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Severely motor-disabled patients, such as those suffering from the so-called “locked-
in” syndrome, cannot communicate naturally. They may benefit from brain-computer
interfaces (BCIs) exploiting brain signals for communication and therewith circumventing
the muscular system. One BCI technique that has gained attention recently is
functional near-infrared spectroscopy (fNIRS). Typically, fNIRS-based BCIs allow for
brain-based communication via voluntarily modulation of brain activity through mental
task performance guided by visual or auditory instructions. While the development of
fNIRS-BCIs has made great progress, the reliability of fNIRS-BCIs across time and
environments has rarely been assessed. In the present fNIRS-BCI study, we tested six
healthy participants across three consecutive days using a straightforward four-choice
fNIRS-BCI communication paradigm that allows answer encoding based on instructions
using various sensory modalities. To encode an answer, participants performed a motor
imagery task (mental drawing) in one out of four time periods. Answer encoding was
guided by either the visual, auditory, or tactile sensory modality. Two participants were
tested outside the laboratory in a cafeteria. Answers were decoded from the time course
of the most-informative fNIRS channel-by-chromophore combination. Across the three
testing days, we obtained mean single- and multi-trial (joint analysis of four consecutive
trials) accuracies of 62.5 and 85.19%, respectively. Obtained multi-trial accuracies were
86.11% for visual, 80.56% for auditory, and 88.89% for tactile sensory encoding.
The two participants that used the fNIRS-BCI in a cafeteria obtained the best single-
(72.22 and 77.78%) and multi-trial accuracies (100 and 94.44%). Communication was
reliable over the three recording sessions with multi-trial accuracies of 86.11% on day
1, 86.11% on day 2, and 83.33% on day 3. To gauge the trade-off between number
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of optodes and decoding accuracy, averaging across two and three promising fNIRS
channels was compared to the one-channel approach. Multi-trial accuracy increased
from 85.19% (one-channel approach) to 91.67% (two-/three-channel approach). In
sum, the presented fNIRS-BCI yielded robust decoding results using three alternative
sensory encoding modalities. Further, fNIRS-BCI communication was stable over the
course of three consecutive days, even in a natural (social) environment. Therewith,
the developed fNIRS-BCI demonstrated high flexibility, reliability and robustness, crucial
requirements for future clinical applicability.

Keywords: functional near-infrared spectroscopy (fNIRS), brain-computer interface (BCI), motor imagery (MI),
mental drawing, sensory encoding modality, four-choice communication, temporal encoding, reliability over time

INTRODUCTION

The motor system plays a pivotal role in natural human
communication. Any disruption to this system can negatively
affect our ability to communicate. Severely motor-disabled
patients lose the ability to communicate in an intuitive manner.
For example, patients suffering from the “locked-in” syndrome
(Plum and Posner, 1982) are aware but have lost the ability to
speak. Patients with the “classic” locked-in syndrome and those
in early stages of amyotrophic lateral sclerosis (ALS), can use
eye movement for basic communication. However, some patients
suffer from deficits in the oculomotor system, such as those with
“complete” locked-in syndrome (CLIS) or in late stages of ALS.
These patients are particularly in need of motor-independent
communication means that rely on central nervous system
activation. Restoring basic communication in these patients can
have a large impact on their quality of life (Kübler et al., 2005;
Rousseau et al., 2012).

Brain-computer interfacing (BCI) enables motor-independent
communication through brain-based encoding of intention. The
BCI user willfully modifies her/his brain activation, which is
recorded using functional neuroimaging and from which an
answer is decoded. The most widely used imaging method in the
context of BCI is the electroencephalogram (EEG), which records
neuro-electric brain signals (Kubler et al., 2009; Marchetti et al.,
2013; Lazarou et al., 2018; Won et al., 2019).

However, not everyone can control an EEG-based BCI
(Allison and Neuper, 2010). Especially in the late stages of
ALS, when patients lose all ocular control and enter a CLIS
state, interpretable visual signals are rare (Borgheai et al., 2020).
This highlights the need for alternatives for the heterogeneous
population of patients who have to rely on a BCI. In this context,
hemodynamic responses, relying on blood flow instead of electric
signals, constitute a viable alternative. Successful communication
has been demonstrated using functional magnetic resonance
imaging (fMRI) paradigms in healthy participants (Sorger et al.,
2009, 2012) and patients (Monti et al., 2010) when using two or
three mental imagery tasks. Nevertheless, fMRI has its drawbacks,
such as high costs, immobility and participant-specific contra-
indications to being in a strong magnetic field (Irani et al., 2007;
Naci et al., 2012; Scarapicchia et al., 2017). There is a need for

Abbreviations: SOI, signal-of-interest.

these promising hemodynamic paradigms to be transferred to a
portable neuroimaging method that can be used in ecologically
valid environments in which communication typically takes place
(Sorger et al., 2009, 2012; Naci et al., 2012).

Functional near-infrared spectroscopy (fNIRS) is such an
alternative method. It being portable, relatively affordable and
easier to operate than fMRI (Naci et al., 2012). This neuroimaging
method measures the hemodynamic response using near-
infrared light emitters and sensors, called optodes. The term
“channel” is used to define a specific optode pair (one emitter and
one receiver optode). Cortical activity can be detected through
relative concentration changes in oxygenated (HbO) and de-
oxygenated (HbR) hemoglobin. Validation studies have shown
that fNIRS signals correlate strongly with fMRI signals (Huppert
et al., 2006; Cui et al., 2011; Scarapicchia et al., 2017), despite
lower spatial resolution and signal-to-noise ratio of fNIRS.

In recent years, methodological advances in fNIRS hardware
and signal processing have resulted in a steady increase of
fNIRS publications (Naseer and Hong, 2015b; Pinti et al., 2018b).
Similar to the fMRI paradigms, most fNIRS-BCI research has
focused on binary communication via mental imagery tasks
(Naito et al., 2007; Nagels-Coune et al., 2017, 2020; Abdalmalak
et al., 2020), with a few studies showing effective decoding
of four (Batula et al., 2014; Naseer and Hong, 2015a), or six
(Benitez-Andonegui et al., 2020) answer options. Mental imagery
is typically guided with a single sensory encoding modality,
mainly visual or auditory. Answer decoding is often done
using multivariate classification techniques that rely on spatial
features of the different mental imagery tasks (Batula et al., 2014;
Naseer and Hong, 2015b; Weyand and Chau, 2015; Hong et al.,
2018). Despite the technological and methodological advances,
most fNIRS-BCI studies so far have been limited to laboratory
environments (Naseer and Hong, 2015b). FNIRS-BCIs have only
been tested in a handful of patient studies (Naito et al., 2007;
Abdalmalak et al., 2017b; Borgheai et al., 2020). For an fNIRS-
BCI to reach end-users, its setup should be straightforward and
flexible both in terms answer encoding and decoding. Crucially,
an fNIRS-BCI should also work reliably over time and in
different environments.

Previous work from our lab has shown the potential of the
temporal encoding paradigm (see Figure 1) in which answer
options are presented in a serial manner (Benitez-Andonegui
et al., 2020; Nagels-Coune et al., 2020). Thereby, participants
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FIGURE 1 | Four-choice temporal encoding paradigm with expected time
courses. Hypothesized HbO (red line) and HbR (blue line) responses for the
four answer options “A”, “B”, “C”, and “D”. To chose answer option “A” (top
panel), the participant had to start mental imagery upon the cue presented
20 s after trial onset and stop the mental imagery when answer option “B”
was presented. For the remaining trial time, the participant had to rest and
await the subsequent encoding trial. The other three panels show the
hypothesized HbO and HbR response for answer options “B”, “C”, and “D”.

can perform a single mental imagery task when their chosen
answer option is presented. Other fNIRS studies have used
paradigms that strongly rely on spatial discrimination of brain-
activation patterns evoked by different mental imagery tasks
(Batula et al., 2014; Naseer and Hong, 2015a; Weyand and
Chau, 2015; Hong et al., 2018). The advantage of the temporal
paradigm lies in its simplicity, which is enabled by the limited
pre-training time it requires from the BCI user and the combined
use of a single motor imagery task, (usually) a single fNIRS
channel, and relatively basic univariate data analysis. Our lab has
tested the temporal encoding paradigm using a two- (Nagels-
Coune et al., 2020) and six-choice (Benitez-Andonegui et al.,
2020) paradigm. In the current study, we aim to replicate the
success of the temporal encoding paradigm using a four-choice
paradigm. So far only two studies have tested a four-choice
fNIRS-BCI in healthy participants. In a preliminary study by
Batula et al. (2014), three participants used four motor imagery
tasks, specifically right hand, left hand, right foot and left
foot tapping, to communicate their answer. Data from the 18
fNIRS optodes was analyzed with a support vector machine,
resulting in a mean single-trial accuracy of 45.7%. Naseer and
Hong (2015a) asked ten healthy participants to use four distinct
mental imagery tasks, namely right-hand motor imagery, left-
hand motor imagery, mental arithmetic and mental counting, to

encode four answer options. Using 32 fNIRS optodes and linear
discriminant analysis to discern differentiable spatial patterns, a
mean single-trial accuracy of 73.3% was reached.

Next to a convenient fNIRS-BCI paradigm, there is a need for
flexibility in term of the sensory modality that guides the user to
encode an answer option. Many EEG-based BCIs have focused
on the visual modality (Allison and Neuper, 2010; Brunner et al.,
2010; Treder and Blankertz, 2010). However, vision is one of the
most affected senses in patients in need of a BCI (Gill-Thwaites
and Munday, 2004; Riccio et al., 2012; Rousseau et al., 2012).
Therefore, the auditory encoding modality has been explored in
EEG-based BCIs (Kubler et al., 2009; Simon et al., 2015; Sugi
et al., 2018) and fMRI-based BCIs (Monti et al., 2010; Naci and
Owen, 2013). Encoding displays in the tactile modality remain
relatively unexplored, with only a few EEG-based BCIs reported
(Muller-Putz et al., 2006; Kaufmann et al., 2013; Lugo et al., 2014;
Guger et al., 2017). However, tactile encoding might provide a
critical solution for patients who are unable to use either visual
or auditory BCI paradigms. Kaufmann et al. (2013) reported
a LIS patient in whom the tactile modality was of superior
benefit compared to the visual and auditory modalities in the
context of an EEG-based BCI. To our knowledge, no study has
yet explored the tactile encoding modality in the context of an
fNIRS-BCI. Moreover, no BCI study has systematically explored
three different sensory encoding modalities within the same
participants employing an identical BCI paradigm.

Another critical factor for end-users is the reliability of the
fNIRS-BCI. Most fNIRS-BCI studies were performed in a single
session (Naito et al., 2007; Naseer and Hong, 2015a; Abdalmalak
et al., 2017b; Nagels-Coune et al., 2017, 2020; Benitez-Andonegui
et al., 2020), with the exception of the recent single-case study
by Borgheai et al. (2020). Test-retest reliability of fNIRS signals
has been assessed in non-BCI fNIRS research (Plichta et al.,
2006; Blasi et al., 2014; Wiggins et al., 2016). These studies have
shown encouraging results at the group level but also found
large variability on the individual level. Here, we will assess the
reliability of the suggested 4-choice fNIRS-BCI in six individual
participants over the course of three fNIRS sessions across three
consecutive days. Next to reliability over time, rehabilitation
professionals have emphasized a need for BCIs to work reliably
in different environments (Nijboer, 2015). The limited amount
of studies that have tested an fNIRS-BCI in a non-laboratory
environment, have usually done so in an environment familiar to
the subject, for example their home or care center (Abdalmalak
et al., 2017b; Borgheai et al., 2020; Li et al., 2021). However, a
reliable fNIRS-BCI should also be able to perform in more noisy
(social) environments. Therefore, two participants in our study
will use the fNIRS-BCI in a cafeteria.

The simplicity of the temporal encoding paradigm developed
in our lab (Nagels-Coune et al., 2017, 2020; Benitez-Andonegui
et al., 2020) is enabled by straightforward univariate analysis –
using only the information of the participant-specific most-
informative fNIRS channel-by-chromophore. Despite the initial
success in communication with ALS patients using a single-
channel single-wavelength approach by Naito et al. (2007), BCI
studies rarely decode information from a single channel (Benitez-
Andonegui et al., 2020; Nagels-Coune et al., 2020). The majority
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of fNIRS-BCI studies use a large number of fNIRS channels
and analyze data using a multivariate approach (Batula et al.,
2014; Naseer and Hong, 2015a; Weyand and Chau, 2015; Hong
et al., 2018). Large optode setups are generally experienced as
uncomfortable and reports exist of participants withdrawing
from fNIRS studies because of it (Suzuki et al., 2010; Cui et al.,
2011; Rezazadeh Sereshkeh et al., 2018). Being able to use sparse
channel setups would greatly increase clinical application and
patient comfort. In addition, which chromophore, i.e., HbO or
HbR, is most suited for BCI purposes is still a matter of debate.
HbO is most often used in BCI because of its high amplitude
(Leff et al., 2011), but HbR is thought to be less contaminated
by physiological noise (Kirilina et al., 2012). Previous studies
from our lab have reported a roughly comparable amount of
participants in which HbO outperforms HbR and vice versa
(Benitez-Andonegui et al., 2020; Nagels-Coune et al., 2020).
In light of this, we focus our analyses in the current study
on a participant-specific most-informative fNIRS channel-by-
chromophore and compare it with results obtained from averages
of two and three channels, to gauge the trade-off between number
of optodes and decoding accuracy.

The aims of the current fNIRS-BCI study are: (1) to replicate
the success of the temporal encoding paradigm using a four-
choice paradigm, (2) to explore three different sensory encoding
modalities, i.e., auditory, visual, and tactile, within the same
participants employing an identical BCI paradigm, (3) to assess
the reliability of the fNIRS-BCI across time and environments,
and (4) to gauge the trade-off between number of optodes
and decoding accuracy. To reach these aims, six participants
answered four-choice questions using motor imagery, i.e., mental
drawing. Motor imagery was guided by the auditory, visual or
tactile sensory encoding modality. Each participant performed
three fNIRS sessions on three consecutive days. Two participants
were tested in an ecologically valid environment, i.e., a cafeteria,
whereas the others were tested in a laboratory environment.
Answer decoding was performed using a participant-specific
most-informative fNIRS channel-by-chromophore. The possible
advantage in terms of decoding accuracy of averaging two and
three most-informative channels is explored. Finally, to capture
the BCI users’ subjective experiences, we administered several
in-house questionnaires that assess motor imagery skills, mental
imagery strategies, easiness and pleasantness of the three sensory
encoding modalities, and level of comfort during our study.

MATERIALS AND METHODS

Participants
Eight participants were tested, of which two were excluded
from this paper. One participant dropped out after session
2 due to personal matters, while a second participant was
excluded following experimental error during the first recording
session. The remaining six participants reported having no major
disturbance of their visual, auditory or haptic capacities. The
average age was 29.5 years (SD = 9.6) and all participants were
right-handed females. Participants’ characteristics that were of
interest for the current BCI study are listed in Table 1. Written

informed consent was acquired from each participant at the
beginning of the first fNIRS session. The experimental procedure
conformed to the Declaration of Helsinki and was approved by
the institutional review board. All participants were compensated
with gift vouchers for their participation.

Location: Lab or Cafeteria
Four participants were measured in a laboratory setting (see
Table 1). These participants were measured in a separate
room that was completely dark during the fNIRS session. The
experimenters could communicate with the participants via a
speaker system. Two participants were measured in the university
cafeteria. In this location, there was considerable background
noise from students passing by or sitting at a nearby table. In
both locations, an overcap/shading cap was placed over the fNIRS
cap to shield the detectors from overexposure to outside light that
could have otherwise saturated the optodes (Pinti et al., 2018a).

Participant Preparation on Day 1
Motor Imagery Ability Questionnaire
Subjective reports of mental imagery ability have been found to
correlate with objective measures of brain activation (Cui et al.,
2007; Lorey et al., 2011; Ahn et al., 2018). In the current study,
participants were asked to draw a rough sketch of a house, after
which they were asked to imagine drawing the same sketch.
They were encouraged to focus on the wrist and whole hand
movements during the imagery period. Afterward they were
asked to rate the following five features on a 5-point Likert scale:
(1) vividness of their imaginary sketch, (2) similarity of their
imaginary sketch to their real sketch, (3) ease of imagination
while mental drawing, (4) their imaginary skills in general,
and (5) enjoyment of the mental drawing task. This in-house
questionnaire is based on existing questionnaires measuring
related constructs (Barber and Wilson, 1978; Hall and Pongrac,
1983) and can be consulted in the Supplementary Material.

Autobiographical Questions
Autobiographical questions were created to ensure stability of
answers over the three consecutive days. The six autobiographical
questions can be consulted in the Supplementary Material. An
example question is “Which country were you born in?” with
the answer options being “Netherlands,” “Germany,” “Belgium,”
or “Other.” The page with the “true answers” of the participant
was kept in a closed envelope until the fNIRS data was analyzed.
Experimenters were thus blind to the reported answers during the
fNIRS sessions and post hoc analyses.

Participant Training
Participants were instructed to imagine drawing with their right
hand with a comfortable and consistent speed for a duration
of 10 s. We verbally suggested drawing simple contour images
(e.g., a house, boat, and car) or small geometrical shapes (e.g.,
cubes, triangles, and circles). Participants chose their preferred
image/shape, as the specific motor imagery content was not
decoded by our BCI. If a mental image or shape was completed
under 10 s, participants were instructed to recommence the
mental drawing until they were cued to stop. During the
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TABLE 1 | Participant characteristics.

Participant Age range fNIRS-cap size Previous BCI experience Location Motor imagery ability fNIRS data analysis

P1 20–25 58 First time Lab 13 Post hoc

P2 20–25 56 3–4 times Lab 14 Post hoc

P3 25–30 58 First time Lab 11 Post hoc

P4 20–25 58 First time Lab 19 Post hoc

P5 45–50 56 >10 times Cafeteria 19 Real-time

P6 25–30 56 >10 times Cafeteria 19 Real-time

The table shows for each participant the age range (years), fNIRS capsize (cm), BCI experience, location of the fNIRS sessions, self-reported motor imagery ability (0–20),
and time point of fNIRS data analysis.

FIGURE 2 | Participant-specific experimental protocols. Each fNIRS session consisted of seven functional runs: one localizer run and six answer-encoding runs.
Note that the three sensory encoding modalities, i.e., auditory (green), visual (orange), and tactile (purple), were counterbalanced across participants and sessions.

rest periods (20 s), participants were instructed not to think
about anything in particular and refrain from motor imagery.
Participants were asked to practice mental drawing during three
practice questions, with one question presented in each of the
three sensory encoding modalities. The practice questions were
selected from the autobiographical questions and followed an
identical procedure to the answer-encoding runs elaborated on
below (see Figure 1). The instructional part took around 15 min
and the practice questions took around 5–10 min, depending on
the participant. If the participant felt comfortable and had no
more questions, the fNIRS cap was placed on the participant’s
head and the first fNIRS run was conducted.

fNIRS-Based Localization Procedure and
Communication on Day 1, Day 2, and
Day 3
Each fNIRS session consisted of seven functional runs: one
localizer run and six answer-encoding runs. All fNIRS sessions
were identical across the three testing days, with the questions
and answer options presented in identical order, except for
the sensory encoding modalities, which were counterbalanced
across participants and sessions (see Figure 2). Software used
for stimulus presentation were PsychoPy v.1.9 (Peirce, 2009) and

NIRStim (v.3.0; NIRx Medical Technologies). Audio files were
created using the text-to-speech function of NaturalReader1.

Localizer Run
The localizer run served to select a set of fNIRS channels for
data analysis of the subsequently obtained answer-encoding data.
After an initial 60 s rest period, the participant got the instruction
to start mental drawing. After 10 s the participant got the
instruction to stop mental drawing. After a rest period of 20 s,
the participant was instructed to start the mental drawing again.
Overall, 10 mental drawing trials with a duration of 10 s each
were recorded. The total length of the localizer run was 6 min
(60 s rest period + 10 × 10 s mental drawing + 10 × 20 s rest
period). In the visual and auditory localizer, participants saw or
heard the word “draw” and “rest.” In the tactile localizer, the
experimenter touched the participant’s hand to signal start and
stop of the mental drawing. A stroke across the participant’s hand
signaled “draw,” whereas a soft tap on the hand signaled “rest.”

Answer-Encoding Runs
The six four-choice questions were posed in six answer-encoding
runs in every fNIRS session. At the beginning of each answer-
encoding run, there was a 60 s rest period. Then, the participant

1http://naturalreaders.com
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heard or saw the question (7 s), after which the four answer
options (10 s each) were presented serially. The participant
started mental drawing when she saw/heard/felt the cue for the
answer option of their choice. Presentation of the following
answer option (in the case of answer A, B, or C) or the cue
for “rest” (in the case of answer D), signaled to the participant
to stop performing mental imagery (see Figure 1). The four
answer options were serially presented five times, resulting in five
trials per question/answer-encoding run. An answer-encoding
run took 6 min 7 s (60 s rest period + 7 s question + 5 × 40 s
mental drawing + 5 × 20 s rest period). In the visual and
auditory answer-encoding runs, participants read or heard the
question, answer options and rest cue. In the tactile answer-
encoding runs, the question and answer options were presented
auditorily prior to the start of the run. The participant had
to memorize the order of the answer options, as during the
run no auditory instructions were given. The answer options
were indicated by touching participant’s fingers. Pinkie finger
indicated answer option A, ring finger corresponded to option
B, middle finger to C and index finger to D. The beginning of
the resting period was communicated through a stroke over the
full hand. The two participants in the university cafeteria received
feedback during the fNIRS sessions, where the experimenter
communicated the decoded answers to the participant after each
answer-encoding run.

Questionnaire of Strategy and Comfort
After each fNIRS session, participants filled in a short
questionnaire in which they were asked to shortly describe
and/or draw what they imagined. They were also asked to
describe how they experienced the fNIRS-BCI session. Lastly,
participants were asked to rate their general level of comfort,
cap comfortability and tiredness on a 10-point Likert scale (1
indicating “uncomfortable/very tired” and 10 indicating “very
comfortable/not tired at all”). The questionnaire of strategy and
comfort is provided in the Supplementary Material.

Questionnaire of General Study
Impression on Day 3
On day 3, thus the last fNIRS session, participants filled
in a final in-house questionnaire, which can be consulted
in the Supplementary Material. This last questionnaire
focused on participants’ motivation, general impression,
their prior BCI experience, their mental imagery experience
throughout the study and their emotions while using the
BCI. Participants’ rated the easiness and pleasantness of the
three sensory encoding modalities on a 10-point Likert scale
(1 indicating “not pleasant/easy at all” and 10 indicating
“very pleasant/easy”). Lastly, participants’ rated the three
encoding modalities according to their relative liking (1 = best,
2 = medium, and 3 = worst).

fNIRS Data Acquisition
Data was obtained with the continuous-wave NIRScout-816
system (NIRx Medical Technologies; RRID:SCR_002491) and
was recorded using NIRStar software (v14.2 & v15.2; NIRx
Medical Technologies; RRID:SCR_014540). Eight light source

and eight light detector optodes were installed. Sources emitted
light at wavelengths 760 and 850 nm, while detectors recorded
the near-infrared light, which was sampled at a frequency
of 7.8125 Hz. The optodes were placed in spring loaded
optode holders attached to the cap. They were positioned
on known markers from the international 10–20 EEG system
(see Figure 3). The resulting 23 source-detector pairs, referred
to as fNIRS channels, covered large parts of left-hemispheric
fronto-parietal cortex. Frontal areas such as motor cortex (M1),
supplementary motor area and premotor cortex are known
for their activation during motor imagery (Porro et al., 1996;
Sitaram et al., 2007; Pfurtscheller et al., 2008; Kanoh et al.,
2009; Holper and Wolf, 2011; Abdalmalak et al., 2017a).
Parietal areas, such as primary somatosensory cortex (S1)
and intraparietal cortex, are also known to be activated by
motor imagery (Fleming et al., 2010; Lorey et al., 2011; Aflalo
et al., 2015). In two participants, P1 and P2, optodes forming
channels that were not selected for subsequent analyses were
physically removed after the localizer run to reduce possible
participant cap discomfort.

Data Analysis
fNIRS Signal Analyses
The main outcome of the current temporal encoding paradigm is
communication accuracy, which was assessed as the percentage
of correctly decoded answers. A set of signals-of-interest (SOIs),
i.e., channel-by-chromophore combinations, were selected for
each individual based on the participant’s localizer run’s
data of that day. Answers were decoded from time courses
of these SOIs with a univariate analysis using a General
Linear Model (GLM) approach (Tak and Ye, 2014). The
data of the four participants in the lab were analyzed
post hoc in simulated real-time, whereas the data of the two
participants in the cafeteria were analyzed online (i.e., intra-
session).

Raw Signal Processing
Firstly, signal quality was checked for each channel in each fNIRS
session. A channel-wise coefficient of variance percentage [CV%;
see Piper et al. (2014) for a more detailed description] was
calculated using the localizer run data and an in-house Matlab
script. Channels with a CV% above 15 were deemed to have poor
signal-to-noise ratio and were excluded from further analysis
(Schmitz et al., 2005; Schneider et al., 2011; Piper et al., 2014;
Pfeifer et al., 2018).

The raw signal from the remaining channels was processed
using Turbo-Satori software (v1.6.4, Brain Innovation B.V.,
Maastricht, Netherlands). Baseline calculations were performed
on the data of the first minute of each run. Linear trend removal
and moving average filtering (low-pass cut-off frequency: 0.25 Hz,
filter order: 2; high-pass cut-off frequency: 0.01 Hz, filter
order: 1) were applied. GLM analyses were performed on the
preprocessed signal. A linear confound predictor and a high-pass
confound predictor (sine + cosine) with a cutoff frequency of
0.0002 Hz were included in the GLM to account for any residual
slow drifts. Residuals were corrected for serial correlations
(Luhrs and Goebel, 2017).
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FIGURE 3 | Optode layout. Eight source (red) and eight detector (blue) optodes were placed on 16 points according to the international 10–20 EEG system. Large
orange dots represent reference points of the 10–20 system, whereas small orange dots represent reference points of the extended 10–10 EEG system (Oostenveld
and Praamstra, 2001). The red lines represent 23 source-detector pairs (each forming an fNIRS channel). Image created using NIRSite software (v.1; NIRx Medical
Technologies; RRID:SCR_002491).

Signal-of-Interest Selection
A participant-specific most-informative channel-by-
chromophore combination was chosen based on the localizer
data of that day. Two GLMs were fitted, one applied to HbO data
and the other to HbR data, using a model including only a single
predictor for mental drawing. The predictor was convolved
with a standard hemodynamic response function (HRF). The
default HRF from SPM12 was used (two gamma HRF, the onset
of response and undershoot 6 and 16 s, respectively, dispersion
1 s, response to undershot ratio 6). The same amplitudes
were used for the HbO and HbR task predictors. The contrast
“mental drawing vs. rest” was computed for each channel and
chromophore. The channel-by-chromophore combination
revealing the highest t-value of this contrast was chosen as the
SOI (Benitez-Andonegui et al., 2020). In other words, different
chromophores could be selected for different participants. This
subject-specific channel-by-chromophore was considered for
the answer decoding in the context of the first three aims of this
study. For the fourth aim (effect of signal averaging), the 2nd best
SOI and 3rd best SOI were identified through selection of the
2nd and 3rd highest t-value for the chosen chromophore.

Answer Decoding
The first trial of each run was discarded from the analyses
as it served as a practice (“warm-up”) trial for the participant
(Moriguchi and Shinohara, 2019; Techayusukcharoen et al., 2019;
Li et al., 2021), resulting in four trials per answer-encoding
run. Participants’ answers were decoded from the time course

of the SOI by judging either each trial individually (single-
trial analysis) or joint analysis of the four trials per answer-
encoding run (multi-trial analysis). Four GLMs were fitted
per trial (single-trial analysis) or per run (multi-trial analysis)
using four reference-time courses. The reference-time courses
correspond to the four answer-encoding options in our design
(see Figure 1). The default HRF from SPM12 was used (for
details see above). The same amplitudes were used for the
HbO and HbR task predictors. The contrast “mental drawing
vs. rest” was computed for the SOI. This resulted in four
t-values based on the four time course predictors for each of the
four answer options. The answer option for which the highest
t-value was obtained was chosen as the decoded answer. In
the context of our fourth research aim, i.e., levels of signal
averaging, four GLMs were also fitted to the 2nd and 3rd
most-informative signal. The contrast “mental drawing vs. rest”
was computed for each SOI. The four resulting t-values of
SOI1 and SOI2 were averaged (SOI1-2), as well as the four
t-values of SOI1, SOI2, and SOI3 (SOI1-2-3). The answer option
for which the highest t-value was obtained was chosen as
the decoded answer.

For each participant 72 single-trial answers (4 trials × 6
answer-encoding runs × 3 sessions) and 18 multi-trial answers
(6 answer-encoding runs × 3 sessions) were decoded. These
decoded answers were then compared to the “true answers,” i.e.,
the answers participants noted down before the first session.
Our main outcome measure, decoding accuracy (in%), was
calculated for each participant by dividing the number of correct
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answers by the total amount of answers, i.e., 72 for the single-
trial and 18 for the multi-trial approach. In the context of
the research aims 2 and 3, i.e., exploring sensory encoding
modality and reliability over time, the decoded answers were
split in three groups, i.e., per modality (auditory, visual, and
tactile) and per fNIRS session (day 1, day 2, and day 3).
The number of correctly decoded answers was divided by
the total amount of answers, i.e., 24 for the single-trial and
6 for the multi-trial approach, to attain decoding accuracies.
Lastly, the group mean was calculated together with the
standard deviation. In the context of research aim 4, i.e.,
different levels of signal averaging, all 72 single- and 18 multi-
trial decoded answers were considered. Decoding accuracies,
were calculated for each participant and for each level of
signal averaging (SOI1, SOI1-2, and SOI1-2-3) by dividing the
number of correct answers by the total amount of answers.
Also here the group mean was calculated together with the
standard deviation.

Chance Level Definition
The theoretical chance level of our four-choice BCI is 25%.
However, given the limited amount of trials within a single
participant, common in BCI studies, a threshold based on
binomial distribution is considered more trustworthy and
therefore more frequently used (Noirhomme et al., 2014). To
assess the significance of each participants’ decoding accuracy
in the current study, chance levels were calculated based on a
binomial distribution. The number of independent outcomes was
four (k = 4) and the significance level was set at 5% (α = 0.05). For
the single-trial results the number of independent trials was 72
(n = 72), resulting in the upper-bound chance level of 33.33%. In
other words, if 24 or more trials out of 72 were decoded correctly
this was considered a significant result. For the multi-trial results
the number of independent trials was 18 (n = 18), resulting in an
upper-bound chance level of 44.44%. If 8 or more trials out of 18
were decoded correctly this was considered a significant result.
The chance levels of 33.33% (single-trial) and 44.44% (multi-
trial) were used to evaluate the general decoding accuracies (aim
1) and the effect of signal averaging (aim 4). For evaluation
of the participants’ decoding accuracies per sensory encoding
modality (aim 2) and per fNIRS session (aim 3), the chance
level was 41.67% (single-trial, n = 24), and 50% (multi-trial,
n = 6).

Subjective Measures
The ratings on the five features of the motor imagery
ability questionnaire were summed to obtain a single
motor imagery ability score, with a maximum score
of 20. Two Pearson correlation coefficients (α = 0.05)
were computed to assess the relationship between the
motor imagery ability score and single- and multi-trial
decoding accuracies, both decoded from the single most-
informative channel-by-chromophore. All remaining in-house
questionnaires are reported on a descriptive level, i.e.,
sample average and standard deviation (X̄ ± SD), given
our small sample size.

RESULTS

Signal of Interest Selection
All channels had sufficient signal quality, with a CV% below
15 across the three sessions. For each participant a single best-
suited channel-by-chromophore combination was selected (see
Supplementary Figure 1 and Supplementary Table 1). In two
participants, an HbO channel was the most informative channel
across all sessions. In another two participants, HbR was the most
informative chromophore across all sessions. In the remaining
two participants, either HbO or HbR was selected depending on
the session. The event-related averages of the chosen channel-
by-chromophore combinations are shown in Figure 4. The most
informative fNIRS channels across all participants and sessions
were FC5-FC3 and C3-C5, both chosen in five out of 18 cases
(six participants × three fNIRS sessions). In the Supplementary
Figure 2 and Supplementary Table 2, detailed information on
the channel selection frequency for the 1st, 2nd, and 3rd most
informative channel selection is provided.

Mean Answer-Decoding Accuracies
Each of the six individual participants reached a decoding
accuracy significantly above the chance level for both single- and
multi-trial analyses (see Figure 5). As expected, the multi-trial
answer decoding outperformed the single-trial approach in each
participant. Individual single-trial decoding accuracies ranged
from 47.22 to 77.78%, whereas multi-trial decoding accuracies
ranged from 72.22 to 100.00%. The group mean of the single-
trial approach was 62.50% (SD = 12.42), whereas the multi-trial
group mean was 85.19% (SD = 12.51). Note that all answers of
participant 5 were decoded correctly across the three sessions
using the multi-trial analysis, resulting in a 100% accuracy. For
participants 4 and 6, 17 out of 18 answers were decoded correctly
using the multi-trial analysis, resulting in a 94.44% accuracy.

Answer-Decoding Accuracies Across
Sensory Encoding Modalities
In the single-trial approach, mean accuracies of 58.33%
(SD = 16.24) were obtained for the auditory, 65.97% (SD = 20.14)
for the visual and 63.19% (SD = 11.91) for the tactile modality (see
Figure 6). In four participants, decoding accuracies obtained with
each of the three sensory encoding modalities were significant
(chance level of 41.67%). In two participants, one encoding
modality did not reach significance (visual [P2], auditory [P3]; see
Figure 7). In the multi-trial approach, mean accuracies increased
to 80.56% (SD = 19.48) for the auditory, 86.11% (SD = 19.48) for
the visual and 88.89% (SD = 13.61) for the tactile modality (see
Figure 6). In all participants, accuracies with respect to the three
encoding modalities reached or surpassed the chance level of 50%
(see Figure 7). In one participant, participant 5, all three encoding
modalities reached 100% accuracy.

Answer-Decoding Accuracies Across
Time
For the single-trial decoding accuracies, a slightly declining trend
can be observed, with 68.75% on day 1 (SD = 19.14), 63.89%
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FIGURE 4 | Subject specific event-related averages. Event-related averages for the most-informative channel-by-chromophore combination for each participant
(columns) in each session (rows). The shaded rectangle represents the mental task duration (10 s). The event-related averages are depicted from 3 s before until 15 s
after mental task performance. The selected channel can be read in the right upper corner. Colored lines depict the average concentration change of the selected
chromophore: red for oxygenated hemoglobin (HbO) and blue for deoxygenated hemoglobin (HbR). For completeness, gray lines depict the chromophore
counterpart belonging to the most-informative channel. The shaded area around the mean average line represents the 95% confidence interval of the mean.

on day 2 (SD = 20.36), and 54.86% on day 3 (SD = 19.26;
see Figure 6). In three participants, accuracies were significant
in all three fNIRS sessions (chance level of 41.67%). In the
three remaining participants, one fNIRS session did not reach
significance (session 1 [P1], session 3 [P2 and P3]; see Figure 8).
In the multi-trial approach, group mean decoding accuracies
remained relatively stable across the three consecutive fNIRS
sessions, with 86.11% on day 1 (SD = 26.70), 86.11% on day 2
(SD = 22.15) and 83.33% on day 3 (SD = 21.08; see Figure 6).
In all five participants, the three fNIRS sessions reached or
surpassed the empirical chance level of 50% (see Figure 8). In
one participant, one fNIRS session did not reach significance
(session 1 [P1]).

Answer-Decoding Accuracies Across
Different Degrees of Channel Averaging
In the single-trial approach, decoding accuracies improved
slightly when averaging two or three channels, from 62.50%
[SOI1; SD = 12.42] to 68.75% [SOI1-2; SD = 8.77] and 65.74%
[SOI1-2-3; SD = 6.67], compared to when analyzing a single
channel-by-chromophore (see Figure 6). In five participants,
namely P1, P2, P3, P4, and P5, averaging across two or
three channels resulted in an improved decoding accuracy (see
Figure 9). In the multi-trial approach, decoding accuracies also

increased slightly when averaging across two or three channels
from 85.19% [SOI1; SD = 12.51] to 91.67% [SOI1-2; SD = 13.03]
and 91.67% [SOI1-2-3; SD = 9.78]; see Figure 6). In four
participants, namely P1, P3, P4, and P6 channel averaging with
either two or three channels improved decoding accuracy (see
Figure 9). In one participant, P5, the single channel multi-
trial decoding accuracy was already perfect and hence channel
averaging could not further improve this score.

BCI User Experience
General BCI Experience
Four participants chose to mentally draw a house. One
participant chose to mentally draw a house with a tree
next to it and another participant imagined drawing small
cubes. Participants felt generally comfortable during the fNIRS
sessions (rating 7.72/10 ± 1.53). All participants reported
feeling confident using the system. No participant reported
feeling anxious. The fNIRS cap with spring-loaded optodes was
experienced as reasonably comfortable (rating 6.72/10 ± 2.32),
with 5 out of 6 participants reporting to have felt comfortable
using the system. Two participants did report some discomfort
during a single fNIRS session, with a few of the optodes
causing noticeable pressure on the head. Participants did not
experience significant fatigue (6.28/10 ± 1.93) during the
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FIGURE 5 | Single- and multi-trial answer decoding accuracies for individual participants and the group. The black horizontal stripe within each bar graph represents
the chance level for single-trial (33.33%) and multi-trial (44.44%) accuracies. The error bars depict the standard deviation of the group mean. Note that all
participants performed above the chance level in both analyses.

experiment. Moreover, general comfort, cap comfort and fatigue
remained relatively stable over the three fNIRS sessions (see
Supplementary Figure 3). None of the participants reported a
lowering motivation over the course of the fNIRS sessions.

General and Individual Preference of Sensory
Encoding Modality
The auditory modality was judged as being the most pleasant
(8.50/10 ± 0.55) and easy (9.00/10 ± 0.63) sensory encoding
modality, followed by the tactile modality (pleasantness
7.83/10 ± 0.41; easiness 8.16/10 ± 1.33). Participants’ judgment
with respect to the visual modality were generally lower
(pleasantness 5.60/10 ± 2.34; easiness 6.50/10 ± 1.38) and
less in agreement, as reflected in a relatively large standard
deviation (see Figure 10). Three participants preferred the
auditory encoding modality, whereas the other three participants
preferred the tactile encoding modality. No participant preferred
the visual encoding guidance. Four participants indicated in
the remarks section that not being able to close their eyes
hindered performing mental imagery. Participant 5 and 6 were
measured in a naturalistic environment and both indicated
that the auditory and tactile runs were more pleasant/relaxing
than the visual runs because they could either look around
or close their eyes, instead of having to fixate on the screen.
P2 and P3 had identical multi-trial accuracies in the tactile
modality (see Figure 7) but expressed differential subjective
experiences. While P2 indicated that she became more
uncomfortable during the tactile runs due to the presence

of an experimenter, P3 felt more confident and reassured with
the experimenter present.

Motor Imagery Ability Questionnaire
Participants’ mental drawing was generally vivid (rating
3.33/4± 0.82) and judged similar to their sketch (3.17/4± 0.98).
They found the mental drawing task easy (3.33/4 ± 0.82) and
enjoyable (2.83/4 ± 0.75). Participants judged their general
imagination as being good (3.17/4 ± 0.98). The total scores
on the motor imagery ability questionnaire (15.83/20 ± 3.60)
are reported in Table 1. Self-reported motor imagery ability
correlated significantly with the multi-trial decoding accuracies
[r(4) = 0.95; p < 0.01], but not with the single-trial decoding
accuracies [r(4) = 0.73; p = 0.10; see Supplementary Figure 4].

DISCUSSION

The results show that the temporal answer-encoding paradigm,
recently developed by our group (Nagels-Coune et al., 2017,
2020; Benitez-Andonegui et al., 2020), is a an effective and
convenient paradigm. Using a simple motor imagery task,
relatively little preparation time and only a single fNIRS
channel-by-chromophore combination, the paradigm enables
effective and efficient four-choice BCI-based communication.
Moreover, it is highly flexible as it allows for exploiting
three different sensory encoding modalities (auditory, visual
and tactile) for guiding answer encoding. Visual and auditory
answer encoding in fNIRS-BCIs have been reported previously
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FIGURE 6 | Single- and multi-trial group mean answer decoding accuracy per sensory encoding modality, fNIRS session and level of signal averaging. Accuracies
are depicted for the single-trial (striped bars) and multi-trial (solid bars) analysis. Top left: Accuracies according to sensory encoding modality. Note that all sensory
encoding modalities were effective. Top right: Accuracies according to fNIRS session. Note that the multi-trial accuracies remained relatively stable over the three
fNIRS sessions. Bottom: Accuracies according to level of signal averaging. Note that averaging across two (SOI1-2) or three (SOI1-2-3) signals slightly outperforms
the single channel-by-chromophore approach (SOI1). The error bars depict the standard deviation of the group mean. Abbreviations: SOI, signal-of-interest.

FIGURE 7 | Single- and multi-trial individual decoding accuracies per sensory encoding modality. Individual decoding accuracies for the auditory (green), visual
(orange), and tactile (purple) encoding modality obtained with single-trial (striped bars) and multi-trial (solid bars) analysis. The black horizontal stripe within each bar
graph represents the chance level for single-trial (41.67%) and multi-trial (50.00%) accuracies. The stars on the horizontal axis mark participants subjectively
preferred sensory encoding modality. Abbreviations: Aud, auditory; Vis, visual; and Tac, tactile.
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FIGURE 8 | Single- and multi-trial individual decoding accuracies across fNIRS session. Individual decoding accuracies for the 1st fNIRS session (day 1), 2nd fNIRS
session (day 2), and 3rd fNIRS session (day 3) obtained with single-trial (striped bars) and multi-trial (solid bars) analysis. The black horizontal stripe within each bar
graph represents the chance level for single-trial (41.67%) and multi-trial (50.00%) accuracies.

FIGURE 9 | Single- and multi-trial individual decoding accuracies across level of signal averaging. Individual decoding accuracies for the most informative
channel-by-chromophore (SOI1), the average of the two most informative channel-by-chromophore (SOI1-2) and the average of the three most informative
channel-by-chromophore (SOI1-2-3) obtained with single-trial (striped bars) and multi-trial (solid bars) analysis. The black horizontal stripe within each bar graph
represents the chance level for single-trial (33.33%) and multi-trial (44.44%) accuracies.

(Naito et al., 2007; Naseer and Hong, 2015a; Nagels-Coune et al.,
2017, 2020; Benitez-Andonegui et al., 2020) but tactile guidance
was explored here for the first time, with encouraging results.
Moreover, the results based on six participants demonstrate
reliable communication over the course of three consecutive
days. Note that two of the six participants were tested under
more ecologically valid conditions in a university cafeteria (vs.
in a laboratory). In the following sections, the implications of
the current study will be discussed in more detail, followed by
limitations of the current and recommendations for future work.

Temporal Answer Encoding – An
Effective and Convenient BCI Paradigm
Many fNIRS-BCI studies have exploited the differential spatial
brain activation patterns associated with the execution of
two or more mental imagery tasks (Batula et al., 2014;
Naseer and Hong, 2015a,b; Li et al., 2021). In previous work we

combined the spatial features with a temporal component in the
context of a binary fNIRS-BCI (Nagels-Coune et al., 2020). The
decoding accuracy reached 66.67% (HbO) and 58.33% (HbR),
with a subset of participants merely relying on the temporal
aspect. Benitez-Andonegui et al. (2020) followed up with a six-
choice fNIRS-BCI based on a purely temporal encoding (i.e.,
using only one mental imagery task), reaching an accuracy
of 73.96%. In the current experiment, the temporal answer-
encoding paradigm was tested in the context a four-choice
fNIRS-BCI (see Figure 1). The single-trial decoding accuracy
of 62.50% (see Figure 5) obtained in this work is decent, given
that other 4-choice fNIRS-BCI applications reached single-trial
accuracies of 45.7% (Batula et al., 2014) and 73.3% (Naseer
and Hong, 2015a). Note, however, that in both of these studies,
large arrays of 18 (Batula et al., 2014) and 32 (Naseer and
Hong, 2015a) fNIRS optodes were used to discern differentiable
spatial brain activation patterns between four imagery tasks.
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FIGURE 10 | Mean participant rating of perceived pleasantness and easiness for each of the three sensory encoding modalities. Participants rated the auditory
(green), visual (orange), and tactile modality (purple) on a scale from 1 (not pleasant/easy at all) to 10 (very pleasant/easy). Error bars depict the standard deviation of
the group mean. Note that the auditory and tactile modality were rated as relatively more pleasant and easy compared to the visual modality.

In the current study, a single channel-by-chromophore was
analyzed and participants performed a single imagery task.
We found an average multi-trial decoding accuracy of 85.19%,
with each individual participant showing significant decoding
accuracies (see Figure 5). One participant, P5, even reached 100%
decoding accuracy across the three fNIRS sessions. A joined
analysis of several encoding trials per answer (multi-trial analysis)
substantially increased the decoding accuracy, as has been
reported previously (Nagels-Coune et al., 2017, 2020; Benitez-
Andonegui et al., 2020).

The temporal answer-encoding paradigm presented here has
many advantages due to its simplicity. Firstly, participants use
a single mental imagery task, which reduces working memory
load. Secondly, there is no need for a lengthy period for training
a classifier, given that decoding analyses rely on straightforward
GLM analysis (see section “Materials and Methods ”). In the
current experiment, 6 min localizer runs were performed by each
participant to identify channels of interest. Note that in EEG-
BCIs, users often need considerably longer training periods to be
able to control their brain rhythms (Pires et al., 2012), whereas
in multivariate fNIRS-BCIs classifiers need extensive training
datasets (Batula et al., 2014; Naseer and Hong, 2015a). However,
a possible disadvantage of the temporal encoding paradigm,
compared to multivariate classification methods, is that answer-
encoding trials tend to take more time. For example, in the four-
choice fNIRS-BCI study by Naseer and Hong (2015a) a single trial
lasted only 10 s (compared to 40 s in the current study). Thirdly,
we show here that, in principle, the information obtained from a
single fNIRS channel-by-chromophore combination suffices for
successfully using the developed fNIRS-BCI. Note that in two
participants many of the optodes were removed after the localizer
run that served to identify the most-informative channel. The
possibility to rely on a single fNIRS channel increases the
comfortability of the fNIRS-BCI and the overall esthetics, factors
often overlooked but being vital for the technology acceptance by

users (Nijboer, 2015). Moreover, use of a small optode array could
pave the way to cost reduction of fNIRS hardware (Tsow et al.,
2021). Fourthly, encoded answer/commands can be decoded
relatively easily in real-time with a basic GLM approach. In
the current study, two participants received immediate feedback
on their decoded answers. By using an existing commercially
available software, here the Turbo-Satori software (Luhrs and
Goebel, 2017) that particularly focuses on usability, we are one
step closer to an fNIRS-BCI manageable by even caregivers
and family members themselves. With this work, we further
encourage fNIRS-BCI researchers to exploit the temporal features
of the fNIRS signal for information encoding, next to using the
spatial fNIRS-signal features that have been used so far (Batula
et al., 2014; Naseer and Hong, 2015a; Weyand and Chau, 2015;
Hong et al., 2018). The further exploration of a wide variety
of paradigms might be necessary when taking into account the
heterogeneous population of patients in need of a BCI.

The Alternative Use of Different Sensory
Encoding Modalities – A Promise for
Clinical Applications
Most fNIRS-BCIs using mental imagery have used either the
visual or auditory modality to guide answer encoding (Naito
et al., 2007; Naseer and Hong, 2015a; Abdalmalak et al., 2017b;
Nagels-Coune et al., 2017, 2020; Benitez-Andonegui et al., 2020).
However, many of the target users have their vision affected
(Gill-Thwaites and Munday, 2004; Riccio et al., 2012; Rousseau
et al., 2012). Even target users with intact vision might prefer
alternative encoding modalities, as a screen might exclude the
user from ongoing social interactions (Nijboer et al., 2014).
The current work reported the first multimodal fNIRS-BCI that
alternatively incorporated auditory, visual and tactile sensory
encoding within one experimental paradigm. Both the single-
and multi-trial decoding accuracies were found to be above
chance, being 58.33 and 80.56% for auditory, 65.97 and 86.11%
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for visual and, 63.19 and 88.98% for tactile encoding, respectively,
(see Figure 6). These accuracies suggest that the fNIRS-BCI
can work effectively with different sensory encoding modalities
in healthy participants. Depending on the specific needs and
preferences of potential patient BCI users, promising sensory
encoding modalities can be selected. In the current work, three
participants preferred the auditory modality, whereas the other
three participants preferred the tactile modality (see Figure 7).
Subjective preference can aid researchers to select a subject-
specific optimal sensory encoding modality. For example, P2 had
an identical multi-trial decoding accuracy using the auditory and
tactile encoding modality, but subjectively preferred the auditory
modality to guide motor imagery (see Figure 7). In the case of
P2, choosing the auditory sensory encoding modality for future
fNIRS-BCI use is an optimal decision.

To our knowledge, the current work is the first exploration
of a tactile fNIRS-BCI. An experimenter stroked the BCI user’s
fingers and hand at specified times to cue possible on- and offsets
of mental imagery. Using this basic approach, each individual
participant reached significance in the multi-trial analysis (see
Figure 7). Tactile stimulation provided by a person can be
considered an advantageous technical simplification, but one
could also easily use an electric stimulation device to administer
the tactile guidance (Lugo et al., 2014; Guger et al., 2017). Such
experimental decisions might also depend on the subjective
experience of the BCI user. In our study, participants expressed
differential subjective experiences with the tactile encoding
modality. While P2 indicated feeling more uncomfortable during
the tactile runs due to the presence of an experimenter, P3
felt more confident and reassured with the experimenter in
the room. A recent EEG-BCI study found that social presence
and emotional support can enhance BCI accuracy for non-
autonomous people, i.e., people that prefer to work in group
(Pillette et al., 2020).

Participants generally experienced the auditory sensory
encoding modality as pleasant (8.50/10 ± 0.55) and easy
(9.00/10 ± 0.63), followed by the tactile modality (pleasantness
7.83/10 ± 0.41; easiness 8.16/10 ± 1.33) and lastly the visual
modality (pleasantness 5.60/10 ± 2.34; easiness 6.50/10 ± 1.38).
Participants reported being hindered by the constraints of the
visual encoding in terms of concentration/fixation on the screen.
This could be due to visual fatigue, as well as general annoyance
of feeling “not socially present” (Nijboer et al., 2014). Another
possible factor is the orthogonality of the sensory encoding
modalities with respect to the mental task. The mental imagery
task used here, i.e., mental drawing, is partly based on visual
imagination. Therefore, auditory or tactile instruction modalities
might have been experienced as less hindering of the – partly
visual – motor imagination.

A Reliable fNIRS-BCI Over Time and
Environments
Most fNIRS-BCI studies were performed in a single
session (Naito et al., 2007; Naseer and Hong, 2015a;
Abdalmalak et al., 2017b; Nagels-Coune et al., 2017, 2020;
Benitez-Andonegui et al., 2020) but effectiveness over time is

a crucial factor for end users. The findings here show that our
fNIRS-BCI works reliably over the course of three consecutive
days, with multi-trial accuracies of 86.11% on day 1, 86.11% on
day 2, and 83.33% on day 3 (see Figure 6). In the single-trial
decoding accuracies a slightly declining trend can be observed,
with 68.75% on day 1, 63.89% on day 2, and 54.86% on day
3 (see Figure 6). Although participants reported no decline
in motivation across the fNIRS sessions, it is plausible that
use of the fNIRS-BCI was less exciting on day 3. Therefore,
participants might have been less focused on the task at hand in
the final session. The only other longitudinal fNIRS-BCI study
also reported no decline in BCI performance by an ALS patient
(Borgheai et al., 2020).

Next to reliability over time, rehabilitation professionals
have emphasized a need for BCIs to work reliably in different
environments (Nijboer et al., 2014). Most fNIRS-BCIs that were
tested outside the laboratory took place in a familiar and calm
location such as the home or a care center (Abdalmalak et al.,
2017b; Borgheai et al., 2020; Li et al., 2021). However, people with
severe disabilities may leave their home and need to be able to
communicate in varying contexts (Nijboer et al., 2014). Given
the mobility of fNIRS hardware and its relative robustness against
user head motion, fNIRS-BCIs may provide a useful opportunity
in this context. In the current work, an fNIRS-BCI was tested
in two healthy participants, P5 and P6, in a noisy and public
place, which led to multi-trial accuracies of 100 and 94.44% (see
Figure 5). These results are relatively high in the BCI field, where
70% accuracy is a common criterion in binary studies (Kubler
et al., 2006). Note, however, that both participants had ample
prior BCI experience (see Table 1) which might have facilitated
their high accuracies. In addition, these participants received
online feedback on the decoded answer, which might have
had a beneficial effect on the participants’ general motivation.
Participants that are more engaged in task performance are
thought to produce more robust brain signals in a context of BCI
(Nijboer et al., 2008, 2010). Given these encouraging results in
two participants, future research may further explore the use of
fNIRS-BCIs in more ecologically valid environments.

Decoding From a Single Channel or
Multiple Channels? – An Individual
Matter
As a first approach, answer decoding was based on information
obtained from a single fNIRS channel-by-chromophore
combination. As in previous work from our group (Nagels-
Coune et al., 2017, 2020; Benitez-Andonegui et al., 2020),
we found that the most-informative chromophore is subject-
specific. While selection of the most-informative chromophore,
i.e., HbO or HbR, was quite stable within four subjects, for two
participants the selected chromophore varied across sessions.
The latter might be caused by the fact that fNIRS-cap placement
(although performed as precise and consistent as possible
across fNIRS sessions) might still result in inevitable variation
of optode location. Another cause for variation in the selected
chromophore might be the presence of physiological noise, which
might differ across participants and even days. Currently there
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is no consensus that one chromophore outperforms the other
in terms of signal quality (Kohl et al., 2020). Considering both
chromophores, which is rarely done in fNIRS-BCI’s, seems the
fair route until intensive investigation favors one chromophore
over the other. This reasoning and our observations motivated
to individually determine the best channel-by-chromophore
combination per communication session.

We further investigated whether averaging two or three
most informative fNIRS channels (compared to using a
single channel-by-chromophore) improves answer-decoding
accuracy. For participants showing high decoding accuracies
using the single most-informative channel-by-chromophore,
decoding improvement was marginal, possibly reflecting a
ceiling effect. However, in participants with initially lower
accuracies, averaging across channels revealed to have benefits
(see Figure 9). For example, in P3 accuracy rose from
48.61% (SOI1) to 65.28% (SOI1-2) and 63.89% (SOI1-2-
3). Averaging across a small number of channels in close
proximity has been reported to result in more reliable
measures (Wiggins et al., 2016). Future work should therefore
investigate the accuracy benefit of adding a small number
of channels in a systematic manner. We expect that channel
averaging might be especially beneficial in cases where the
single-channel fNIRS-BCI has low accuracy. A promising
resource to ensure that the informative, here mental task
sensitive, region is sampled by a small set of optodes is
the Array Designer Toolbox (Brigadoi et al., 2018). Through
automated optode array design for a specific region-of-
interest, there is an increased cortical sensitivity compared
to manual optode placement. Alternatively, if anatomical
fMRI data is available, probabilistic maps of fMRI-activation
from an independent dataset can guide optode placement
(Benitez-Andonegui et al., 2021).

BCI User Experience – A Factor Not to
Be Overlooked
In the developing field of fNIRS-BCI, much of the published work
has focused on methodological/technical development. Yet, the
success of an fNIRS-BCI also relies heavily on the ability of the
participant to produce robust and reliable hemodynamic signals.
We administered several in-house questionnaires to explore user
skills and experience, as these factor may influence the quality
of the evoked fNIRS signals (Holper et al., 2011) and therewith
BCI decoding accuracy (Cui et al., 2007; Weyand and Chau,
2015; Jeunet et al., 2017; Sargent et al., 2018). In addition,
user experience affects the likelihood patients will actually use a
BCI in a regular manner (Nijboer, 2015). Participants generally
felt comfortable and motivated in our study. Two participants
did experience some discomfort in one session due to pressure
induced by a few optodes. Discomfort is not uncommon in
fNIRS studies (Suzuki et al., 2010; Cui et al., 2011; Rezazadeh
Sereshkeh et al., 2018) and constitutes another motivation
to move toward small-scaled fNIRS-optode setups. General
comfort, cap comfort and fatigue scores remained relatively stable
over the three fNIRS sessions (see Supplementary Figure 3).
Participants that rated their motor imagery ability as high,

tended to have a high multi-trial decoding accuracy [r(4) = 0.95;
p < 0.01; see Supplementary Figure 4]. In other words,
participants that rated their imagination as vivid, similar to
actual drawing, easy, enjoyable and generally good tended to
achieve higher answer-decoding accuracies. This finding is in
line with several BCI studies using EEG, fMRI and fNIRS
neuroimaging techniques (Lorey et al., 2011; Jeunet et al., 2015;
Weyand and Chau, 2015; Ahn et al., 2018). This link between
mental task ability and BCI accuracy paves the way to mental
imagery user training, especially in users with low BCI accuracy
(Kaiser et al., 2014).

Limitations and Future Work
A drawback of the current study is the absence of correction
for physiological noise through the use of short-separation
channels (Brigadoi and Cooper, 2015). Moreover, correction
though spatial filtering was not possible since these approaches
require coverage of a larger area than the region of interest
(Zhang et al., 2016). Removal of systemic noise would likely
have improved the reliability and accuracy of our BCI paradigm
(Wiggins et al., 2016). However, through our focus on a
participant-specific and daily-defined channel-by-chromophore,
we did indirectly exclude “noisy” signals. For example, the
event-related potential for P2 on day 1 (see Figure 4)
shows a contaminated HbO signal and a clean HbR signal.
Despite the relatively modest amplitude in HbR, compared
to HbO, the HbR chromophore is chosen as the signal-of-
interest.

Another drawback is the limited sample size in the
current study. Generalization to the overall population is
difficult based on the results of this sample. Nevertheless, the
results are encouraging and show that four-choice fNIRS-based
communication using different sensory encoding modalities is
feasible. A more elaborate study with a larger sample size should
be conducted following this proof-of-concept study.

Although our temporal encoding paradigm is effective, with
6 min 7 s per four-choice question, the information transfer rate
is low. Three participants, P4, P5, and P6, had a significant single-
trial decoding accuracy in each fNIRS session (see Figure 8).
This finding suggest that robust communication is possible
through joint analysis of less than four trials in some participants.
Moreover, in these three subjects single-trial communication is
already feasible with a decrease in decoding accuracy as the
cost. Future fNIRS-BCI studies could improve the information
transfer rate through shortening the mental task duration. In the
temporal encoding six-choice fNIRS-BCI by Benitez-Andonegui
et al. (2020) a mental task duration of 6 s yielded promising
results. Another step toward drastically shortening encoding
times could be to focus on the initial dip of the hemodynamic
response, rather than the full response. Khan and Hong (2017)
reached a 76.5% four-command decoding accuracy with their
fNIRS-BCI with a post-stimulus window size of 2 s. Borgheai et al.
(2020) also reported successful single-trial classification using a
post-stimulus window size of under 4 s in ALS patients. Both
studies highlight the efficacy of short event-related hemodynamic
changes. Moreover, through such short post-stimulus windows,
also the inter-stimulus interval can be shortened significantly.
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Future fNIRS-BCI development should further investigate and
replicate these promising findings, as they would greatly enhance
potential for daily use.

Furthermore, focusing on individualization of BCI procedures
is highly recommended with respect to both the choice of the
sensory encoding modality and the selection of a mental task to
control the BCI. In the current study, all participants performed
motor imagery, but other types of mental imagery should be
explored as well, for example somatosensory imagery as recently
applied in an fMRI-BCI context (Kaas et al., 2019). In an ideal
case, a mental task should be individually chosen according to the
BCI user’s preference from a compilation of proven BCI-control
tasks (Weyand et al., 2015).

The fNIRS hardware used in the present study was rather
bulky and transported on a cart, as is the case in most fNIRS
studies (Scholkmann et al., 2014). However, recently developed
mobile devices that can fit in a backpack (Pinti et al., 2018a),
combined with a limited optode setup as proposed here, can
result in a small-scaled fNIRS-BCI. These simplifications in
hardware might further stimulate exploration of fNIRS-BCIs in
ecologically valid environments. This would increase the chance
that fNIRS-BCIs will be once indeed be used on a regular basis
by patients, that are often already surrounded by bulky medical
equipment (Nijboer et al., 2014).

CONCLUSION

In the current study, we tested a four-choice multimodal
fNIRS-BCI in six healthy subjects. Using a temporal encoding
paradigm and decoding the answers from a single channel-by-
chromophore time course resulted in mean single- and multi-trial
decoding accuracies of 62.50 and 85.19%, respectively. Answer
encoding was alternatively guided by three different sensory
encoding modalities (visual, auditory, or tactile). Decoding
accuracies were found to be stable across three consecutive
days. Moreover, decoding accuracies from two experienced BCI
users were stable in an ecologically valid setting, i.e., a cafeteria.
Averaging of two or three most-informative channels further
increased decoding accuracy compared to the single channel-by-
chromophore approach. Future fNIRS-BCI studies should focus

on increasing efficiency (e.g., by decoding from quick-to-detect
features of the hemodynamic response, such as the initial dip) and
on reporting relevant user experience.
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