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Abstract

Recognizing the importance of road infrastructure to promote human health and economic

development, actors around the globe are regularly investing in both new roads and road

improvements. However, in many contexts there is a sparsity—or complete lack—of accu-

rate information regarding existing road infrastructure, challenging the effective identification

of where investments should be made. Previous literature has focused on overcoming this

gap through the use of satellite imagery to detect and map roads. In this piece, we extend

this literature by leveraging satellite imagery to estimate road quality and concomitant infor-

mation about travel speed. We adopt a transfer learning approach in which a convolutional

neural network architecture is first trained on data collected in the United States (where data

is readily available), and then “fine-tuned” on an independent, smaller dataset collected

from Nigeria. We test and compare eight different convolutional neural network architec-

tures using a dataset of 53,686 images of 2,400 kilometers of roads in the United States, in

which each road segment is measured as “low”, “middle”, or “high” quality using an open,

cellphone-based measuring platform. Using satellite imagery to estimate these classes, we

achieve an accuracy of 80.0%, with 99.4% of predictions falling within the actual or an adja-

cent class. The highest performing base model was applied to a preliminary case study in

Nigeria, using a dataset of 1,000 images of paved and unpaved roads. By tailoring our US-

model on the basis of this Nigeria-specific data, we were able to achieve an accuracy of

94.0% in predicting the quality of Nigerian roads. A continuous case estimate also showed

the ability, on average, to predict road quality to within 0.32 on a 0 to 3 scale (with higher val-

ues indicating higher levels of quality).

Introduction

Investments in road infrastructure are a major expenditure of both international development

organizations and local governments, reflecting the importance of transportation networks for

a wide range of human outcomes [1–16]. Despite the importance of road networks, data on

their location and quality is sparse in much of the world, particularly in developing nations

[17]. While a selection of recent research (i.e., [18]) has sought to identify where roads are

located using satellite data, a much smaller body of literature has explored the topic of road
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quality (i.e., [17]). This challenges our ability to effectively allocate resources, as without accu-

rate measures of road quality—and concomitant measures of the speed of travel—it is difficult

to estimate the impact a new or improved road may have on key metrics, such as travel times

to local markets or clinics. Approaches employed for the measurement of road quality to date

have had critical limitations, with local measurements requiring large amounts of time, labor,

and expensive equipment [17], and crowdsourced information being plagued by sparse collec-

tion and inaccuracy in many of the locales where data is needed most [19, 20].

Predicting road quality using remote, automated analysis of high resolution images col-

lected from aerial or satellite platforms provide a globally systematic solution to this challenge

[21]. In this paper, we present a test of the use of transfer learning in convolutional neural net-

works in conjunction with high resolution satellite imagery of roads to determine (a) if road

quality can be estimated with a reasonable degree of accuracy with satellite imagery, and (b)

the degree to which such an approach can be applied across different geographies.

Our paper is structured as follows. In “Related works”, we review the relevant literature on

the application of computer vision to satellite imagery. In “Data”, we discuss our data collec-

tion methods, and “Methodology” provides the technical approach we test for road quality

classification. We introduce our results in the following section, and finally provide a discus-

sion and conclusion in the final two sections.

Related works

Recent improvements in the quality and speed of Convolutional Neural Networks (CNNs) has

led to several novel applications in many domains including for satellite imagery [22–27]. One

of the most prominent examples of this has been recent research into the capability of daytime

satellite imagery to predict factors traditionally only collected with on-the-ground surveys,

including household income and factors related to health outcomes [28–31]. Progress on iden-

tifying the limits and opportunities of satellite sources has been swift, with the computer vision

and remote sensing (RS) communities collaborating to overcome a number of challenges. A

wide range of literature has provided insights into effective technical strategies to overcome

these differences; [22] and [32] provide a broad overview of the technical objectives and inno-

vations that have emerged over the last few years; we further provide our own review in S1

Appendix.

Specific to roadways, research has been conducted on road detection, centerline extraction,

mapping road safety, and automated road crack detection [18, 33–35]. Remote sensing road

detection literature has a long history, going back to efforts in the 1980s and earlier using

coarse resolution imagery and manual digitization [36]. As with other image analyses, the diffi-

culties of road detection from remotely sensed images lie in that the image characteristics of

road features can be affected by sensor type, spectral and spatial resolution, weather, light vari-

ation, and ground characteristics, among other factors [36]. Additionally, given RS images of

roads often contain discontinuities, occlusion or shadows, near-parallel boundaries with con-

stancy in width, and sharp bends, it is difficult to model all these situations and to incorporate

them into a single module—in practice, a road network is too complex to be modeled using a

general structural model [36]. Most of the methods suggested in literature for road detection

consist of one or more types of algorithms: classification-based (NNs and SVMs) [37, 38],

knowledge-based [39, 40], mathematical morphology [41, 42], active contour model [43], and

dynamic programming [44]. In more recent times, convolutional networks have begun to be

tested for their efficiency at road network detection and extraction. Zhang et al. merged GF-2

and World View satellite images as the input for a CNN to extract roads, and achieved an accu-

racy of 99.2% [45]. Similarly, Xu, Mu, Zhao, and Ma, used low and high frequency sub-bands
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that reflect multiscale image features which were obtained by a contourlet transform, obtaining

a scene classification accuracy above 90% [46]. Furthermore, Xia, Cao, Wang, and Shang

added four types of texture information to satellite images and used the resulting data as the

input for a CNN to extract roads, vehicles, and vegetation based on the CNN and conditional

random field methods [47]. These studies helped illustrate that greater texture and spectrum

information in multisource data can improve the accuracy of extracting road information

from RS images [22].

A far more limited literature has explored our capability to discern road quality with satel-

lite imagery. In 2018, Oshri et al. used two data sources in a supervised learning setting: survey

data from Afrobarometer [48] as ground truth infrastructure quality labels, and relatively low

resolution (10 and 30 meter) satellite imagery from Landsat 8 and Sentinel 1 as input sources

to classify, among other infrastructure items, road quality in a binary fashion [49]. They

achieved 70.5% accuracy. Also in 2018, Gabriel Cadamuro et al. carried out work utilizing

CNNs to classify road quality from satellite images [17]. Here, the International Roughness

Index (IRI) was collected by specialized equipment for over 7,000 km of predominantly trunk

roadways in Kenya. Using the IRI information to label 50x50 cm resolution satellite images of

the corresponding roads, the pre-trained networks AlexNet, VGG, and SqueezeNet were used

to classify road segments, yielding accuracy scores shown in Table 1 for binary and 5-category

classification. Cadamuro et al. described two key remaining challenges to road classification:

(1) treating the problem as sequential, i.e., for the prediction of a given road segment, utilize

the data of nearby road segments, and (2) better accommodation for the continuous nature of

road roughness measurements to mitigate the negative impact of road heterogeneity on the

quality of predictions [17]. This paper contributes to this growing body of literature in a num-

ber of ways, including tests incorporating higher resolution imagery, exploration of the effec-

tiveness of intercontinental transfer learning, and the implementation of a continuous

measurement of road roughness.

Data

This section details our data collection and labeling strategy. A total of 53,686 images of roads

in Virginia were collected and labeled according to their quality following the process detailed

in this section. Additionally, 1,000 images of roads throughout Nigeria were used to test the

transferability of the best identified model architecture.

Road roughness collection

In order to label the satellite imagery, road roughness values were collected via an Android

app. The app (source code at https://github.com/wmgeolab/roadrunner_app) was distributed

Table 1. Cadamuro et al. results.

Architecture Binary 5-class

Standard (%) Held-out (%) Standard (%) Held-out (%)

SqueezeNet (64) 88 79 73 52

SqueezeNet (224) 89 84 69 49

VGG-11 (64) 90 79 71 51

VGG-11 (224) 87 78 65 44

AlexNet (64) 89 79 70 52

AlexNet (224) 87 79 64 45

Cadamuro et al.’s accuracy results for binary and 5-class prediction of road quality. “Standard” was a random train-test split and “held-out” was a train-test split where

roads within their 1 km block were not included in both the train and test sets. Batch sizes are in parentheses.

https://doi.org/10.1371/journal.pone.0253370.t001
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to a total of thirty trained users for collection throughout Virginia, USA from September to

November 2020. Information was collected across 2,400 km of primary, secondary, and

unpaved roads in southeastern, central, northern, and western Virginia, USA.

The data collection application uses a device’s accelerometers to measure the average move-

ment of the device, with respect to the vehicle, over a 20–70 meter driving distance. This move-

ment is essentially vibratory information transmitted through the tires, suspension, and

ultimately to whatever part of the vehicle the device is in contact with. We will refer to this

measurement as the road segment’s average vibration, �v. The app records �v in three directions

with respect to the device screen. The app records only when driving over a minimum speed,

such as 3 mph. Geographic coordinates (latitude and longitude) are recorded whenever new

pairs become available through the device’s GPS manager. Our version of the app builds on

the previous correlation identified between phone metrics and road roughness established in

the software created by Mark Buie (https://github.com/mebuie).

Due to the variable nature of vehicle ride and the placement and physical properties of a

given device, the relationship between �v and road quality was individually determined for each

device/vehicle setup. For each setup, subjective visual and somatosensory judgements of road

quality were made by the user as they drove and collected data, noting the time of collection as

well. For our approximations, relatively smooth, maintained, highway and primary roads are

deemed high quality. Low quality roads are unpaved dirt or gravel roads, or road segments

inflicted with numerous potholes. Mid-quality roads fall somewhere in-between, including

roads with grainy textures like concrete or road segments with some potholes present. Using

this judgement along with time of collection and the corresponding average vibration, the

qualities of road segments were inferred. See Fig 1 as an example of how the average vibration

values were used to sort the quality of each segment for a particular user.

Fig 1. Average vibrations. Plot of the average vibrations, �v, for an individual device in the order of time collected,

corresponding to dates between September 4th and November 26th, 2020. In this case, �v in the direction of the center-

of-Earth to sky axis was used. Each point represents a road segment. The quality thresholds for this setup were

determined to be 0.375 and 0.600, where points falling below �v ¼ 0:375 represent high quality roads, those above �v ¼
0:600 are low quality, and points in-between are mid-quality. The spike on the right corresponds to a particular drive

on dirt roads in the Appalachians near Blacksburg, VA, USA.

https://doi.org/10.1371/journal.pone.0253370.g001
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Remotely sensed imagery collection

The source images were supplied by the Virginia Geographic Information Network’s Virginia

Base Map Project (VBMP) with 30x30 centimeter resolution pixels captured between 2017 and

2019 [50]. As needed, region images were manually downloaded and merged into a single

composite (no overlaps were present in the collection grid). For the duration of data collection,

a processing script was run continuously in cycles to analyze new road segment entries in

near-real-time from the cellphone collection devices. The processing script took the geo-

graphic coordinates of a given segment and used them to crop a new image showing only the

imagery contained within the minimum and maximum latitudes and longitudes, with 5 pixels

added to each as buffer. The result was a collection of images, with one image corresponding

to each road segment traversed (see Fig 2).

Of the 53,686 collected road segments, 47,557 were labeled high-quality roads, 5,417 were

mid-quality, and 712 were low quality. This imbalance was taken into account when creating

the testing set by composing approximately half the testing set with high-quality roads, a quar-

ter with mid-quality, and a quarter with low quality. This strategy allowed for a more stringent

test of our ability to detect low and mid-quality quality roads, while still seeking to minimize

balance errors.

The road quality information for the test set of Virginia-independent roads was obtained

from the Africa Infrastructure Country Diagnostic (AICD), a comprehensive knowledge pro-

gram commissioned by the World Bank and the Infrastructure Consortium for Africa to

improve understanding of Africa’s infrastructure [51]. Data was collected from 2001–2006.

The data of interest consisted of geographic coordinates for roads, within Nigeria in our case,

and their associated pavement type and condition. Centered around a given coordinate pair,

Google Maps Static API was used to clip corresponding 640x640 pixel images of the road

Fig 2. Random Virginia images. Random sample of cropped road segment images resized to 200x200 with corresponding labels. Values in the range

[0–1] correspond to low quality roads, [1–2] corresponds to mid-quality, and [2–3] for high quality.

https://doi.org/10.1371/journal.pone.0253370.g002
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segments [52]. For our study, unpaved dirt and gravel roads were labeled low quality and

paved roads were labeled a higher quality, for a total of two classes (enabling comparison to

the prior literature in [17]). The roads were selected from diverse geographic locations

throughout the country. Of the 1,000 total Nigerian roads selected, 500 were unpaved and 500

were paved. Pavement type was confirmed by visual inspection of the individual images. On

average, the road segments in the Nigerian images comprised less of the image space than

those in Virginia due to differences in cropping methods. It is important to note most of the

unpaved roads in Nigeria have a distinctive orange color due to soil composition in the region.

Methodology

The overall methodology for this project was the following:

1. Collect vibration data on road segments from the cabin of vehicles

2. Analyze this data to represent three levels of road roughness: high quality, mid-quality, and

low quality

3. Use this information to label corresponding satellite image crops of those road segments

4. Contrast the capability of a range of CNN architectures to accurately classify road segments

5. Test the networks on a subset of Virginia images not used in training

6. Test the transfer learning potential of this model with Nigerian roads

We focus on testing a range of individual model architectures common in the literature, as

well as stacked generalization ensembles. The specific models that are contrasted in this piece

to assess their capabilities in discriminating between road classes included ResNet50 [53],

ResNet152V2 [53], Inceptionv3 [54], VGG16 [55], DenseNet201 [56], InceptionResNetV2

[57], and Xception [58]. Each model was pre-trained on ImageNet; a version of ResNet50 pre-

trained on BigEarthNet was also tested.

For each base model architecture, data preparation included resizing images to 200x200

pixels using bilinear interpolation for standardized input into the pre-trained architectures. A

total of 52,821 training and validation images were used with a 75/25% split (N = 39,616 for

training; N = 13,205 for validation). Additionally, a test set of 865 was withheld for later testing,

and not used during the fitting process.

For each image, a scaled continuous value—Continuous Quality Value (CQV)—of road

quality in the range [0–3] was derived using a linear model based on the measured average

vibrations and the associated threshold values between classes for each cellphone device. For

each device setup, the CQV function was a combination of three linear lines (see Fig 3 for an

example). The upper limit for a high quality road would be a perfectly smooth road having a �v
of 0.0, corresponding to a CQV of 3.0. The lower limit �v of high quality roads is defined, by def-

inition, to be the average vibration between the high and mid classes, �vhm, with a CQV of 2.0.

The slope of the mid-quality portion of the function is bounded by �vhm and the mid/low

threshold, �vml, with CQVs between 2.0 and 1.0. The upper limit for the low quality roads corre-

sponding to CQV = 1.0 is, by definition, �vml, with the slope of the line equal to the average of

the slopes of the other two segments. In all,

CQVð�vÞ ¼

3 � ð�v=�vhmÞ �v < �vhm

2 � ð�v � �vhmÞ=ð�vml � �vhmÞ �vml > �v � �vhm

3 � ð2�v=�vmlÞ �v � �vml

8
>>><

>>>:

ð1Þ
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where, again, �v is the average vibration of a given road segment and �vhm and �vml are the average

vibration thresholds between high and mid-quality roads and mid and low quality roads,

respectively, for a given device setup.

Because of inherent uncertainty in the human perception of road quality and unavoidable

non-road induced vibrations present in this study, a form of label smoothing was calculated

and used for training to provide a more nuanced representation of the data. The goal of this

smoothing is to ascribe a probability a given sample belongs in the “low”, “mid”, or “high”

quality ranges, rather than only provide a single classification. This was accomplished for each

road segment by placing its CQV as the mean in a normal distribution and computing the

areas under the curve bounded by each of the three classes. That is,

Pi ¼

Z b

a

e
1
2

CQV� CQV0
sð Þ

2

s
ffiffiffiffiffiffi
2p
p dCQV ð2Þ

where CQV0 is the CQV of a given road segment, σ is the standard deviation (equal to 0.25 in

this case), and Pi is the probability the road segment is in the class, i, defined by the bound

pairs a and b which are either [0, 1], [1, 2], or [2, 3]. σ was chosen so that a CQV0 in the middle

of the two bounding CQVs for a given class class will contain exactly two standard deviations

within that class, i.e., a 95% chance the road segment belongs to the class (see Fig 4 for an

example).

Fig 3. Continuous quality value. Example of the determination of the continuous quality value (CQV) of a road

segment for a particular device setup. The line is split into 3 parts, representing each of the three quality classes. The

slope for the [2–3] quality range is based on the CQV = 2.0 threshold value for the device setup and the constraint of

the upper range, CQV = 3.0. The slope for the [1–2] range is determined from the CQV = 1.0 and CQV = 2.0

thresholds. Finally, the slope of the [0–1] range is the average of the combined range [1–3]. Negative CQVs (i.e.,

roughness values greater than the maximum defined) were re-specified to 0. In this example, the threshold between

high and mid-quality roads, �vhm, is 0.125, and the threshold between mid and low, �vml, is 0.28. The colors red, orange,

and green correspond to the regions of low, mid, and high quality roads, respectively.

https://doi.org/10.1371/journal.pone.0253370.g003
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This equation results in a set of three probabilistic soft labels for each observation, one

for each road class. These were used to train the network, with validation (and testing) data

defined as one-hot-encoded lists.

For each of the pre-trained architectures tested, the top, i.e., the final 1000-class fully-con-

nected layer, was removed. After the pre-trained model, the output was flattened and two

fully-connected layers were added with a dropout layer in between. The first fully-connected

layer contained 256 neurons with ReLU activation and the final layer utilized a softmax activa-

tion function outputting to three classes.

As part of the fine-tuning process, the network was first trained with the weights of the pre-

trained models frozen to initialize the weights in the two added fully-connected layers, then

the base model weights were unfrozen and trained again with a lower learning rate. Adam was

chosen as the weight optimization algorithm and categorical cross entropy as the loss function.

A grid search was initially used on a subset of the data to develop ideas for the optimal training

batch size and learning rate hyperparameters. Depending on the model, a learning rate of 0.01

or 0.001 was used during the initialization training and 10−4 or 10−5 was used during fine-tun-

ing. Batch sizes of 32 or 64 were used for the larger Virginia dataset and 16 for the Nigerian

road dataset. Early stopping and model checkpoint callbacks were used during training to

monitor validation loss, stop training when validation loss did not decrease after a specified

number of epochs, and to save the model with the highest validation accuracy.

For testing on Nigerian roads, the highest performing base model was initially trained on a

binary subset of the Virginia data—534 low-quality and 1,068 high quality for a total of 1,602

images and two classes. All 1,000 Nigerian roads were then tested. The Nigerian roads were

labeled deterministically—[1, 0] hot-encoding for unpaved roads and [0, 1] for paved. For a

final evaluation, 750 Nigerian roads were fine-tuned on the model at a very low learning rate

(10−5) and the model was tested on the remaining 250.

Fig 4. Probability labeling. Example of a CQV of 1.60 indicating a road segment in the mid-quality class. The

probabilities for the label were based on the proportion of the area under the curve of a normal distribution (σ = 0.25)

that falls into each of the three classes. In the case of this road segment, the label is [0.008,0.937,0.055].

https://doi.org/10.1371/journal.pone.0253370.g004
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Results & analysis

The results of each base architecture on the Virginia test set in order of overall accuracy are

shown in Table 2.

There was an 8% improvement between the best and worst performing networks, Incep-

tionResNet and Xception. No particular class correlated closely with overall performance.

Each model performed relatively poorly with mid-quality roads, though performance between

models varied most in this class. Inception was most successful in the class, correctly classify-

ing 39% more mid-quality-labeled roads than the worst performer, Xception. With 47,136

high quality roads used in training, each model performed relatively well predicting in the

class and there was less variance (9% total) between the models in the class. There was slightly

better performance from smaller architectures versus larger; the top five models averaged

39,877,971 parameters versus 45,476,120 for the bottom four. Both variants of ResNet50 out-

performed ResNet152 in our scenario. It was found that unfreezing only the last convolutional

block for fine-tuning the VGG-based network produced better results by approximately 3%

overall compared to unfreezing the entire base model. The effectiveness of the technique did

not hold with the DenseNet-based network, but this may be due to the size, i.e. number of lay-

ers, of each convolutional block in DenseNet, or hyperparameter selection.

Hyperparameter choices strongly affected the relative performances of the models. A small

number of hyperparameter configurations were tested on each network changing overall accu-

racy by as much as 6.5%. It was observed, in most cases, that using an ReLU activation func-

tion, as opposed to no activation, in the second-to-last fully-connected layer along with an

order of magnitude higher learning rate during fine-tuning generated higher accuracies overall

and on low and mid-quality roads at the expense of lower accuracies on high quality roads

(DenseNet and Xception are two examples of exceptions that produced lower overall accura-

cies in this configuration). Performance within classes varied with hyperparamters as well for a

given network. For example, adding ReLU activation to the second-to-last fully-connected

layer and raising the fine-tuning learning rate an order of magnitude from 10−5 to 10−4

increased the Inception-based network’s mid-quality performance from 35% to 60% (and its

overall performance from second-worst to second-best).

It is worth noting the ResNet50 network pre-trained on BigEarthNet performed on par

with the other models with no noticeable increase in time to convergence, demonstrating the

original weights used in classifying land cover lend themselves well to identifying features in

images of roads.

Table 2. Architecture results.

Network Base Model Overall (%) Low Quality (%) Mid-Quality (%) High Quality (%) # Parameters

InceptionResNetV2 78.0 79 58 89 60,629,219

Inceptionv3 77.5 72 60 90 30,192,419

VGG16 75.4 76 47 90 19,434,307

ResNet50V2 75.3 64 56 91 49,255,939

DenseNet201 73.4 59 44 97 27,169,859

ResNet50 (BigEarth) 72.8 63 55 88 24,159,214

ResNet152V2 72.5 63 52 88 84,022,787

Xception 70.0 68 21 97 46,552,619

Results of the highest-performing run of each pre-trained architecture on the test data. The second column shows overall accuracy and the third, forth, and fifth

columns show the accuracy on each class. The last column shows the total number of parameters in the network.

https://doi.org/10.1371/journal.pone.0253370.t002
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The overall most accurate ensemble was a 3-member ensemble composed of the highest

performing network in each class (IncpetionResNet, Inception, and DenseNet), achieving

80.0% classification accuracy, an improvement of 2.0% from the highest ranked individual

model. A confusion matrix for the ensemble is shown in Table 3.

Compared to the averages of the three models, there was a 7% and 17% improvement in

low and mid-quality road classification, respectively, but a decrease of 7% for high quality

roads. The ensemble performed 11% better than the best performing individual model, Incep-

tion, at classifying mid-quality roads. The precision of low and high quality roads remained

high with 87% and 91% of predictions for low quality and high quality being correct. For low

and high quality roads, prediction to within one class (effectively top-2 accuracy) was 99.2%.

The effectiveness of classifying the extreme cases was also confirmed in separate smaller tests

on individual models, showing accuracies of up to 96% for datasets with only low and high

quality roads. Again, with the ensemble, classification performance of mid-quality roads was

still relatively inferior with an F1-score of 66 and the ensemble predicting 23.1% of all mid-

quality roads as high quality. In total, 97.1% of all incorrectly classified roads were off by only

one class.

Randomly selected correctly classified images and randomly selected incorrectly classified

images are shown in Fig 5. Errors in data collection (see Limitations), occlusion from trees,

insufficient resolution, or off-centered or overly zoomed-in crops (see Limitations) may have

contributed to many of the incorrect predictions. Using SHAP visualization (SHapley Additive

exPlanations visualization technique and software developed at the University of Washington

Table 3. Ensemble results.

Prediction

Low Mid High

Label Low 166 47 2

Mid 13 163 53

High 3 55 363

Out of 215 examples of low quality roads, only 2 were predicted as high quality and only 3 of the 421 high quality

roads were predicted as low.

https://doi.org/10.1371/journal.pone.0253370.t003

Fig 5. Predictions. On the left, a 3x3 group of correct predictions with associated labels and, on the right, a 3x3 group of incorrect predictions with

predictions and labels.

https://doi.org/10.1371/journal.pone.0253370.g005
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Department of Computer Science [59]), Fig 6 shows an example of what factors played into

the correct classification of two images in the VGG-based network.

For the image in the first row in Fig 6, the road lines and arrow played a large factor in its

high quality designation and those same features prevented it from being classified as mid-

quality. In the second image, the overall color of the road was an important factor for mid-

quality classification, possibly along with the diagonal spaces between the concrete blocks that

compose the road, and some shrubbery to the side.

For the binary evaluation of Nigerian roads, the InceptionResNet network trained on two

classes performed at 67.3% on all Nigerian roads. Subsequent fine-tuning of the model on a

750-image subset of the roads raised the classification accuracy to 94% which is around that of

binary classification on Virginia roads. Table 4 shows the resultant confusion matrix for the

Fig 6. Virginia prediction analysis. The above shows two random correctly classified test images in the first column. The second, third, and forth

columns show the pixels/features that contributed against and in favor of prediction for each of the three classes. For example, the upper-left image is a

high quality-labeled road that was predicted by the model most likely to be a high quality road, then mid, then low. Blue pixels represent areas that work

against classification in a given class and the red pixels represent areas that work for classification. In this case, the VGG16-based network was

investigated.

https://doi.org/10.1371/journal.pone.0253370.g006

Table 4. Nigeria results.

Prediction

Unpaved Paved

Label Unpaved 115 12

Paved 3 120

Confusion matrix for the 250 Nigerian roads tested.

https://doi.org/10.1371/journal.pone.0253370.t004
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classification. SHAP evaluations confirm, in most cases, the fine-tuned model successfully dis-

tinguishing features (primarily color) of the actual roads to determine classification.

While this paper focused on the results of categorical classification, predictions of the con-

tinuous measurement of road quality, CQV, were performed with several models. Using the

same dataset used in the classification ensemble, a 5-member stacked ensemble with linear

regression resulted in a mean squared error (MSE) of 0.23 and a mean absolute error of 0.32,

which is 10.6% of the full range of 3. The members of the ensemble, with lowest MSE first,

were ResNet152, VGG16, InceptionResNet, Inception, and DenseNet201. No other models

were tested for CQV prediction. The ensemble slightly improved on approximation from the

best individual model, ResNet152, lowering the MSE from 0.27.

Discussion

The work presented in this paper provides five contributions to the literature. First, we con-

tribute to a growing body of evidence that contemporary orthographic imagery has sufficient

resolution to capture variance in road quality across multiple geographies. While some initial

work into this [17] had suggested the possibility, the work presented here provides a thorough

exploration of different deep learning approaches in a wider range of geographic contexts. Sec-

ond, and related to this, we illustrate that different model architectures have markedly different

capabilities for this class of problem, suggesting the need for more tailored approaches to con-

volutional networks designed for satellite imagery analysis. Third, we introduce—to our

knowledge—the first application of fuzzy-class-membership for object qualification using sat-

ellite data and convolutional neural networks. Fourth, we perform the first continuous esti-

mate of road quality from satellite imagery. Finally, we provide the first example of the use of a

phone app combined with machine learning for road quality prediction.

The relatively high proportion of low and mid-quality labeled roads predicted as one class

higher may partly be owed to errors in data collection as inadvertent motion of the collection

device will falsely raise the perceived roughness of a given road segment (see Limitations

below). High quality labels are less likely contain significant error, because inherently in this

study, the gradient of experimental error points in the direction of higher roughness values. In

addition, many of the roads labeled mid-quality may be rougher portions of an overall high

quality road, e.g., a segment containing potholes. In these instances, many of the features com-

mon in high quality roads such as dark color and defined lines will still be present, but the res-

olution of the satellite image will likely not be high enough to distinguish finer details like

potholes. It is also important to note the temporal mismatch (between one and three years)

between when the satellite images were captured and when the road quality data was collected

on the ground. This issue has been noted in other satellite learning tasks, but is particularly sig-

nificant in our study since road quality can change drastically over short periods (i.e., due to

weather or construction).

Using soft labels added uncertainty to the experimentally collected data, which was particu-

larly useful for roughness values that are close to class thresholds, whereas a hard label pro-

vided a lower level of precision with no uncertainty. Utilizing soft labels resulted in an

observed accuracy improvement of about 2% for a given model.

Our independent analysis in an international setting showed modest ability for a model

trained on high and low quality roads in Virginia, USA to classify paved and unpaved roads in

Nigeria. Contrasted to the in-situ data collection approach of Cadamuro et al. in Kenya [17]

(see Table 1), our transfer-learning approach performed 4 percentage points better in our

binary Nigeria case study. This suggests that transfer-learning approaches may be able to

achieve similar levels of accuracy to approaches reliant on in-situ data collection. Consideration
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should be given to the fact that the model was not initially trained on the task of paved vs

unpaved but rather relative roughness. Therefore, some Virginia images in the low quality class

included paved roads conflicting with the evaluation attempt on Nigerian roads. Upon fine-tun-

ing the model on some of the Nigerian roads, the model performance rose significantly (up

27%, to 94%). Misclassified roads tended to be intermediate cases, with area outside the road

often influencing prediction more than the actual road, a downside of less exact cropping dis-

playing a wider area.

Limitations

Due to the human-centered experimental nature of collecting data via app, some amount of

error was introduced into the data and, ultimately, the labeling of images. For example, while

recording, a user may receive a message or phone call causing vibration or significant move-

ment. Other movements can occur if the device is not properly secured in place or if the user,

for example, lifts the phone to check if it is recording. So, there is no certainty every data point

was collected free of inadvertent movement and, thus, the assigned labels are not absolutely

indicative of ground truth. Even ground truth is ultimately subjective in the context of app-

based road roughness collection since initialization requires diverse users to estimate class. As

seen in Fig 5, some incorrect predictions for quality higher than the label may have been influ-

enced by these errors in data collection as some of the roads do not look (to the human eye) to

belong to the labeled class, such the bottom rightmost image. If the app is used again, to com-

bat errors, future versions could pause recording when certain other apps receive notifications

or when movement is detected beyond normal vibrations. For this study, some of these errors

were accounted for as extreme vibratory readings and filtered downstream in processing.

Using an app does have advantages in terms of scale, ease-of-use, deployability, cost, and cov-

erage compared to traditional rolling or vehicle-attached road profilometers.

A second limitation is in the highly variable lengths of roads traveled over small time

intervals—i.e., how long of a road to treat as the stretch along which a given roughness was

recorded. With regard to satellite image cropping, the downside of using the min and max lat/

longs to crop an image, as apposed to an arbitrary number of pixels from a central point in

every direction, is that the resulting images are not squares, but rectangles. When resized to a

square for uniform use with a model, if there is little variation in lat or long, the result may

look like an out-of-proportion and stretched image. Approximately 10% of the images fall into

this category. A finer but more computationally costly cropping method, where differences

between minimum and maximum coordinates are checked and then adjusted, if necessary,

would help alleviate this issue (however further evaluation on a binary test case was performed

on cropped square images centered around a single coordinate pair yielding no improvement).

Additionally, another 5–10% of cropped images are noticeably off-center due to inexactness in

geolocation with respect to the roadway of interest. This appears as images where the road is

not centered and contains a disproportionate amount of non-road area.

Future directions

Aside from improvements in app design, image cropping techniques, and data collection prac-

tices, future studies could benefit in training and testing from more diverse data. A related

challenge is that, due to the limited number of road types, spatially adjacent road patches are

contained in both the train and test sets. Collecting on more roads would better allow us to

hold-out consecutive segments of road (e.g., within 1 km) from appearing in both train and

test sets. The geographic diversity in data collection can also be expanded for improved gener-

alization to regions dissimilar to the mid-Atlantic U.S. in climate, foliage, development style,
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and road design. The effectiveness of this idea was demonstrated by the improvement after

fine-tuning with Nigerian roads. As with Virginia, effects local to Nigeria such as soil color

and vegetation likely biased the model regionally, though one can imagine a deployed model

consistently updating on small subsets of data from newly collected geographic areas becoming

better and better at predicting road quality overall regardless of the global location and regard-

less of whether or not that particular region’s roads have been included in prior fine-tuning.

Data aside, other existing network varieties not tested in this study including recurrent neural

networks, and further developments in CNN and Quantum CNN (QCNN) architectures may

provide additional improvements to satellite image object qualification tasks. Fine-tuning net-

works pre-trained on satellite image datasets such as BigEarthNet may also prove valuable.

Conclusion

In this paper, we sought to explore the capability of convolutional neural network architectures

for identifying road quality from remotely sensed imagery. We integrated a novel Android

application for collecting road quality information, high-resolution satellite imagery, and used

these as inputs to test a variety of CNN architectures (Table 2). This approach achieved a top-1

accuracy of 80.0% with 99.4% of predictions falling within the actual or an adjacent class.

There was some performance variance among the models depending on hyperparameter con-

figuration and no single network performed better than any other on more than one class. An

ensemble of the most accurate models in each class provided an overall improvement over any

individual model, particularly with intermediate cases. The result of an estimation seeking to

predict a continuous score of road quality (CQV) showcased the general ability of the methods

to infer meaningful information from the satellite images to produce reasonable estimates of

road quality. Finally, our exploratory test case on Nigerian roads showed the flexibility of this

approach, with only a small amount of local data from Nigeria providing sufficient informa-

tion to apply a transfer-learning based approach and achieve high levels of accuracy (94%) in

the related task of detecting if roads are paved or unpaved.

Accurate and precise low-cost remote road assessment has the potential for effective use in

several realms including targeting road repairs, international aid allocation, and vehicle rout-

ing. By monitoring the performance of construction firms and contractors, it can empower

governments, donors, and policymakers to identify particularly hazardous roads, improving

public safety and enabling better efficiency of public spending. With it, aid organizations can

more readily monitor investments made to infrastructure in developing areas. Companies in

the business of routing the public can use continuous and integrated forms of the technology

to incorporate road quality into how they navigate customers or autonomous vehicles. Because

of the ubiquitous availability of satellite imagery and the presence and importance of roadways

in the lives of almost everyone in the world, this work should have near-term applications in

many domains.

Supporting information

S1 Appendix. Technical innovation in the use of CNNs to analyze satellite imagery.

(PDF)
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