a frequent feature in ALL (113), but there is a clear need
for further evidence on this matter. Unraveling such details of
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ALL cell CNS-entry mechanisms is a prerequisite for accurate
and effective targeting of the integrins involved as a possible
addition to the standard CNS prophylaxis in order to prevent
CNS involvement and relapse of ALL.
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