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Abstract: Understanding how molecular systems self-assemble to form well-organized
superstructures governed by noncovalent interactions is essential in the field of supramolecular
chemistry. In the nanoscience context, the self-assembly of different carbon-based nanoforms
(fullerenes, carbon nanotubes and graphene) with, in general, electron-donor molecular systems,
has received increasing attention as a means of generating potential candidates for technological
applications. In these carbon-based systems, a deep characterization of the supramolecular
organization is crucial to establish an intimate relation between supramolecular structure and
functionality. Detailed structural information on the self-assembly of these carbon-based nanoforms
is however not always accessible from experimental techniques. In this regard, quantum chemistry
has demonstrated to be key to gain a deep insight into the supramolecular organization of
molecular systems of high interest. In this review, we intend to highlight the fundamental role
that quantum-chemical calculations can play to understand the supramolecular self-assembly of
carbon-based nanoforms through a limited selection of supramolecular assemblies involving fullerene,
fullerene fragments, nanotubes and graphene with several electron-rich π-conjugated systems.
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1. Introduction

The self-assembly of molecular entities interacting by weak intermolecular forces to form
well-organized and dynamic chemical systems is the heart of the supramolecular chemistry discipline.
An optimal molecular assembly is known to be crucial for the generation of complex superstructures
(e.g., DNA double-helix or enzymes) with a well-defined functionality. In the last decade, supramolecular
chemistry has attracted a great deal of attention, and a tremendous diversity of assembled chemical
systems (such as discrete host-guest systems [1,2], metallocages [3–7], supramolecular polymers [8–10],
covalent-organic frameworks [11], etc.) have been successfully obtained. These supramolecular assemblies
present outstanding structural and electronic properties for potential applications in fields ranging from
photocatalysis and drug-delivery to photovoltaic and light-emitting devices. In the context of nanoscience,
different electron-acceptor carbon-based nanoforms, namely fullerenes, carbon nanotubes, and graphene,
have been noncovalently functionalized with electron-donor systems to form discrete donor–acceptor (D–A)
supramolecular complexes [2]. For instance, fullerene (C60) with its spherical shape has been effectively
hosted by different electron-donor curved π-conjugated compounds in a supramolecular approach,
whereπ–π interactions are maximized owing to the structural complementary. The close relatives of C60, i.e.,
carbon nanotubes and graphene, have been also recognized supramolecularly by π-conjugated systems of
different nature [12–15]. Figure 1 displays a few selected examples of supramolecular systems based on
carbon electron-acceptor hosts interacting with different electron-donor guests. These carbon-based D–A
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supramolecular examples have been of great relevance to gain a deep understanding into the fundamental
and omnipresent photoinduced electron-transfer process, which is in turn required for organic photovoltaic
applications [16–19]. Carbon-based nanomaterials have also received a great deal of attention due to their
potential in medical applications [20–24].
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In general, most supramolecular complexes are experimentally characterized in solution, by 
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supramolecular structure is difficult to be obtained. In this context, quantum-chemical techniques 
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nature of the noncovalent interactions (NCIs) responsible for the self-assembly [25,26]. However, the 
appropriate description of these supramolecular assemblies requires overcoming two challenging 
problems. First, an accurate treatment of the noncovalent interactions involved in the 
supramolecular organization is mandatory. Yet, NCIs arise from long-range instantaneous and 
correlated fluctuations of the electron charge density and, therefore, only quantum-chemical 
methods able to successfully capture the electron-correlation phenomenon can be employed. In 
particular, coupled-cluster theory with single, double, and perturbatively-connected triple 
excitations [CCSD(T)] in combination with large basis sets has become the “gold-standard” method 
to accurately deal with these weak but important forces in supramolecular systems [27–29]. 
Nevertheless, and here is where the second problem comes out, the use of the CCSD(T) method is 
restricted to small- or medium-size molecular systems due to its unfavorable computational scaling. 

Density functional theory (DFT) is indisputably the most widely used theory for electronic 
structure calculations in quantum chemistry and condensed matter physics, owing to its reasonable 
balance between accuracy and computational cost. Unfortunately, the most common density 
functionals (DFs) available in the literature (local or (semi)local density correlation functionals) are 
unable to capture the long-range electron correlation phenomenon responsible for NCIs [30–32]. In 
the last decade, this problem has been central in the field of quantum chemistry, and different 
strategies have been successfully developed [33–44]. Among the different approximations proposed, 
the DFT-D3 approach (developed by Grimme et al. [40]) is likely to be the most popular and 
extended manner to theoretically treat molecular systems governed by NCIs. This method has 
demonstrated to provide accurate binding energies in a wide variety of supramolecular complexes 
of different molecular size with almost no additional computational cost [26,45].  

Figure 1. Selected examples of supramolecular assemblies involving fullerene (a), nanotubes (b) and
graphene (c) with different π-conjugated electron-donors. The carbon atoms of the electron-acceptor
carbon-based systems have been highlighted in red whereas the carbon atoms of the electron-donor
systems are colored in green. Sulfur, oxygen and hydrogen atoms in the electron-donor systems are
colored in yellow, red and white, respectively.

In general, most supramolecular complexes are experimentally characterized in solution, by means
of spectroscopic techniques (UV–Vis absorption, 1H-NMR, etc.), where an atomically-detailed
supramolecular structure is difficult to be obtained. In this context, quantum-chemical techniques
can offer an atomically-precise characterization of the supramolecular organization, as well as the
nature of the noncovalent interactions (NCIs) responsible for the self-assembly [25,26]. However,
the appropriate description of these supramolecular assemblies requires overcoming two challenging
problems. First, an accurate treatment of the noncovalent interactions involved in the supramolecular
organization is mandatory. Yet, NCIs arise from long-range instantaneous and correlated fluctuations
of the electron charge density and, therefore, only quantum-chemical methods able to successfully
capture the electron-correlation phenomenon can be employed. In particular, coupled-cluster theory
with single, double, and perturbatively-connected triple excitations [CCSD(T)] in combination with
large basis sets has become the “gold-standard” method to accurately deal with these weak but
important forces in supramolecular systems [27–29]. Nevertheless, and here is where the second
problem comes out, the use of the CCSD(T) method is restricted to small- or medium-size molecular
systems due to its unfavorable computational scaling.

Density functional theory (DFT) is indisputably the most widely used theory for electronic
structure calculations in quantum chemistry and condensed matter physics, owing to its reasonable
balance between accuracy and computational cost. Unfortunately, the most common density
functionals (DFs) available in the literature (local or (semi)local density correlation functionals) are
unable to capture the long-range electron correlation phenomenon responsible for NCIs [30–32]. In the
last decade, this problem has been central in the field of quantum chemistry, and different strategies
have been successfully developed [33–44]. Among the different approximations proposed, the DFT-D3
approach (developed by Grimme et al. [40]) is likely to be the most popular and extended manner to
theoretically treat molecular systems governed by NCIs. This method has demonstrated to provide
accurate binding energies in a wide variety of supramolecular complexes of different molecular size
with almost no additional computational cost [26,45].
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The current success in the development of feasible quantum-chemical methods able to accurately
describe NCIs at a reasonable trade-off between accuracy and computational cost has paved the
way for routine theoretical calculations on relatively large-size supramolecular complexes of wide
interest. In this respect, quantum-chemical techniques must be considered nowadays as a powerful
tool for characterizing the self-organization in a wide variety of weakly-bound supramolecular
complexes. Additionally, the use of these methods is of particular interest in those cases where
a detailed experimental characterization is either scarce or difficult to obtain.

In this review, we demonstrate the potential that quantum-chemical calculations (namely, DFT-D3
calculations) can offer to obtain an in-depth knowledge at the molecular scale of the supramolecular
self-assembly between carbon-based electron-acceptor nanoforms (fullerene derivatives, carbon nanotubes
and graphene) with different electron-rich π-conjugated motifs. To illustrate this, we have selected
a limited number of examples studied by us, and in close collaboration with experimental groups,
where quantum-chemical calculations have been decisive to gain a deep understanding of the
supramolecular self-organization. This review is mainly aimed to the experimental community and,
therefore, the technical details about the different quantum-chemical models have been maintained to be
minimum (only a brief and general discussion is given in Section 2). As mentioned above, the examples
presented herein have been chosen primarily to highlight the potential of quantum-chemical methods in
the context of supramolecular chemistry and, therefore, this review does not intend to be a comprehensive
revision of the large number of carbon-based donor–acceptor supramolecular complexes that can be
found in the literature.

2. Methodology

In this review, we present theoretical examples mostly calculated within the DFT framework
with standard density functionals coupled to the Grimme’s dispersion correction (i.e., the DFT-D
approximation or in its most modern version DFT-D3 approach). We will begin with a brief description
of the density functionals and the semiempirical methods used along the text. Subsequently, we will
provide a nutshell overview of the Grimme’s dispersion-corrected approximation. More detailed
theoretical reviews about the quantum-chemical methodologies capable of accurately describing
noncovalent interactions can be found in References [25,26,28,29,46,47]. Finally, the magnitudes and
technical details employed along the review will be briefly explained.

2.1. Density Functionals and Semiempirical Methods

A general expression for the exchange-correlation (xc) density functionals, Exc[ρ], used in this
work can be written as:

Exc[ρ] = wHFEHF
x + (1−wHF)Ex[ρ] + Ec[ρ], (1)

where Ex[ρ] and Ec[ρ] correspond to the generalized gradient approximation (GGA) exchange
and correlation energy terms, respectively. The EHF

x is the Hartree–Fock (HF) like exchange term.
The exchange terms are weighted by the scaling parameter wHF. Table 1 collects a detailed description
for the composition of all the exchange-correlation functionals used in this review.

Table 1. Composition of the exchange-correlation density functionals used along this review.

Functional Type 1 Ex[ρ] Ec[ρ] wHF Reference

revPBE0-D3 H-GGA revPBE revPBE 0.25 [48,49]
PBE0-D3 H-GGA PBE PBE 0.25 [48,50]

B3LYP H-GGA B88 LYP, VWN 0.20 [51,52]
MPWB1K H-M-GGA mPW B95 0.44 [53–55]
B97-D/D3 GGA B97 B97 0.00 [56,57]

1 H-GGA means a hybrid density functional based on the generalized gradient approximation (GGA). H-M-GGA
denotes a hybrid meta-GGA functional.
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Semiempirical methods have been widely used for applications in large-size molecular systems.
However, they suffer from the same problem as most density functionals being unable to capture
long-range electron correlation effects (dispersion forces) and, thus, are not recommended for
supramolecular chemistry problems. In the last years, much efforts have been devoted to develop
semiempirical methods for general applications including the description of NCIs [58]. Among the
different modern semiempirical methods, the Hartree–Fock-based PM7 [59], the HF-3c [60], and the
tight-binding DFT (DFTB) [61–63] methods (particularly in its variant known as DFTB3) can be
highlighted. The PM7 is based on a modified version of the previous PM6 parameterization that
not only removes some errors of the neglect of differential diatomic overlap (NDDO) integral
approximation but also significantly reduces the average errors in dealing with organic compounds
and solid systems. More importantly, PM7 implicitly accounts for weak noncovalent interactions,
which allows its use in supramolecular complexes of increasing size. On the other hand, the DFTB3
method is a simplified version of a standard density functional to which dispersion corrected terms as
D3 have been successfully coupled. DFTB3-D3 has demonstrated to be a powerful tool to model large
supramolecular systems owing to the reasonable balance between accuracy and computational cost.
Very recently, Grimme et al. have proposed a novel semiempirical method (GFN-xTB) based on the
tight-binding philosophy of DFTB that seems to be very promising [64]. Nevertheless, in this review,
we will show results only obtained at the PM7 level for exploratory purposes.

2.2. Dispersion Corrections

As mentioned before, the most popular low-cost approach to deal with dispersion interactions
within the DFT framework is the Grimme’s correction [40,56,65]. This protocol consists in an
atom-pairwise correction to the standard Kohn–Sham density functional to describe the total energy as:

EDFT−D3 = Exc[ρ] + ED3
disp, (2)

where Exc[ρ] is the self-consistent Kohn–Sham energy (Equation (1)) as obtained from the chosen density
functional, and ED3

disp is the dispersion correction term. The dispersion correction term is based on the
classical definition of long distance forces [40,56,65] and is directly proportional to the Cn,AB/(RAB)

n

relationship, where Cn,AB is a parameterized nth-order dispersion coefficient for atom pair AB, and (RAB)
n

is the intermolecular distance between both atoms (n can take the values 6, 8, 10, etc.).
In the D3 version of Grimme’s dispersion correction, the dispersion interaction is computed

according to the following pairwise energy expression:

ED3
disp = − ∑

n=6,8
sn

Nat−1

∑
A

Nat

∑
B=A+1

Cn,AB

(RAB)
n fdamp(RAB) (3)

where sn are customary parameters fitted for individual density functionals. Unlike the former D2
version of Grimme’s correction [56], the dispersion Cn,AB coefficients are geometry dependent as they
are adjusted on the basis of local geometry (coordination number) around atoms A and B. fdamp(RAB)

is a damping function that depends on the distance RAB, and may adopt several forms to attenuate the
dispersion correction term in the short range [66].

The D3 scheme can be further corrected by accounting for the influence of three-body terms
(i.e., the energy contributions for all triple atom combinations A, B and C) by means of the
Axilrod−Teller−Muto expression [67,68]:

EABC =
Nat

∑
A<B<C

C9,ABC
(3 cos θa cos θb cos θc + 1)

(RABRBCRAC)
3 × fn(RAB, RBC, RAC), (4)
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where θi are the internal angles of the triangle formed by the interatomic distances (RAB, RBC, RAC),
fn(RAB, RBC, RAC) is a damping function, and C9,ABC is the corresponding coefficient approximated by:

C9,ABC ≈ −
√

C6,ABC6,BCC6,AC (5)

In addition to the DFT-D3 approach, there is another general and seamless approximation in
the field of DFT able to capture dispersion effects in an accurate way. This approach developed by
Vydrov and Voorhis is known as the nonlocal approximation (NL) in the quantum chemistry contexts
and VV10 in the solid-state physics community [43,44,69]. This approximation takes into account the
long-range electron correlation effects (dispersion) by means of an explicit nonlocal density functional
correlation kernel, which depends on the electron density at two different sampling points in space,
r and r’. The flexibility of the Vydrov and Voorhis formulation with the incorporation of an adjustable
short-range parameter has allowed this NL approximation to be easily merged with a wide variety of
standard exchange-correlation density functionals, providing impressive results close to the “chemical
accuracy” in small- and medium-size molecular complexes [26,70–73].

Another interesting dispersion correction is the approximation known as symmetry-adapted
perturbation theory (SAPT), which provides a means of directly computing the interaction energy
between two molecules without calculating the total energy of the monomers nor the dimer [74].
More importantly, SAPT allows for a decomposition of the interaction energy into physically
meaningful components: electrostatic (elst), exchange (exch), induction (ind), and dispersion (disp)
terms. In SAPT, the Hamiltonian of the dimer is partitioned into contributions from each monomer
and the interaction between them according to:

Ĥ = F̂A + ŴA + F̂B + ŴB + V̂ (6)

where the Hamiltonian (Ĥ) is written as a sum of the monomer Fock operators, F̂, the fluctuation
potential of each monomer, Ŵ, and the interaction potential, V̂. The monomer Fock operators,
F̂A + F̂B, are treated as the zeroth-order Hamiltonian, and the interaction energy is evaluated through
a perturbative expansion of V̂, ŴA and ŴB.

Several truncations of the closed-shell SAPT expansion are available. The simplest truncation of
SAPT is denoted as SAPT0 [74,75], and is defined by:

ESAPT0 = E(10)
elst + E(10)

exch + E(20)
ind,resp + E(20)

exch−ind,resp + E(20)
disp + E(20)

exch−disp + δ
(2)
HF (7)

where v and w in E(vw) refer to the order of V and WA + WB, respectively, the subscript respectively
indicates that orbital relaxation effects are included, and the δ

(2)
HF term takes into account higher-order

induction effects.

2.3. Binding and Interaction Energies

Along the review, we will use two energy magnitudes for the discussion of the results:
the interaction energy (Eint) and the binding energy (Ebind). The former (Eint) is defined as the
energy difference between a dimer complex (D) and the individual monomers (M1 and M2) at the
geometry of the complex:

Eint = ED
D − ED

M1 − ED
M2 (8)

where EY
X is the energy of fragment X at the geometry of Y. The binding (or association) energy (Ebind)

is calculated taking into account the relaxation of the separate monomers and, therefore, considering
the deformation energy required to transform the isolated monomers from their minimum-energy
geometries to the geometry acquired in the assembly:

Ebind = Edef + Eint, (9)
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where:
Edef = (ED

M1 − EM1
M1) + (ED

M2 − EM2
M2). (10)

In those examples of large molecular size where small basis sets should be employed to evaluate
interaction energies, the basis set superposition error (BSSE) will be corrected according to the
counterpoise (CP) method developed by Boys and Bernardi [76]. Basis sets more extended than
those of double-ζ quality are expected to present relatively small BSSEs in the interaction energy of
supramolecular complexes [77].

2.4. Limitations of the Quantum-Chemical Methods

The description of supramolecular complexes at quantum-chemical level is living a flourishing
period due to the great efforts made in the last decade [25,26,28,29,46,47]. Nevertheless, all quantum
chemistry methods present a balance between accuracy and computational cost (the higher the
accuracy, the larger the computational cost). In general, this balance determines the practical use of
a particular quantum chemistry method. DFT methods coupled to the Grimme’s dispersion term
(DFT-D3) have turned out to be the most practical manner to treat supramolecular complexes [26].
Their computational cost limitation comes mainly from the density functional since the dispersion
correction has almost no computational cost [40]. Additionally, the accuracy of the DFT-D3 methods
has reached the chemical accuracy (1 kcal/mol) in small- and medium-size supramolecular systems of
wide interest [78]. A reasonable trade-off between accuracy and computational cost is also found in
large-size systems at the DFT-D3 level [79]. Therefore, we strongly recommend DFT-D3 models for
geometry optimizations and calculations of interaction energies in supramolecular complexes below
150 atoms. For larger systems and exploratory purposes, an alternative is the use of semiempirical
methods as those briefly described above (PM7, HF-3c, DFTB-D3 and GFN-xTB). Although they
are less precise methods, they are very efficient in terms of computational cost and allow extracting
valuable theoretical insights, especially by comparing within a family of similar compounds.

3. Results

In this section, we present a selection of examples based on different supramolecular assemblies
of carbon nanoforms to highlight how relevant structural and energy information can be easily
drawn from quantum-chemical calculations to assist in the challenging characterization of large
supramolecular assemblies of different nature, and guide in the rationalization of the experimental
information available.

3.1. Fullerene-Based Donor–Acceptor Supramolecular Assemblies

In the last decade, the quest of molecular receptors capable of effectively hosting fullerenes
has attracted a great deal of attention. For an optimal supramolecular interaction with fullerenes,
molecular receptors should be designed to incorporate extended π-conjugated surfaces able to
maximize the number of π–π interactions [80] with the fullerene derivatives. This requirement has been
successfully achieved in molecular curved π-conjugated systems by exploiting the complementarity of
the concave shape of the receptor with the convex surface of the fullerene (Figure 1). Nevertheless,
not only curved receptors are able to efficiently interact with fullerenes but also planar receptors
such as porphyrins have demonstrated to strongly bind C60 buckyballs. In this section, we show a
few examples of fullerene-based supramolecular complexes with curved and planar π-conjugated
receptors where quantum-chemical calculations have played an important role in characterizing their
supramolecular self-organization.
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3.1.1. Concave extended-Tetrathiafulvalene (exTTF) Derivatives for the Supramolecular Recognition
of Fullerenes

The 2-[9-(1,3-dithiol-2-ylidene)anthracen-10(9H)-ylidene]-1,3-dithiole compound, also known as
exTTF (Figure 2), has aroused great interest in the field of organic electronics due to its resemblance
with the popular tetrathiafulvalene (TTF) [81]. Like TTF, the exTTF compound presents a good
electron-donor character, and has been combined in numerous donor–acceptor dyads [82] to gain
insight into the paramount photoinduced electron-transfer process. Another remarkable feature of
exTTF in the context of supramolecular chemistry is its π-conjugated curved (concave) structure.
In fact, its particular structure and electron-donor character makes the exTTF system very attractive
as a potential supramolecular receptor for fullerenes. Initially, DFT calculations predicted binding
energies up to 7.00 kcal/mol between a single unit of exTTF and C60. Unfortunately, no experimental
evidence of association in solution was found in either UV–Vis or NMR titrations [2]. This apparently
negative outcome encouraged the quest of novel chemical entities that incorporate the exTTF moiety
for an enhanced C60 recognition. In this line, Pérez et al. synthesized a bivalent tweezer with two
exTTF units (MTW in Figure 2) able to act as a host, and effectively interact with C60 fullerene as a
guest owing to the concave–convex structural complementary that maximizes the number of π–π
contacts [83]. Subsequently, the supramolecular organization and the photophysical properties of
the corresponding discrete donor–acceptor MTW•C60 and its PTW•C60 homologue were studied by
theoretical calculations and spectroscopic techniques [16].
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specifically designed to host fullerenes were reported (Figure 3) [84]. The aim of this joint 
experimental‒theoretical study was to unveil the nature of the noncovalent interactions that govern 
the supramolecular organization between the exTTF-crown ether and C60. Experimentally, 
absorption titrations were performed to confirm the supramolecular complexation between the 
exTTF derivatives and C60. In these experiments, the exTTF absorption bands (350 and 450 nm) 
gradually decreased upon addition of C60. The absorption bands associated with C60 were also 
detected (namely, a strong absorption band at wavelengths <350 nm, a sharp band at 407 nm, and a 

Figure 2. Chemical structure of TTF (a) and exTTF (b). The curved shape of exTTF is also represented (c).
Sulfur, carbon and hydrogen atoms are colored in yellow, green and white, respectively. Chemical
structures of the supramolecular complexes MTW•C60 (d) and PTW•C60 (e) are also shown.

Recently, a series of exTTF derivatives substituted with crown ethers of increasing size specifically
designed to host fullerenes were reported (Figure 3) [84]. The aim of this joint experimental-theoretical
study was to unveil the nature of the noncovalent interactions that govern the supramolecular
organization between the exTTF-crown ether and C60. Experimentally, absorption titrations were
performed to confirm the supramolecular complexation between the exTTF derivatives and C60.
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In these experiments, the exTTF absorption bands (350 and 450 nm) gradually decreased upon addition
of C60. The absorption bands associated with C60 were also detected (namely, a strong absorption
band at wavelengths <350 nm, a sharp band at 407 nm, and a broad absorption between 470 and
650 nm). Finally, a charge-transfer feature that peaked at longer wavelengths (475 and 485 nm in PhCl
and PhCN, respectively) emerged. The spectroscopic data were employed to estimate the association
constants for the exTTF molecular tweezers 1–6 towards C60 in PhCl at 298 K (log Ka = 4.8 ± 0.9,
6.7 ± 0.2, 6.9 ± 0.2, 3.8 ± 0.6, 5.1 ± 0.1 and 3.3 ± 0.4 M−1 for 1•C60, 2•C60, 3•C60, 4•C60, 5•C60 and
6•C60, respectively).
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The different conformations that 1–6 may adopt to interact with C60 were initially optimized by
using semiempirical PM7 calculations, which are recommended for exploratory purposes owing to its
favorable computational cost. Figure 4a displays the minimum-energy geometries computed for 2•C60

as a representative example. In all complexes formed by 1–6 and C60, the fullerene ball interacts with
the anthracene concave region of exTTF and, at the same time, the crown ether-based arms embrace
C60 in a pinzer-like shape (Figure 4a).
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Figure 4. Minimum-energy embraced (a) and non-embraced (b) conformations calculated at the
PM7 level for the 2•C60 complex. The electron-acceptor C60 is colored in red whereas the sulfur,
carbon, oxygen and hydrogen atoms in the electron-donor system are colored in yellow, green, red and
white, respectively.

Host–guest arrangements, where the crown ethers are not directly interacting with C60, were also
optimized for 1•C60, 2•C60 and 3•C60 to evaluate the stabilization owing to the embracing motion
(see Figure 4b for 2•C60). For 2•C60, PM7 predicted binding energies of −72.43 and −51.20 kcal/mol
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for the embraced and non-embraced conformations, respectively (Figure 4). Similar results were
obtained for the other complexes calculated (1•C60 and 3•C60) [84]. PM7 calculations were therefore
key to estimate quantitatively the energy stabilization of the embracing motion promoted by the
exTTF-based hosts for the recognition of fullerene C60.

The more stable embraced conformations were then optimized using the dispersion-corrected B97-D
functional in combination with the cc-pVDZ basis set (Figure 5). The exTTF•C60 complex was also
computed as a reference. Note that the B97-D density functional presents an outstanding trade-off between
accuracy and computational cost and, thus, is highly recommended for exploratory and optimization
purposes [56]. The optimized structures showed intermolecular contacts of different nature along the
host–guest interacting region. Table 2 collects the shortest intermolecular contacts determining the
stabilization of the complexes between the receptors 1–6 and C60, as well as the binding energies computed
for the resulting supramolecular complexes. To assess the binding energies, single-point energy calculations
were carried out on the B97-D/cc-pVDZ-optimized structures using the revPBE0-D3 functional and the
more extended triple-ζ cc-pVTZ basis set. Note that triple-ζ basis sets are highly recommended, if the
molecular size allows it, to yield reasonable binding energies in weakly-interacting molecular systems with
minimal basis set superposition error [77]. A stable exTTF•C60 complex (Ebind of−10.24 kcal/mol) was
obtained due to π–π interactions between the lateral benzene rings of exTTF and the benzene rings of C60

with centroid–centroid distances of 3.42 Å (a in Table 2). As exTTF•C60 has not been detected experimentally
to date, entropic and solvent effects are expected to counterbalance this stabilizing interaction. In the
6•C60 complex, two additional interactions coming from the presence of the benzoates were found:
π–π interactions at 3.25 Å between the benzene rings of the benzoate moiety and C60 (b in Table 2),
and n–π interactions owing to short O(host)···C(guest) intermolecular distances (3.16 Å, c in Table 2).
The stabilizing effect of these NCIs was demonstrated by the folding angle of the anthracene skeleton in
exTTF, which becomes sharper in going from exTTF•C60 (142.5◦) to 6•C60 (137.0◦). The binding energy
for 6•C60 was calculated to be−22.85 kcal/mol, which is more than twice of the binding energy obtained
for exTTF•C60. The significant stabilization predicted in the 6•C60 formation supported the experimental
detection of this complex in solution.
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Table 2. Intermolecular distances (a–f, in Å) and binding energies (Ebind, in kcal/mol) calculated at
the B97-D/cc-pVDZ and revPBE0-D3/cc-pVTZ levels, respectively, for the exTTF•C60 and 1–6•C60

complexes [84] 1.
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Complex a b c d e f Ebind
(kcal/mol)

exTTF•C60 3.42 - - - - - −10.24
1•C60 3.46 2.99 3.30 3.19 2.61 - −39.69
2•C60 3.45 2.95 3.42 2.79 2.69 - −44.76

3•C60
2 3.49 3 2.98 3 3.44 3 2.85 2.50 - −54.36

4•C60 3.37 3.41 3.25 3.56 2.57 4.14 −36.77
5•C60 3.37 3.06 3.14 3.14 2.54 3.50 −43.33
6•C60 3.45 3.25 3.16 - - - −22.85

1 a is the distance between the centroid of the lateral benzene rings of exTTF and that of the closest benzene rings
of C60; b is the distance between the centroid of the benzene ring of the benzoate moiety and the center of the
closest C60 6:6 double bond; c is the distance between the benzoate sp3 oxygen and the closest carbon atom of C60;
d and e are the shortest O···C60 and H···C60 distances, respectively, between the crown ether and C60; f is the
distance between the nitrogen atom of the aza-crown ether and the closest carbon atom of C60. 2 Two additional
π–π interactions between the outer benzene rings of the crown ethers and C60 were computed at 3.13 and 3.68 Å.
3 Average values.

Moving to larger complexes (from 6•C60 to 1•C60, 2•C60, and 3•C60) where crown ethers
are inserted in the electron-donor host system, new n–π (d) and CH···π (e) interactions with
intermolecular distances of around 2.9 and 2.6 Å emerge to stabilize the resulting supramolecular
assembly (Table 2). revPBE0-D3 calculations predicted binding energies going from −39.69 kcal/mol
for 1•C60, to −44.76 kcal/mol for 2•C60, and to −54.36 kcal/mol for 3•C60. This trend was in line with
the increase of the Ka value obtained experimentally, and was attributed to the increasing size of the
crown ethers when going from 1•C60 to 3•C60 (i.e., increasing number of stabilizing n–π and CH···π
interactions). The crown ether arms wrap C60 and lead to more compact complexes, in which the
benzene rings of the benzoate moiety are closer (by 0.2 Å) to C60 as compared, for example, with 6•C60

(distance b in Table 2). This gain in compactness reinforces the stabilizing effect that NCIs between C60

and the crown ethers exert on the resulting complex stability.
Finally, the effect of the nitrogen atoms on the capability of aza-crown ether derivatives 4

and 5 to host the C60 species was analyzed. The insertion of the nitrogen bridge between the
benzoate units and the crown ethers confers additional flexibility to the aza-crown ethers in 4•C60

and 5•C60. This flexibility gives rise to structures more folded than those computed for the oxygenated
analogues 1•C60 and 2•C60 (Figure 6). Smaller binding energies for 4•C60 and 5•C60 (−36.77 and
−43.33 kcal/mol, respectively) were found compared to the oxygenated complexes 1•C60 and 2•C60

(−39.69 and−44.76 kcal/mol, respectively). The lower affinity to C60 obtained for the aza-crown ethers
is in line with the experimentally determined binding constants, and was associated to an overall
weakening of the host–guest interactions caused by the less favorable aza-crown ether arm orientations.
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the truxTTF electron-donor was able to effectively host fullerenes due to its concave structure [87]. 
Experimentally, the supramolecular association between truxTTF and C60 was investigated by 
1H-NMR titrations. The generation of the bimolecular 1:1 supramolecular complex with a binding 
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This example satisfactorily illustrated how quantum-chemical calculations can be used as a very
useful tool to rationalize the supramolecular assemblies formed by electron-donor hosts and the C60

guest. In particular, calculations pointed out that the ability of the exTTF-based molecular tweezers
to bind C60 comes from an interplay of different π–π, n–π and CH···π interactions, and that the size
and nature of the crown ether are key factors for the relative stabilization of the resulting complexes
between 1–6 and C60.

3.1.2. Curved Truxene-Tetrathiafulvalene (truxTTF) Donor as a Supramolecular Partner for Fullerenes

Among the different carbon-based nanofragments, the truxene structure (Figure 7) has attracted a
great deal of interest due to its exceptional solubility, high thermal stability and ease to be chemically
modified [85]. Over the last years, and owing to the advances in the synthesis of truxene derivatives,
the scope of applications of this attractive heptacyclic polyarene building block, initially limited
to synthesis and photoluminescence, has been extended to organic electronics [86]. Particularly
interesting is the modification of the truxene core through the incorporation of three dithiole rings
to give rise to the electron-donor truxene-TTF (truxTTF) compound (Figure 7) [87]. In analogy to
the exTTF derivatives (Section 3.1.1), the truxTTF structure is distorted out of planarity due to short
dithiole–benzene contacts, generating a double-concave cavity that fulfills the structural requirements
as a host for the supramolecular recognition of fullerene derivatives.
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In 2007, Pérez et al. conducted a joint experimental-theoretical study, and demonstrated that
the truxTTF electron-donor was able to effectively host fullerenes due to its concave structure [87].
Experimentally, the supramolecular association between truxTTF and C60 was investigated by 1H-NMR
titrations. The generation of the bimolecular 1:1 supramolecular complex with a binding constant
of 1.2 × 10−3 M−1 (see more experimental details in reference [87]) was confirmed. Additionally,
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1H-NMR experiments suggested that the supramolecular interaction occurred preferentially on the
aromatic truxene surface of truxTTF.

Notwithstanding the experimental evidences about the formation of the donor-acceptor
truxTTF•C60 complex, detailed information on the supramolecular organization at atomistic level was
not reported so far. To unravel the origin and nature of the interactions between the host and the guest,
DFT calculations at the MPWB1K/6-31G** level were performed. The MPWB1K density functional,
developed by Truhlar et al., was designed to capture π–π interactions in stacked DNA pairs and amino
acid pairs [88]. Note that in 2007, the Grimme’s dispersion-corrected approximation in its most modern
version (DFT-D3) was not still developed and this kind of density functionals were a practical solution
for the theoretical treatment of weakly-bound molecular systems. Nowadays, the DFT-D3 or DFT-NL
approximations would be more recommended for general supramolecular applications [26,69].

Figure 8 displays the minimum-energy geometries calculated at the MPWB1K/6-31G** level for
two different structures of the truxTTF•C60 complex. In structure CC, fullerene C60 was placed inside
of the aromatic cavity created by the truxene core, stabilized by multiple π–π contacts. This structure
clearly exploited the requirement of structural concave–convex complementary to form the host-guest
associate. The central benzene ring of the truxene core stacks on one of the benzene rings of C60

in a slightly parallel-displaced fashion, in which the benzene rings are twisted by approximately
20◦ relative to each other and are separated at an average distance of 3.39 Å. This distance turned out
to be considerably shorter than the distances reported for the benzene dimer in parallel (3.9 Å) and
parallel-displaced (3.6 Å) configurations [89]. In addition to the interactions of the central benzene
rings, the peripheral benzene rings of truxTTF exhibit many intermolecular contacts in the 3.6–3.9 Å
range with the C60 guest that contribute to the stabilization of the complex. Following with the
concave–convex complementary concept, the concave cavity formed by the three dithiole rings of the
truxTTF electron-donor is also able to bind C60 as shown in structure CS (Figure 8), with short S···C
intermolecular contacts (3.5–3.6 Å). In terms of stability, structure CC was calculated to be the most
stable with an interaction energy of −8.98 kcal/mol, whereas structure CS presented an interaction
energy of −2.28 kcal/mol.
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8), with short S···C intermolecular contacts (3.5–3.6 Å). In terms of stability, structure CC was 
calculated to be the most stable with an interaction energy of −8.98 kcal/mol, whereas structure CS 
presented an interaction energy of −2.28 kcal/mol. 
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Figure 8. Minimum-energy structures of the truxTTF•C60 complex calculated at the MPWB1K/6-31G**
level. Top and side view of structures CC (a) and CS (b) are given. The electron-acceptor C60 is colored
in red whereas the sulfur, carbon and hydrogen atoms in the electron-donor system are colored in
yellow, green and white, respectively.
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In this example, DFT calculations were key to visualize the supramolecular structure of the
truxTTF•C60 complex, and confirm the experimental evidence about the preferable supramolecular
orientation between the electron-donor truxTTF host and the electron-acceptor C60 guest. Additionally,
this truxTTF•C60 supramolecular complex has been of great relevance for the design and
understanding of other related supramolecular systems that will be described in Section 3.2.

3.1.3. Metalloporphyrin-C60 Associates

As mentioned above, not only curved electron-donor π-conjugated compounds can act as
efficient receptors for fullerene balls. Porphyrins have shown to present an outstanding ability to
effectively interact with C60 by π–π interactions despite the planar-convex mismatch [80]. Recently,
we thoroughly investigated a series of novel cup-and-ball metalloporphyrin–fullerene conjugates
in close collaboration with the experimental groups of Martín and Nierengarten [90]. Our main
goal was to shed light onto the nature and strength of the noncovalent interactions governing the
supramolecular assembly of fullerene derivatives with metal-substituted porphyrins. Figure 9 displays
the chemical structures of the corresponding porphyrin–crown ether conjugates (8-M; M = 2H, Co., Ni,
Cu or Zn) and the methano[60] fullerene derivative 7 [91], as well as the target complexes 8-M•7.
Experimentally, the supramolecular complexation was first evidenced through 1H-NMR spectroscopy,
and the measurement of the binding constant of 8-M•7 was performed by monitoring the changes in
the UV–Vis absorption spectra. The logarithmic binding constants (log Ka) for porphyrins 8-M with
the methanofullerene derivative 7 at 25 ◦C in dichloromethane were 5.5, 6.3, 5.9, 6.3 and 6.9 for 8-2H•7,
8-Co•7, 8-Ni•7, 8-Cu•7 and 8-Zn•7, respectively.

Molecules 2018, 23, 118  13 of 38 

 

electron-acceptor C60 is colored in red whereas the sulfur, carbon and hydrogen atoms in the 
electron-donor system are colored in yellow, green and white, respectively. 

In this example, DFT calculations were key to visualize the supramolecular structure of the 
truxTTF•C60 complex, and confirm the experimental evidence about the preferable supramolecular 
orientation between the electron-donor truxTTF host and the electron-acceptor C60 guest. 
Additionally, this truxTTF•C60 supramolecular complex has been of great relevance for the design 
and understanding of other related supramolecular systems that will be described in Section 3.2. 

3.1.3. Metalloporphyrin-C60 Associates 

As mentioned above, not only curved electron-donor π-conjugated compounds can act as 
efficient receptors for fullerene balls. Porphyrins have shown to present an outstanding ability to 
effectively interact with C60 by π–π interactions despite the planar‒convex mismatch [80]. Recently, 
we thoroughly investigated a series of novel cup-and-ball metalloporphyrin–fullerene conjugates in 
close collaboration with the experimental groups of Martín and Nierengarten [90]. Our main goal 
was to shed light onto the nature and strength of the noncovalent interactions governing the 
supramolecular assembly of fullerene derivatives with metal-substituted porphyrins. Figure 9 
displays the chemical structures of the corresponding porphyrin–crown ether conjugates (8-M; M = 
2H, Co., Ni, Cu or Zn) and the methano[60] fullerene derivative 7 [91], as well as the target 
complexes 8-M•7. Experimentally, the supramolecular complexation was first evidenced through 
1H-NMR spectroscopy, and the measurement of the binding constant of 8-M•7 was performed by 
monitoring the changes in the UV–Vis absorption spectra. The logarithmic binding constants (log Ka) 
for porphyrins 8-M with the methanofullerene derivative 7 at 25 °C in dichloromethane were 5.5, 6.3, 
5.9, 6.3 and 6.9 for 8-2H•7, 8-Co•7, 8-Ni•7, 8-Cu•7 and 8-Zn•7, respectively. 

 
Figure 9. Chemical structure of the methano[60]fullerene guest 7 (Left), the metalloporphyrin host 
8-M (Center), and the host–guest supramolecular complex 8-M•7 (Right). M refers to either 2H, Co., 
Ni, Cu or Zn. 

To better understand the nature of the different interactions governing the assemblies and gain 
insight into the experimental ordering found for the association constants (Ka), a comprehensive 
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showed that, after full geometry relaxation, the ammonium group of the methanofullerene interacts 
with the crown ether of the porphyrin by H-bond formation (Figure 10). Otherwise, the fullerene ball 
recognizes the center of the porphyrin system interacting by NCIs. Subsequent DFT reoptimizations 
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Figure 9. Chemical structure of the methano[60] fullerene guest 7 (Left), the metalloporphyrin host 8-M
(Center), and the host–guest supramolecular complex 8-M•7 (Right). M refers to either 2H, Co., Ni,
Cu or Zn.

To better understand the nature of the different interactions governing the assemblies and gain
insight into the experimental ordering found for the association constants (Ka), a comprehensive
theoretical investigation of these supramolecular complexes was conducted in a multi-level approach.
Geometry optimizations were initially performed at the semiempirical PM7 level and showed that,
after full geometry relaxation, the ammonium group of the methanofullerene interacts with the crown
ether of the porphyrin by H-bond formation (Figure 10). Otherwise, the fullerene ball recognizes
the center of the porphyrin system interacting by NCIs. Subsequent DFT reoptimizations at the
B97-D/6-31G* level of theory led to the supramolecular parameters summarized in Table 3.
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Figure 10. Minimum-energy geometries calculated for the 8-Cu•7 complex at the PM7 level. Side (Left)
and front (Right) views are displayed. The different types of intermolecular contacts are denoted
with labels a–d. Only relevant hydrogen atoms are displayed for clarity. Except for C60 carbon atoms
depicted in grey, the following color code is used: carbon in green, nitrogen in blue, oxygen in red and
hydrogen in white.

Table 3. DFT-optimized (B97-D/6-31G*) intermolecular distances (a–d, in Å) characterizing the 8-M•7
associates, and binding energies (Ebind, in kcal/mol) computed at the PBE0-D3/cc-pVTZ level [92] 1.

Complex M–C60 (a) NH···O (b) CH···C60 (c) CH···C60 (d) Ebind

8-2H•7 2.756 1.848 2.679 2.577 −92.4
8-Co.•7 2.119 1.850 2.642 2.573 −93.8
8-Ni•7 2.793 1.842 2.623 2.610 −88.7
8-Cu•7 2.754 1.846 2.662 2.599 −91.3
8-Zn•7 2.701 1.845 2.689 2.591 −92.8

1 See Figure 10 for the definition of the intermolecular distances a–d. For further details, the reader is referred to the
original work ([92]).

The main interactions determining the supramolecular assembly are represented by the M–C60

(a) and NH···O (b) distances provided in Table 3 (Figure 10 for labelling). In addition, CH···π dispersion
interactions (c and d) between the tert-butyl substituted benzene rings of the porphyrin and the π-cloud
of the C60 buckyball also contribute to the supramolecular stabilization.

The binding energy for the 8-M•7 complexes was estimated at the PBE0-D3/cc-pVTZ level of theory
by using the B97-D/6-31G*-optimized geometries (Table 3). Ebind increases from −88.7 in 8-Ni•7 to
−92.8 kcal/mol in 8-Zn•7 due to the more stabilizing M–C60 interaction that takes place in moving
to electron-richer metal atoms. The stabilization for the non-metalated 8-2H•7 complex amounts to
−92.4 kcal/mol, and the largest binding energy was computed for 8-Co•7 (−93.8 kcal/mol). Theoretical
calculations showed that NCIs between the fullerene ball and the phenyl-substituted porphyrin amounts
to −22.5 kcal/mol, and the presence of the tert-butyl groups at the meta position of the phenyl rings
(interaction d) causes an additional stabilization of ~4 kcal/mol (−26.3 kcal/mol in total), in good accord
with previous theoretical studies [93]. The ammonium–crown ether NH···O contacts was found to be
the main stabilizing driving force, with an interaction energy of−64.9 kcal/mol, which is three times the
stabilization of the porphyrin–C60 interaction.

Taking into account that C60 interacts with the porphyrin moiety mainly through one electron-rich
[6,6] double bond [94], we computed a simplified model (MP•C2H4), in which the pristine porphyrin
(MP) interacts with a molecule of ethylene (Figure 11). This reduced model allowed performing more
accurate calculations to better understand the relative stabilization of the different assemblies when
substituting the metal in the porphyrin. A clear correlation between the calculated binding energy and
the metal–ethylene distance (d) was found: the shorter the distance along the series NiP•C2H4 (3.18 Å)
> CuP•C2H4 (3.00 Å) > ZnP•C2H4 (2.75 Å) > CoP•C2H4 (2.62 Å), the larger the stabilization of the
complex (Table 4). The net charge calculated for the metal atom was demonstrated to increase in going
from CoP•C2H4 (+0.720e) to ZnP•C2H4 (+1.223e) —Table 4— and, in a first approach, this was related
to the stabilizing electrostatic interaction between the porphyrin and the C60 guest.
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Figure 11. Porphyrin•C2H4 model (MP•C2H4) used to understand the nature of the interaction between
the porphyrin host 8 and the fullerene derivative guest 7. Except for the ethylene carbon atoms depicted in
red, the following color code is used: carbon in green, nitrogen in blue and hydrogen in white.

Table 4. Binding energy (kcal/mol), metal–ethylene distance d (Å), and natural population
analysis (NPA) charge of the porphyrin central atom (M = 2H. Co., Ni, Cu, Zn) calculated at the
PBE0-D3/cc-pVTZ level of theory for the simplified porphyrin–ethylene associates [92].

Complex Ebind d M Charge

2HP•C2H4 −4.636 2.986 +0.942
CoP•C2H4 −8.534 2.619 +0.720
NiP•C2H4 −4.530 3.177 +0.733
CuP•C2H4 −5.965 2.997 +1.006
ZnP•C2H4 −8.047 2.749 +1.223

Symmetry-adapted perturbation theory (SAPT) calculations based on the Hartree–Fock
wavefunction were performed for 2HP•C2H4, NiP•C2H4 and ZnP•C2H4 to decompose the total
binding energy into electrostatic, exchange, induction and dispersion energy components (Table 5).
A stabilization in the electrostatic term of more than 10 kcal/mol was predicted in passing from
NiP•C2H4 to ZnP•C2H4, whereas the exchange interaction was computed positive, and much larger
for ZnP•C2H4 than for 2HP•C2H4 and NiP•C2H4. The induction term is meant to decay with the
distance between the two interacting moieties as R−n, where n = 2–4, and thus it was computed to
be non-negligible only in the case of the best interacting ZnP•C2H4 (Table 5). Finally, the dispersion
energy was predicted to be the largest stabilizing contribution in 2HP•C2H4 and NiP•C2H4, and it
also largely stabilized ZnP•C2H4 in more than 10 kcal/mol. Theoretical calculations therefore suggest
that the energy term that mainly contributes to the stabilization of the 2HP•C2H4 assembly is the
dispersion component, whereas the electrostatic contribution acquires a major role in the metal-based
porphyrin complexes, especially in ZnP•C2H4, for which M–ethylene distances are computed shorter
and the metal bears a larger positive charge.

Table 5. Energy decomposition (in kcal/mol) calculated at the SAPT0/def2-TZVP level for closed-shell
porphyrin–ethylene systems with M = 2H, Ni, Zn [92].

Interactions 2HP•C2H4 NiP•C2H4 ZnP•C2H4

electrostatic −2.794 −5.277 −16.212
exchange 7.046 8.605 22.101
induction −0.690 −0.728 −3.900
dispersion −7.033 −7.055 −10.521

TOTAL −3.472 −4.455 −8.532

This supramolecular example clearly highlights the potential of the theoretical calculations to
provide not only precise structural information of the self-assembly but also a detailed analysis of



Molecules 2018, 23, 118 16 of 38

the main forces (electrostatic, exchange-repulsion, induction, dispersion, etc.) contributing to the
stabilization of supramolecular complexes.

3.1.4. Ditopic Porphyrin•C60 complexes

Whereas the supramolecular chemistry involving porphyrin and fullerene has been extensively
explored through the generation of associates involving porphyrin tweezers and cages [95,96] with
metal–ligand bonds [97,98], hydrogen bonds [99–101], electrostatic interactions [102], mechanical
bonds [103,104], or a combination of several of these interactions [105,106], supramolecular arrays
involving conjugated multiporphyrin systems are, however, scarce in the literature. With the experienced
gained in the work described above on the monotopic metalloporphyrin–fullerene conjugates, we
undertook a collaborative study of the supramolecular complexation of the methano[60]fullerene
compound 7 shown in Figure 9 by the two analogous ditopic porphyrin receptors, meso–meso 9 and
tape 10, displayed in Figure 12. A 1:2 stoichiometry was foreseen for both 9 and 10 when coupled to 7
based on the design of the host molecules, which was further corroborated by Electro-Spray Ionization
(ESI) mass spectroscopy experiments.
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Figure 12. Chemical structure of the ditopic porphyrin-based hosts 9 and 10.

Theoretical calculations were performed to shed light into the nature and strength of the
interactions controlling the different supramolecular association processes, with special attention to the
negative cooperative effects experimentally evidenced for these systems (see the original Reference [90]
for further details). Minimum-energy geometries were calculated for supramolecular complexes 9•7
and 9•72 at the B97-D3/(6-31G**+LANL2DZ) level of theory (Figure 13). Similarly to the monotopic
porphyrin supramolecular arrangements discussed in the previous Section 3.1.3, compound 7 in
9•7 interacts with the crown ether through the positively-charged ammonium group, forming three
NH···O(ether) hydrogen-bond interactions in the 1.83–2.00 Å range. Additional short H···C contacts
between the peripheral tert-butyl-substituted phenyl rings and C60 were computed in the range of
2.5–3.2 Å, which add approximately 1 kcal/mol of stabilization per each interaction. Importantly,
the vicinal porphyrin, linked to the porphyrin that interacts with 7, approaches the fullerene fragment
and gives rise to additional interactions: short H···C contacts in the 2.7–3.2 Å range and a weak π–π
interaction between the peripheral benzene ring and the fullerene.



Molecules 2018, 23, 118 17 of 38
Molecules 2018, 23, 118  17 of 38 
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B97-D3/(6-31G**+LANL2DZ) level (Right) of the supramolecular assembly of ditopic host 9 with one 
and two molecules of guest 7. Except for C60 carbon atoms depicted in grey, the following color code 
is used: carbon in green, nitrogen in blue, oxygen in red and hydrogen in white. Adapted with 
permission from [90]. Copyright 2014 American Chemical Society. 

Moving to the 1:2 stoichiometric complex 9•72, the second molecule of 7 occupies the empty 
porphyrin surface, and defines similar interactions to those described for 9•7. The minimum-energy 
geometry showed that the two fullerenes tend to approximate each other in order to stabilize the 
resulting complex, with close C···C contacts between the two buckyballs of 3.7 Å (Figure 13). This 
was at the expense of distortions out from orthogonality between the two porphyrin units. The 
peripheral di-tert-butylphenyl groups placed on the vicinal porphyrin moieties plays an active role in 
the stabilization of the complex with short H···C(C60) contacts around 2.8 Å and π–π interactions at 4.4 
Å. 

The supramolecular organization between porphyrin tape 10 and 7 (Figure 14) follows the same 
pattern as previously described for 9•7. Here, two different possibilities can be designed for the 
introduction of the second fullerene-based guest 7 into the 10•7 complex: the two fullerene balls 
standing in the same side in a syn disposition (10•72-syn), or the two balls located in opposite sides 
with respect to the plane generated by the porphyrin tape dimer in an anti disposition (10•72-anti) 
(Figure 14). In the former, an important π–π stabilization originates from the fullerene–fullerene 
proximity. Experiments demonstrated that the association of the first molecule of 7 in porphyrin 
hosts 9 and 10 led to a complex where the incorporation of a second equivalent of 7 was more 
difficult (negative cooperativity). The effective π–π interactions between the buckyballs found for 
10•72-syn confers an additional stabilization that would reduce the negative cooperativity with 
respect to 9•72-anti, as experimentally evidenced for the tape assembly. 

Figure 13. Chemical structure (Left) and minimum-energy geometry calculated at the
B97-D3/(6-31G**+LANL2DZ) level (Right) of the supramolecular assembly of ditopic host 9 with one
and two molecules of guest 7. Except for C60 carbon atoms depicted in grey, the following color code is
used: carbon in green, nitrogen in blue, oxygen in red and hydrogen in white. Adapted with permission
from [90]. Copyright 2014 American Chemical Society.

Moving to the 1:2 stoichiometric complex 9•72, the second molecule of 7 occupies the empty porphyrin
surface, and defines similar interactions to those described for 9•7. The minimum-energy geometry showed
that the two fullerenes tend to approximate each other in order to stabilize the resulting complex, with close
C···C contacts between the two buckyballs of 3.7 Å (Figure 13). This was at the expense of distortions out
from orthogonality between the two porphyrin units. The peripheral di-tert-butylphenyl groups placed on
the vicinal porphyrin moieties plays an active role in the stabilization of the complex with short H···C(C60)
contacts around 2.8 Å and π–π interactions at 4.4 Å.

The supramolecular organization between porphyrin tape 10 and 7 (Figure 14) follows the same
pattern as previously described for 9•7. Here, two different possibilities can be designed for the
introduction of the second fullerene-based guest 7 into the 10•7 complex: the two fullerene balls
standing in the same side in a syn disposition (10•72-syn), or the two balls located in opposite sides
with respect to the plane generated by the porphyrin tape dimer in an anti disposition (10•72-anti)
(Figure 14). In the former, an important π–π stabilization originates from the fullerene–fullerene
proximity. Experiments demonstrated that the association of the first molecule of 7 in porphyrin
hosts 9 and 10 led to a complex where the incorporation of a second equivalent of 7 was more
difficult (negative cooperativity). The effective π–π interactions between the buckyballs found for
10•72-syn confers an additional stabilization that would reduce the negative cooperativity with respect
to 9•72-anti, as experimentally evidenced for the tape assembly.
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Figure 14. Chemical structure (left) and minimum-energy geometry calculated at the
B97-D3/(6-31G**+LANL2DZ) level (right) for the supramolecular assembly of ditopic host 10 with one
and two molecules of guest 7. Except for C60 carbon atoms depicted in grey, the following color code is
used: carbon in green, nitrogen in blue, oxygen in red and hydrogen in white. Adapted with permission
from [90]. Copyright 2014 American Chemical Society.

Single-point energy B97-D3 calculations were performed on the optimized geometries by using
the more extended cc-pVTZ+LANL2DZ basis set to estimate Ebind for all the supramolecular complexes
(Table 6). The association of one molecule of 7 by the meso–meso porphyrin dimer 9 led to a large
net stabilization of −108.19 kcal/mol, rising especially from the NH···O(ether) contacts and the
porphyrin core–C60 interaction. Upon insertion of the second molecule of 7, Ebind is approximately
doubled, reaching a value of −211.05 kcal/mol for 9•72. In the case of 10, the insertion of the second
molecule of 7 in a syn disposition is energetically favored due to the π–π interactions between the
buckyballs. The theoretical values calculated for Ebind therefore indicate that the incorporation of the
first guest molecule leads to a more stable complex for 9 than for 10, and suggest that the entrance
of the second molecule of 7 is relatively more favored for 10 than for 9 (binding energy differences
per unit of 7 between 1:2 and 1:1 complexes of +5.33 and −3.4 kcal/mol for 9 and 10, respectively;
Table 6). These trends were in good agreement with the higher association constant K1 obtained for
meso–meso porphyrin 9 (log K1 = 8.7) compared to tape porphyrin 10 (log K1 = 6.8), and with the smaller
decrease that the association constant experiences for 10 in passing from the 1:1 to the 1:2 stoichiometry
(log K2 = 5.4 for both 9•72 and 10•72).

Table 6. Binding energies computed at the B97-D3/(cc-pVTZ+LANL2DZ) level for the host–guest
supramolecular associates with stoichiometry 1:1 and 1:2 [90].

Complex Ebind (kcal/mol)

9•7 −108.19
9•72 −211.05
10•7 −98.40

10•72-anti −195.40
10•72-syn −200.20

To rationalize the experimental trends in the association constant for both the 1:1 and 1:2
supramolecular complexes, net electronic charges were computed at the B97-D3/(6-31G**+ LANL2DZ)
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level for 9•7 and 10•7 using the Natural Population Analysis (NPA) approach. Upon formation
of complexes 9•7 and 10•7, the electron-donor porphyrin dimer transfers 0.19e and 0.26e to the
fullerene-based acceptor, respectively. In 9•7, the porphyrin moiety interacting with the C60 ball
accumulates a positive charge of +0.16e, whereas the vicinal empty porphyrin bears a residual positive
charge of only +0.03e. Moving to 10•7, the C60-interacting porphyrin moiety bears a smaller positive
charge of +0.11e compared to the empty porphyrin fragment (+0.15e). The efficient π-conjugation between
the two porphyrin moieties in tape 10 allowed to explain the charge transfer from one fragment to the other.
Theoretical calculations therefore predicted a notable decrease in the electron density for both meso–meso
and tape porphyrin dimers in the ground state upon complexation of the first acceptor molecule of 7.
The decrease of electronic density disfavors the entrance of the second guest molecule, and contributes to
the remarkable change of the association constant (log Ka), from 8.7 to 5.4 in 9•12 and from 6.8 to 5.4 in
10•72, when the second molecule of 7 is introduced to form the stoichiometric 1:2 complex. For complex
10•72, the stabilizing interaction between the C60 units found for the more stable syn disposition partially
compensates the negative effect caused by the reduced electronic density, inducing a reduction of the
negative cooperativity as evidenced by experiments.

3.2. Supramolecular Communication between Buckybowls and the Curved truxTTF Donor

In the last decade, other kinds of carbon nanoforms different to the ubiquitous electron-acceptor
C60 have gained an increasing attention. Based on the alternation of 5- and 6-member fused rings,
fullerene fragments (also known as buckybowls) have aroused the interest of the scientific community
as models of their parent buckyballs, nanotube and graphene materials. Buckybowls have the added
value of a richer chemistry due to the edges and of their pure synthetic availability with a well-defined
molecular structure [107].

3.2.1. The truxTTF•hemifullerene Supramolecular Complex

Hemifullerene (C30H12) is a curved polycyclic aromatic hydrocarbon compound (buckybowl)
that was firstly synthesized in 2004 [108]. In the solid state, two polymorphs were found, each of
which exhibits a different packing arrangement, originating from the interaction between the C30H12

molecules. Figure 15 displays the chemical structure of the hemifullerene C30H12 and the dimeric
arrangements found in its two crystal polymorphs. In the trigonal polymorph, bowl-in-bowl stacks
were found, an orientation in which π–π interactions are maximized (Figure 15b). In the orthorhombic
polymorph, each hemifullerene inserts one of its six-membered rings into the cavity of a neighboring
molecule, forming dimers in which both CH···π and π–π interactions play a primary role (Figure 15c).
On the other hand, truxTTF, for which the bowl-in-bowl arrangement is prevented by the protruding
dithiole rings, presents a dimeric crystallographic arrangement in which one of the aromatic rings of
each monomer is placed inside the cavity of the other (Figure 15d) [87].
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Figure 15. Chemical structure of the hemifullerene C30H12 buckybowl (a); Structure of the dimers
formed by C30H12 (carbon atoms in red) in its trigonal (b) and orthorhombic (c) crystal polymorphs,
respectively; (d) Dimers formed by truxTTF in the crystal. For C30H12, the carbon atoms are depicted
in red and hydrogen atoms in white. For truxTTF, the sulfur, carbon and hydrogen atoms are colored
in yellow, green and white, respectively.
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Considering the capability of the truxTTF electron-donor to host fullerenes promoted by the
concave–convex complementarity (discussed in Section 3.1.2) [87], we expected that this electron-rich
moiety was able to efficiently associate the hemifullerene C30H12 buckybowl in a similar fashion
(i.e., in a bowl-in-bowl arrangement). To explore this possibility, an in silico investigation based on
density functional theory (DFT) calculations was firstly carried out. Four different supramolecular
truxTTF•C30H12 models (rationally constructed based on the crystallographic information on both
C30H12 [108] and truxTTF [87]) were built up and fully optimized at the revPBE0-D3/cc-pVTZ
level. Figure 16 displays the orientation of the four minimum-energy structures calculated for the
truxTTF•C30H12 heterodimer. More structural details are given in Figure 17. In structures A1 and A2,
the convex surface of the C30H12 bowl perfectly matches the two concave cavities of the truxTTF host;
that is, either through the cavity formed by the carbon backbone (structure A1) or through the cavity
formed by the central benzene ring and the three dithiole rings (structure A2). Both structures can
thus be seen as bowl-in-bowl arrangements where π–π interactions are maximized. The concave
cavities of truxTTF and C30H12 can also interact, giving rise to heterodimers in which either a benzene
or a dithiole ring of the truxTTF molecule is placed inside the concave cavity of the hemifullerene
bowl (structures A3 and A4, respectively). The optimized heterodimeric structures A1–4 all show
close intermolecular contacts in the 2.5–3.7 Å range, which is indicative of the stabilizing noncovalent
interaction between both bowls.
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the sulfur, carbon and hydrogen atoms are colored in yellow, green and white, respectively. Adapted with
permission from [18]. Copyright 2014 WILEY-VCH Verlag GmbH & Co. KGaA.

To evaluate the strength of the interaction between the truxTTF and C30H12 bowls, interaction
energies of the previously-optimized heterodimers were computed at the same level of theory
(revPBE0-D3/cc-pVTZ). The four supramolecular structures A1–4 exhibit significant gas-phase interaction
energies, ranging from −21.0 and −19.4 kcal/mol for A1 and A2, respectively, to −25.2 and
−28.5 kcal/mol for A3 and A4, respectively. revPBE0-D3 calculations therefore predicted that the
staggered structures are more stable than the bowl-in-bowl structures.

Inspired by our theoretical findings, the N. Martín group performed a titration of truxTTF with
C30H12 in dichloromethane at room temperature (Figure 18a). A decrease in the intensity of the truxTTF
absorption at λ = 450 nm, accompanied by the increase of a broad band in the 500–600 nm region
(Figure 18) was observed. From the UV–Vis experiments, an association constant of log Ka = 3.6 ± 0.3 for
the truxTTF•C30H12 supramolecular complex in chloroform at room temperature was estimated.

To gain insight into the electronic nature of the absorption bands observed experimentally,
and their evolution during the titration experiment, the lowest-lying singlet excited states (Sn)
of the truxTTF•C30H12 heterodimer and the constituting monomers were computed using the
time-dependent DFT (TD-DFT) approach taking into account solvent effects. Only the results obtained
for the most stable structure of truxTTF•C30H12 (A4) are discussed.
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Figure 18. (a) Experimental UV–Vis spectra, as obtained during the titration of truxTTF (1.7 × 10−4 M)
with C30H12 (0.8 × 10−3 M) in CHCl3 at room temperature; (b) TD-DFT simulation of the absorption
spectrum of truxTTF as the ratio of truxTTF•C30H12 increases from 0 to 100% (B3LYP/cc-pVDZ
calculations including CHCl3 as solvent for structure A4). Adapted with permission from [18].
Copyright 2014 WILEY-VCH Verlag GmbH & Co. KGaA.
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TD-DFT calculations predicted the first two excited states S1 and S2 at 537 nm (2.31 eV) and 516 nm
(2.40 eV), respectively, above the ground state S0. The S0 → S1 and S0 → S2 electronic transitions
have moderate oscillator strengths (ƒ) of 0.036 and 0.046, respectively, and were mainly described by
one-electron promotions from the HOMO to the LUMO and LUMO+1, respectively. These transitions
therefore imply a charge transfer from the electron-donor truxTTF, where the HOMO is located, to the
electron-acceptor C30H12, where the LUMO and LUMO+1 spread (Figure 19), and are the major
contribution to the band experimentally recorded in the 500–600 nm range. Calculations predicted
several transitions (S9–S11) in the 450 nm region giving rise to the truxTTF-centered band originated
from HOMO, HOMO−1→ LUMO+3, LUMO+4 one-electron excitations. A TD-DFT simulation of the
experimental titration was performed by increasing the % of the truxTTF•C30H12 absorption spectrum
with respect to that of the isolated truxTTF compound (see Figure 18b). The theoretical simulation was
in sound agreement with the experimental evolution of the absorption spectrum, therefore supporting
the formation of the supramolecular donor–acceptor truxTTF•C30H12 heterodimer and the appearance
of a low-lying charge-transfer band in the region of 500–600 nm.
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The formation of the charge-separated truxTTF+•C30H12− species upon photoexcitation was 
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The formation of the charge-separated truxTTF+•C30H12
− species upon photoexcitation was further

confirmed by femtosecond pump–probe experiments carried out by the group of Guldi. The time-evolution
analysis of the spectroscopic data afforded rate constants of 6.6× 1011 and 1.0× 1010 s−1 for the charge
separation and charge recombination dynamics, respectively.

This joint experimental and theoretical work demonstrated for the first time that a fullerene
fragment mimics the charge-transfer behavior of the parent buckminster C60 buckyball in a
donor–acceptor supramolecular assembly. From a theoretical point of view, counterintuitive staggered
structures (A3 and A4) were suggested as the most stable arrangements for the truxTTF•C30H12

supramolecular heterodimer. Remarkably, the supramolecular prediction at the DFT-D3 level was
recently confirmed by high-level theoretical calculations at the DLPNO-CCSD(T) level of accuracy [109],
and by another experimental–theoretical study conducted by us on related buckybowl systems
(Section 3.2.2) [19]. The theoretical study of the truxTTF•C30H12 complex therefore represents a
good example where quantum-chemical calculations were decisive to provide a deep insight into the
supramolecular organization of truxTTF•C30H12, which turned out to be strikingly different compared
to that found for its truxTTF•C60 homologue.
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3.2.2. Buckybowls for Donor–Acceptor Assemblies

Encouraged by the study reported for the truxTTF•C30H12 complexation, we explored, by means
of a combined experimental–theoretical investigation, the capability of similar carbon-based
buckybowls of increasing size (Figure 20) to supramolecularly interact with the truxTTF electron-donor.
In contrast to hemifullerene C30H12, the recently reported larger C32H12 and C38H14 buckybowls are
corannulene-based fragments of C60 and C70 fullerene, respectively [110–112]. Such a difference in
the aromatic core and the system size might be accompanied by fundamental differences in terms of
electronic properties and/or supramolecular complexation.
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Based on our previous experience with hemifullerene C30H12 (Section 3.2.1), we expected that
the larger C32H12 and C38H14 fragments were able to associate with truxTTF in a similar manner.
To explore this hypothesis, we started by studying the supramolecular interaction in silico, by means
of DFT-D3 calculations at the revPBE0-D3/cc-pVTZ level (Figure 21).

Molecules 2018, 23, 118  23 of 38 

 

3.2.2. Buckybowls for Donor–Acceptor Assemblies 

Encouraged by the study reported for the truxTTF•C30H12 complexation, we explored, by 
means of a combined experimental–theoretical investigation, the capability of similar carbon-based 
buckybowls of increasing size (Figure 20) to supramolecularly interact with the truxTTF 
electron-donor. In contrast to hemifullerene C30H12, the recently reported larger C32H12 and C38H14 
buckybowls are corannulene-based fragments of C60 and C70 fullerene, respectively [110–112]. Such a 
difference in the aromatic core and the system size might be accompanied by fundamental 
differences in terms of electronic properties and/or supramolecular complexation. 

 
Figure 20. Chemical structure of corannulene-based C32H12 and C38H14 buckybowls. The corannulene 
skeleton is highlighted in red. 

Based on our previous experience with hemifullerene C30H12 (Section 3.2.1), we expected that 
the larger C32H12 and C38H14 fragments were able to associate with truxTTF in a similar manner. To 
explore this hypothesis, we started by studying the supramolecular interaction in silico, by means of 
DFT-D3 calculations at the revPBE0-D3/cc-pVTZ level (Figure 21).  

 
Figure 21. Minimum-energy structures and computed at the revPBE0-D3/cc-pVTZ level for the most 
stable conformations of the heterodimers formed by the C32H12 (B1–4) and C38H14 (C1–6) fullerene 
fragments with truxTTF (truxTT•C32H12 and truxTT•C38H14). Except for the carbon atoms of the 

Figure 21. Minimum-energy structures and computed at the revPBE0-D3/cc-pVTZ level for the most stable
conformations of the heterodimers formed by the C32H12 (B1–4) and C38H14 (C1–6) fullerene fragments
with truxTTF (truxTT•C32H12 and truxTT•C38H14). Except for the carbon atoms of the C32H12 and C38H14

buckybowls depicted in red, the following color code is used: carbon in green, sulfur in yellow and
hydrogen in white. Adapted with permission from Reference [19]. Copyright 2017 WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim.
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In analogy to that previously obtained for C30H12, the corannulene-based C32H12 and C38H14

buckybowls may interact either through concave–convex bowl-in-bowl arrangements —structures
B1–2 for C32H12, and C1–2 for C38H14— with a maximization of π–π interactions, or through
a concave–concave staggered disposition, implying a mixture of π–π and CH···π noncovalent
interactions —structures B3–4 for C32H12, and C3–6 for C38H14—.

Table 7 summarizes the binding energies calculated at the revPBE0-D3/cc-pVTZ level for the
truxTT•C32H12 and truxTT•C38H14 complexes in comparison with those obtained for truxTT•C30H12.
Briefly, the binding energy for the bowl-in-bowl structures was computed to be several kcal/mol
less stable than the staggered dispositions in all cases. Among the latter, the arrangements in which
the dithiole is placed inside the basin of the buckybowl fragment were always computed to be the
most stable heterodimers ranging from −28.5 kcal/mol in C30H12, to −29.9 kcal/mol in C32H12 and
to −34.2 kcal/mol in C38H14. These values suggested that the supramolecular interaction with the
electron-donor truxTTF is reinforced upon increasing the buckybowl size due to the increasing number
of weak NCIs originated from π–π and CH···π contacts.

Table 7. Thermodynamic parameters (in kcal/mol) including binding energy (Ebind), free energy in
gas phase (∆Ggas), and free energy including solvent effects (∆Gtheor) for the dimerization process.
Theoretical and experimental log Ka values are also included [19] 1.

Heterodimer Ebind ∆Ggas ∆Gtheor log Ka,theor log Ka,exp

truxTTF•C30H12

A1 −21.02 −8.27 1.13

3.7 3.6
A2 −19.38 −5.98 2.64
A3 −25.23 −10.88 −2.96
A4 −28.52 −14.34 −5.00

truxTTF•C32H12

B1 −20.44 −3.87 5.07

3.2 2.9–3.3
B2 −19.97 −4.24 3.67
B3 −24.69 −6.95 0.97
B4 −29.91 −12.84 −4.29

truxTTF•C38H14

C1 −23.37 −4.32 5.81

3.6 3.4–3.5

C2 −21.63 −3.46 4.80
C3 −29.09 −9.72 0.51
C4 −33.48 −14.39 −3.75
C5 −31.57 −11.71 −2.65
C6 −34.24 −14.94 −4.93

1 The reader is referred to the original work [19] for further computational details and experimental specifications;
2 C5 and C6 conformers are analogous to C3 and C4, respectively, in which the buckybowl is rotated by ~90◦ with
respect to the truxTTF.

In order to provide a more realistic description reflecting the strength of complexation at room
temperature and in solution, the free energy of the dimerization process was theoretically estimated
for all the possible conformers of truxTTF•C32H12 and truxTTF•C38H14, and compared with that
computed for truxTTF•C30H12. Enthalpy and entropy corrections to the free energy were calculated
at the B3LYP/cc-pVDZ level of theory. For the entropic part, the rigid-rotor harmonic-oscillator
approximation (RRHO) was used as described by Grimme [79]. Solvent effects were included at
the same level of theory using the Universal Solvation Model based on the Solute Electron Density
(SMD) [113]. The reader is referred to [19] for further details.

Free energies in gas phase show that entropic effects are similar for both bowl-in-bowl and
staggered dimers (compare Eint and ∆Ggas in Table 7). Upon inclusion of solvent effects (chloroform),
the ∆Gtheor values obtained indicate the same trends for the relative stabilities of the different
supramolecular arrangements as predicted by the association energy (Table 7). Interestingly, only the
staggered conformers provided negative values of ∆Gtheor, suggesting that bowl-in-bowl arrangements
might not be formed in solution. For the three buckybowls, the staggered dimers in which the dithiole
ring is placed inside the bowl basin were computed as the most stable structures, with ∆Gtheor values
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of −4.29, −4.93 and −5.00 kcal/mol for truxTTF•C32H12, truxTTF•C38H14 and truxTTF•C30H12,
respectively. Theoretical log Ka values were predicted in the range of 3–4, showing a perfect matching
in the case of truxTTF•C30H12 (log Ka,theor = 3.7) with respect to the experimental value previously
reported (log Ka,exp = 3.6 ± 0.3) [18].

With these promising theoretical findings in hand, the supramolecular association of truxTTF
with the C32H12 and C38H14 buckybowls was experimentally corroborated by absorption titrations
in several solvents at room temperature. Overall, the absorption features in the UV–Vis spectrum
upon titration led to similar band evolution as that previously found in truxTTF•C30H12 (Figure 18).
Multiwavelength analysis of the titration experiments allowed the estimation of association constants
of log Ka = 2.9–3.3 for C32H12 and log Ka = 3.4–3.5 for C38H14, respectively. These experimental
constants were in excellent agreement with the theoretical constants (Table 7), suggesting the formation
of the staggered structures predicted theoretically as the preferred dispositions. It should be stressed
that these staggered arrangements were finally confirmed by 1H-NMR experiments performed for
the C32H12 and C38H14 heterodimers. In the case of C32H12, all the signals of C32H12 suffered slight
and quantitatively similar upfield shifts upon complexation. Meanwhile, the signals corresponding to
the truxene core of truxTTF appeared unaltered, and only the dithiole ring signals underwent upfield
shifts of ca. 0.02 ppm (see [19] for further experimental details). The case of truxTTF•C38H14 was
not straightforward and the 1H-NMR spectra pointed to a coexistence in solution of the staggered
structures, with predominance of those in which the dithiole rings are inside the cavity of C38H14

(similarly to B4 in Figure 21 for truxTTF•C32H12), again in perfect agreement with the DFT-D3
calculations (Table 7).

These experimental–theoretical outcomes constitute the first evidences that buckybowls,
in contrast to fullerenes, are able to supramolecularly interact with electron-donor organic molecules
in dispositions other than the typical concave–convex arrangements, maximizing both CH···π and
π–π interactions. It is noteworthy that the structures implying the dithiole rings were found more
stable than those only involving the carbon backbones, thus indicating the important role played by
sulfur-mediated noncovalent interactions.

3.3. Carbon Nanotube Supramolecular Assemblies

Single-walled carbon nanotubes (SWNTs) are one of the most promising nanomaterials owing to their
structural and electronic properties, and have attracted a lot of attention in the last years [114]. In general,
chemical modifications are necessary to modulate and control their properties [115,116]. A particularly
attractive strategy is to exploit NCIs to generate supramolecular architectures, since it guarantees the
structural integrity of the nanotube and the strength of the interaction can be modulated by changing the
structure of the host, its concentration, the solvent, and/or the temperature. In this regard, the quantification
of the supramolecular interactions is of paramount relevance. However, there is no experimental standard
method for the quantification of their supramolecular chemistry in solution/suspension. Recently, a simple
procedure for the determination of association constants (Ka) between soluble molecules and insoluble,
heterogeneous carbon nanotube samples was proposed by some of us [117].

Figure 22 displays the chemical structures of the five host systems that were used to test the
experimental method. Interestingly, the experimental methodology turned out to be sensitive to
solvent effects, the size (diameter) of the SWNT and the hosts interacting with a particular SWNT.

A thorough theoretical study by means of DFT-D3 calculations was carried out to corroborate
and support the experimental findings. All supramolecular assemblies between hosts 11–15 and a
SWNT model were optimized at the PBE0-D3/6-31G** level including the three-body dispersion
correction (EABC). The strength of the interaction between host and guest was calculated by means of
two different quantities: Eint and Ebind. Because of the small size of the double-zeta 6-31G** basis set
employed, the basis set superposition error (BSSE) associated to the Eint values was corrected using to
the counterpoise (CP) scheme.
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Prior to analyzing the host-guest complexes, the effect of the length of the nanotube into the
binding energy was assessed by increasing the SWNT size in the 11•SWNT complex. The binding
energy was shown to be nearly converged with SWNT sizes slightly larger than the host length
(see Table 8 and Figure 23). A fragment of a zig-zag (10,0)-SWNT was used as a general model for the
SWNTs in this regard.Molecules 2018, 23, 118  26 of 38 
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Figure 23. Minimum-energy geometries of parallel 11•SWNT assemblies and the perpendicular
11•C200H20 calculated at the PBE0-D3/6-31G** level from a semi-rigid optimization with fixed
intramolecular parameters (see the original Reference [117] for further details). Carbon atoms of
SWNTs are highlighted in red whereas the carbon atoms of pyrene are in green. Hydrogen atoms
are depicted in white. Reproduced from Reference [117] with permission from the Royal Society
of Chemistry.
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Table 8. Binding energy depending on the nanotube length for the parallel and perpendicular dispositions
of the supramolecular 11•SWNT complex calculated at the PBE0-D3/6-31G** level of theory [117].

Ebind (kcal/mol)

Disposition SWNT Length Semi-Rigid Fully Relaxed

Parallel

11•C40H20 −11.05 −11.25
11•C80H20 −17.80 −18.11
11•C120H20 −21.79 −21.76
11•C200H20 −21.18 −21.42

Perpendicular

11•C40H20 −10.88 −11.12
11•C80H20 −16.40 −17.11
11•C120H20 −19.46 −19.60
11•C200H20 −18.85 −17.97

Figure 24 displays the minimum-energy geometries for the 11–15 hosts assembled with the SWNT
model of C160H20 computed at the PBE0-D3/6-31G** level of theory in gas phase. Note that the size of the
SWNT model (C160H20) was sufficiently large compared to all hosts studied and, therefore, the binding
energy was not expected to vary in line with the previous length-dependence study for the 11•SWNT
complex (Table 8). Among the different closely energetic conformations of 11 over SWNT, the diagonal
arrangement turned out to be the most stable, with close π–π contacts (3.2–3.5 Å). The interaction energy
of 11•SWNT was calculated to be −15.24 kcal/mol, which was slightly reduced to −14.84 kcal/mol
for the binding energy as a consequence of the deformation energy penalty (0.59 kcal/mol). Moving
from the pyrene system (11) to 1,6-diaminopyrene (12), additional n-π interactions resulting from close
nitrogen···nanotube contacts emerge (ca. 4.0 Å). The Eint term of 12•SWNT was found larger than that
computed for 11•SWNT by 1.3 kcal/mol, but this difference was not preserved in the binding energy
(Table 9). The deformation energy, predicted to be 2.83 kcal/mol for 12•SWNT, explained this trend.
The incorporation of an extra aromatic ring in 13 gives rise to a significant increase of the interaction energy
up to−23.68 kcal/mol, with close π–π benzene···SWNT (3.5 Å) and C=O···SWNT (3.2 Å) contacts. Bivalent
tweezers-like hosts 14 and 15 were calculated to further enhance the supramolecular affinity towards
SWNT, with Eint as large as −38.78 and −63.23 kcal/mol for 14•SWNT and 15•SWNT, respectively.
The binding energy in complex 14•SWNT (−36.42 kcal/mol) is indeed approximately the sum of Eint for
its constituting moieties 11 and 13 (−14.84 +−21.52 =−36.36 kcal/mol), which supports the theoretical
approach undertaken. Whereas the Edef of 14•SWNT was calculated similar to 12•SWNT and 13•SWNT,
it rose to 20.46 kcal/mol for 15•SWNT owing to the optimal arrangement of the alkoxy chains around the
nanotube (Figure 24). This disposition confers to 15•SWNT an increased Ebind of−42.78 kcal/mol due to
close CH···π contacts computed in the range of 2.7–3.2 Å, which contribute to the total binding energy
approximately in 6 kcal/mol.

Table 9. Energy parameters (kcal/mol) and intermolecular contact area (CA, in Å2) calculated for the
interaction between hosts 11–15 and SWNT guests at the CP-corrected PBE0-D3/6-31G**+EABC level [117].

System Eint Edef Ebind CA 1

11•(6,5)-SWNTs −13.85 0.81 −13.04 42.20
11•SWNTs −15.24 0.59 −14.84 42.70
12•SWNTs −16.53 2.83 −13.70 47.25
13•SWNTs −23.68 2.16 −21.52 75.30
14•SWNTs −38.78 2.36 −36.42 126.85
15•SWNTs −63.23 20.46 −42.78 188.55

1 The intermolecular contact area (CA) was calculated using the UCSF Chimera 1.7 software according to the
formula: (area of the host + area of the guest − area of the complex)/2, where the area refers to solvent-excluded
molecular surfaces, composed of probe contact, toroidal, and reentrant surface.
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from the Royal Society of Chemistry.

Finally, the influence of the structure of the nanotube in the stability of the host-guest assembly was
assessed by comparing the binding energies of the SWNT model (C160H20) and (6,5)-SWNT (C132H22)
with pyrene 11. The Eint of 11•(6,5)-SWNTs was found to be −13.85 kcal/mol, which is 1.4 kcal/mol
smaller than the Eint of 11•SWNTs. The minimum-energy optimized geometries calculated for the
supramolecular complexes between pyrene and the two types of nanotubes (Figure 25) revealed subtle
differences in terms of intermolecular contacts. The diameter of (6,5)-SWNT was calculated at 7.5 Å,
slightly shorter than SWNT (7.9 Å), which causes a less efficient supramolecular assembly with pyrene.
The deformation energy of 11•(6,5)-SWNT was computed somewhat larger than that of 11•SWNTs
(Table 9), suggesting that the pyrene core was required to have a larger deformation to accommodate
over the more-curved nanotube surface of (6,5)-SWNT. Moreover, the intermolecular contact area for
1•(6,5)-SWNTs was estimated to be 0.5 Å2 smaller than 11•SWNTs.
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Figure 25. Side view of the supramolecular complex formed by 11 and two types of SWNTs. Carbon
atoms of SWNTs are highlighted in red whereas the carbon atoms of pyrene are in green. Hydrogen atoms
are depicted in white. Reproduced from [117] with permission from the Royal Society of Chemistry.

Most remarkably, the calculated Ebind energies and the experimentally determined Ka values exhibited
admirable quantitative agreement, despite the fact that solvent effects were not included in our calculations.
A plot of the lnKa vs. −Ebind for hosts 11, 13, 14 and 15 bound to SWNTs in THF at room temperature,
the largest set for which comparable Ka data were obtained, is shown in Figure 26. Fixing the intercept to 0,
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the data fitted well (r2 = 0.984) to a straight line of slope 0.22± 0.01. Our analysis showed that the ∆Gbind
determined experimentally was proportional to the calculated Ebind.Molecules 2018, 23, 118  29 of 38 
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This study was followed by an exhaustive combination of experiment, density functional theory
(DFT) and molecular dynamics (MD) simulations for the quantitative analysis of the noncovalent
interaction between (6,5)-SWNT, as host, and a set of pyrene derivatives with different electronic
properties and surface area, as guests [118]. The supramolecular stabilization of the assemblies
were explained in terms of dispersion forces as suggested by the linear correlation between the
intermolecular contact area and the interaction energy, whereas electronic charge-transfer effects were
ruled out. Molecular dynamics with explicit solvent molecules allowed us to predict binding constants
in remarkable agreement with those derived from experiment, and to disentangle the molecular details
underlying the adsorption process from low to high SWNT surface coverage. For further details,
the reader is referred to the original work [118].

3.4. exTTF-Graphene Supramolecular Assembly

As already mentioned in Section 3.1, the concave geometry of the exTTF electron-donor can
be exploited to supramolecularly recognize fullerenes by means of efficient π–π interactions owing
to the concave–convex complementarity. Nevertheless, there are numerous examples where planar
π-conjugated platforms (particularly porphyrins) are able to noncovalently interact with fullerene
and nanotubes despite the planar–convex mismatch [80,119]. Inspired by this fact, we explored the
possibility of exTTF to establish stabilizing noncovalent interactions with planar graphene, regardless
of its biconcave geometry. Experimentally, the positive interaction between exTTF and graphene was
studied by means of a multivalent approach, where gold nanoparticles were decorated with exTTF
units (exTTFAuNPs) [120]. The interaction between the exTTFAuNPs with graphene was confirmed by
a series of spectroscopic (UV–Vis and Raman) and transition electron microscopy (TEM) techniques.

Notwithstanding the precise experimental information obtained, several fundamental questions
remained unsolved. For instance, how can the biconcave geometry of the exTTF compound be
able to efficiently interact with the graphene sheet? To answer this question, and gain insight into
the supramolecular recognition process between exTTF and graphene, we performed revPBE0-D3
calculations on an exTTF-graphene model. The exTTF unit was placed in different orientations over
a polyaromatic hydrocarbon (PAH) graphene-like molecule including 31 benzene rings (C84H24).
Figure 27 displays the minimum-energy structures (G1–G5) calculated for the exTTF-graphene
supramolecular complex at the revPBE0-D3/cc-pVDZ level. In structures G1 and G2, the interaction of
the exTTF fragment with graphene mainly occurs through the concave anthracene backbone, whereas
in structure G3 the interaction takes place through the concave dithiole face. Structures G1 and G2
are mainly governed by π–π interactions, whereas structure G3 involves close CH···π interactions
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(~2.7 Å) between the terminal hydrogen atoms of the dithiole rings and the graphene sheet. The exTTF
molecule can also interact with the graphene sheet through a benzene ring and the sulfur atoms
(structure G4), or through a dithiole ring (structure G5).Molecules 2018, 23, 118  30 of 38 
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Verlag GmbH & Co. KGaA. 
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was −20.4 kcal/mol, which is higher than that computed for its homologous structure G1 but 
significantly smaller than those computed for structures G4 and G5. The remarkable increase of the 
interaction energies for structure G4 and G5 with respect to the anthracene–graphene model clearly 
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Figure 27. Minimum-energy structures computed for the exTTF-graphene models (G1–G5) at the
revPBE0-D3/cc-pVDZ level. Carbon atoms of exTTF are depicted in green, sulfur in yellow and
hydrogen in white. Carbon atoms of the graphene sheet are depicted in red and hydrogen atoms have
been omitted for clarity. Adapted with permission from [120]. Copyright 2013 WILEY-VCH Verlag
GmbH & Co. KGaA.

Structures G4 and G5 imply a mixture of π–π and CH···π interactions. All optimized structures
G1–G5 showed close intermolecular distances in the 3.1–4.0 Å range, which are the structural signature
of stabilizing noncovalent interactions. Remarkably, despite the electron-donor character of exTTF,
our calculations predicted negligible contributions from charge-transfer interactions (<0.005e).

To estimate the interaction energies of the exTTF-graphene models G1–G5, single-point energy
calculations were performed on the previously-optimized structures using the revPBE0-D3 functional,
and the more extended triple-ζ cc-pVTZ basis set. Structures G4 and G5 were found to be the most
stable structures with interaction energies of−22.2 and−25.2 kcal/mol, respectively. Significant Eint of
−19.0, −20.7 and −16.8 kcal/mol were also calculated for structures G1–G3. These theoretical outcomes
clearly confirmed the presence of a significant stabilizing interaction between the exTTF derivative and
a graphene sheet. However, the influence of the nonplanar geometry of exTTF on the supramolecular
association with graphene was still unclear. To explore this effect, the interaction of the graphene sheet
with a planar π-conjugated motif like anthracene (the central backbone of exTTF) was also computed in
an eclipsed-like disposition similar to structure G6 (Figure 28). The interaction energy computed at the
revPBE0-D3/cc-pVTZ level for this anthracene–graphene model was −20.4 kcal/mol, which is higher
than that computed for its homologous structure G1 but significantly smaller than those computed for
structures G4 and G5. The remarkable increase of the interaction energies for structure G4 and G5 with
respect to the anthracene–graphene model clearly reveals that the planarity of the π-conjugated motif does
not necessarily favor a stronger supramolecular association with a graphene sheet. For instance, despite
the concave–planar mismatch, the exTTF system can orientate in different ways to interact strongly with a
graphene sheet. These final theoretical findings allowed us to confirm, counterintuitively a priori, that
planarity is not a sine qua non condition for a structure to bind effectively graphene.
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Figure 28. (a) Top and side views of the minimum-energy geometry computed for anthracene-graphene
(G6) at the revPBE0-D3/cc-pVDZ level. The intermolecular interacting regions of anthracene and
graphene are colored in red; (b) Magnification of the interacting region emphasizing the most
representative intermolecular distances collected in the table. Adapted with permission from [120].
Copyright 2013 WILEY-VCH Verlag GmbH & Co. KGaA.

Recently, a computational approximation based on molecular mechanics/molecular dynamics
(MM/MD) demonstrated to be particularly useful for characterizing the supramolecular organization of
C60-based molecules endowed with one or three pyrene units when interacting with graphene to form
mono- and tripodal graphene nanobuds [121]. This is another example that clearly highlights the potential
of computational molecular modelling (classical or quantum) in the field of supramolecular chemistry.

4. Conclusions

Carbon nanoforms are at the forefront in current science owing to their potential application in a
variety of fields. The supramolecular chemistry of these carbon-based nanoforms is of wide interest
since the functionalization with π-conjugated compounds by means of noncovalent interactions allows
maintaining the integrity of the nanoforms while modulating some properties such as the solubility or
stability of the resulting assemblies.

In this review, we have shown how quantum-chemical calculations can be used as a powerful
characterization tool to gain deep insights into the self-organization of different carbon-based
nanoforms (such as fullerenes, fullerenes fragments, carbon nanotubes and graphene) with different
electron-rich π-conjugated motifs in the generation of appealing supramolecular complexes governed
by noncovalent interactions.

With respect to fullerene-based supramolecular complexes, quantum-chemical calculations have
been fundamental to: (i) unveil the nature of the stabilizing noncovalent interactions (π–π, n–π and
CH···π) that govern the supramolecular assembly formed by extended tetrathiafulvalene (exTTF),
decorated with crown-ether groups of increasing size, and fullerene C60; (ii) provide an in-depth
structural characterization concerning the supramolecular organization between the electron-donor
truxene-tetrathiafulvalene (truxTTF) and the electron-acceptor C60; (iii) thoroughly disentangle the
role of the different interactions (dispersion, exchange, electrostatic, induction) that contribute to the
stabilization of the porphyrin–C60 assemblies; and finally; (iv) explain the negative cooperative effects
as a consequence of the depletion of electron density the electron density in ditopic porphyrin receptors
upon insertion of the first fullerene molecule.
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In the buckybowl-based heterodimers formed with the electron-donor truxTTF, theoretical
calculations were decisive to propose the staggered arrangements as most stable supramolecular
structures, which seemed to be a priori very counterintuitive but were later confirmed by
1H-NMR experiments. In the example of single-walled carbon nanotubes (SWCNs) assemblies,
the quantum-chemical calculations were helpful to support the experimental protocol to estimate
association constants between soluble molecules and insoluble, heterogeneous carbon nanotube
samples, which is crucial to understand the supramolecular chemistry of these SWCN compounds
for current technological applications. Finally, theoretical calculations predicted a stabilizing
interaction between graphene and the electron-donor exTTF despite the geometrical planar–curved
mismatch. Remarkably, the theoretical outcomes demonstrated that planarity is not a prerequisite for
a supramolecular recognition motif to effectively interact with graphene.

Despite the current success in the development of feasible quantum-chemical methods able to
accurately describe relatively large-size supramolecular complexes, the molecular size is still critical for
routine quantum-chemical calculations on molecular systems of more than 1000 atoms. Notwithstanding,
new avenues of research concerning the development of large-scale quantum-chemical techniques allow
dealing with very large molecular systems [64,122–124], and point to a bright future for the field of
quantum chemistry and molecular modelling applied to supramolecular chemistry problems.
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