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Osteoblasts are “educated” by crosstalk
with metastatic breast cancer cells in the
bone tumor microenvironment
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Abstract

Introduction: In a cancer-free environment in the adult, the skeleton continuously undergoes remodeling. Bone-
resorbing osteoclasts excavate erosion cavities, and bone-depositing osteoblasts synthesize osteoid matrix that forms
new bone, with no net bone gain or loss. When metastatic breast cancer cells invade the bone, this balance is disrupted.
Patients with bone metastatic breast cancer frequently suffer from osteolytic bone lesions that elicit severe bone pain and
fractures. Bisphosphonate treatments are not curative. Under ideal circumstances, osteoblasts would synthesize
new matrix to fill in erosion cavities caused by osteoclasts, but this is not what occurs. Our prior evidence
demonstrated that osteoblasts are diverted from laying down bone matrix to producing cytokines that facilitate
breast cancer cell maintenance in late-stage disease. Here, we have new evidence to suggest that there are
subpopulations of osteoblasts in the tumor niche as evidenced by their protein marker expression that have
distinct roles in tumor progression in the bone.

Methods: Tumor-bearing tibia of mice was interrogated by immunofluorescent staining for the presence of
osteoblasts and alterations in niche protein expression. De-identified tissue from patients with bone metastatic breast
cancer was analyzed for osteoblast subpopulations via multi-plex immunofluorescent staining. Effects of breast cancer
cells on osteoblasts were recapitulated in vitro by osteoblast exposure to breast cancer-conditioned medium. Triple-
negative and estrogen receptor-positive breast cancer proliferation, cell cycle, and p21 expression were assessed upon
contact with “educated” osteoblasts.

Results: A subpopulation of osteoblasts was identified in the bone tumor microenvironment in vivo of both humans
and mice with bone metastatic breast cancer that express RUNX2/OCN/OPN but is negative for IL-6 and alpha-smooth
muscle actin. These tumor “educated” osteoblasts (EOs) have altered properties compared to “uneducated” osteoblasts
and suppress both triple-negative and estrogen receptor-positive breast cancer cell proliferation and increase cancer cell
p21 expression. EO effects on breast cancer proliferation were mediated by NOV and decorin. Importantly, the presence
of EO cells in the tibia of mice bearing tumors led to increased amounts of alkaline phosphatase and suppressed the
expression of inflammatory cytokines in vivo.

Conclusions: Our work reveals that there is a subpopulation of osteoblasts in the bone tumor microenvironment that
demonstrate a functional role in retarding breast cancer cell growth.
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Introduction
Breast cancer is the second leading cause of cancer deaths
and approximately one in eight women in the USA will
develop breast cancer during their lifetime [1]. Breast can-
cer cells frequently metastasize to the bone, where the
5-year relative survival rate is < 10% [1].
In the adult skeleton, the bone is continually being

remodeled. Under ideal circumstances, bone-resorbing
osteoclasts excavate erosion cavities and bone-depositing
osteoblasts synthesize matrix to form new bone, with no
net bone loss or gain. Exceptions to these circumstances
include (1) bone loss as a result of aging and osteopor-
osis [2, 3], (2) bone loss as a result of lack of physical ac-
tivity or exercise [4–6], and (3) perturbation of normal
bone remodeling by cancer bone metastases [7–10].
Patients that develop bone metastatic breast cancer

have lesions that are either osteolytic [11, 12], osteo-
blastic, or a mix of osteoblastic and osteolytic lesions
[13]. The vast majority of bone metastatic breast can-
cer lesions are osteolytic, where bone resorption oc-
curs at a rate faster than bone deposition [14, 15].
Osteolytic bone lesions are frequently associated with
severe bone pain, hypercalcemia, and skeletal-related
events such as fractures and spinal cord compression
[1]. On the other hand, metastases leading to an in-
crease in bone deposition are considered osteoblastic
[16]. Interestingly, exact mechanisms that elicit the
formation of osteoblastic lesions in bone metastatic
breast cancer are not fully known [9, 14]. However,
one study identified the bone-specific transcriptional
regulator RUNX2 as a key factor in events associated
with osteoblastic lesions [16].
In the late stages of bone metastatic breast cancer, os-

teoclasts are constitutively activated, yet osteoblasts do
not deposit new bone leading to overall net bone loss
[17]. These events are characteristic of osteolytic disease
[14, 18, 19]. In particular, patients with osteolytic bone
metastatic breast cancer are often treated with bisphos-
phonate therapies, such as ibandronate [20–22] and
zoledronic acid [23], which are aimed at impairing the
activity of bone-resorbing osteoclasts. While this strategy
may be initially effective, recent studies suggest that the
addition of bisphosphonates to standard adjuvant ther-
apies does not extend disease-free survival for women
with osteolytic bone metastatic breast cancer, who will
ultimately succumb to skeletal metastases [24]. This is,
in part, due to the sustained bone resorption and an in-
ability of osteoblasts to lay down new bone matrix [9].
These results suggest that osteoblasts may be altered or
experience a loss of function in the tumor microenviron-
ment. Currently, no drugs are available that directly
stimulate osteoblast activity or promote bone deposition.
Data have demonstrated that metastatic breast cancer

cells alter osteoblast properties in the late stages of the

disease, including decreased proliferation and altered adhe-
sion [25, 26]. Our laboratory and colleagues have found
that osteoblasts are profoundly altered by breast cancer
metastases and no longer differentiate [25]. Instead, the os-
teoblasts are diverted from depositing new matrix to pro-
ducing cytokines implicated in cancer cell maintenance [7,
27–31]. Our laboratory also found that osteoblasts are al-
tered by breast cancer metastases in late-stage disease and
undergo a stress response to produce a classic set of cyto-
kines that are maintenance factors for metastatic breast
cancer cells: IL-6, IL-8, MCP-1, GRO-alpha, and VEGF
[32, 33]. These cytokines facilitate breast cancer cell
colonization in late-stage disease [32, 33]. We further be-
lieve that osteoblast-derived factors contribute to osteo-
blast autocrine and osteoblast-breast cancer cell paracrine
mechanisms resulting in significant crosstalk between the
two cell types during disease progression.
It is becoming increasingly evident that osteoblasts in

the bone microenvironment play vital roles in cancer cell
attraction [34, 35], maintenance [33], and survival [19, 32,
36] during cancer progression in the bone. It was demon-
strated that osteoblast-derived TGF-beta increased PC-3U
prostate cancer cell migration [35]. Furthermore,
osteoblast-derived CXCL12 mediated bone metastatic
prostate cancer progression via binding of its receptor
CXCR4 on the cancer cells [11, 34, 37, 38]. Additionally,
osteoblast expression of c-met and VEGFR2 promoted
PC-3 and C4-2B prostate cancer growth in the bone [36].
We and our colleagues previously demonstrated that oste-
oblasts are profoundly altered by late-stage breast cancer
metastases and experience altered adhesion and loss of
differentiation capabilities [25, 26]. Furthermore, we found
that osteoblasts are diverted from depositing new osteoid
matrix and instead are directed by metastatic breast can-
cer cells to increase osteoblast production of cytokines
that facilitate breast cancer cell colonization in the bone
niche in late-stage disease [32, 33]. Collectively, these data
suggest that osteoblasts have multiple roles in cancer pro-
gression and may interact differently with cancer cells
depending on the stage of the disease. In the study de-
scribed here, we sought to dissect specific interactions be-
tween osteoblasts and breast cancer cells and determine
how these interactions affect breast cancer progression in
the bone. We found that breast cancer cells act on osteo-
blasts in the tumor niche in vivo earlier in the metastatic
process and alter the protein expression of a population of
osteoblasts. We identified two different subpopulations of
osteoblasts in the tumor niche in vivo based on their pro-
tein marker expression. We provide evidence that the two
populations consist of one group that is “educated” by
breast cancer cells (“educated” osteoblasts) and a second
group that is not (“uneducated” osteoblasts). We define
“educated” osteoblasts (EOs) as osteoblasts that have
engaged in crosstalk with metastatic breast cancer cells by
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direct or indirect means. We define “uneducated” osteo-
blasts as osteoblasts that have not communicated with
metastatic breast cancer cells. We also hypothesized that
the presence of EOs in the bone tumor microenvironment
would lead to unique protein expression of factors in-
volved in inflammation, bone turnover, and extracellular
matrix remodeling. Using an intratibial model of bone
metastasis, we showed that the inflammatory cytokine
IL-6 as well as matrix remodeling factors MMP3 and type
I collagen were reduced in the endosteal and
hematopoietic niches of the tibia with tumors composed of
an admix of EOs plus triple-negative breast cancer cells, as
compared to admixes of “uneducated” osteoblasts plus
triple-negative breast cancer cells, or triple-negative breast
cancer cells injected alone. Furthermore, alkaline phosphat-
ase, a marker of osteoblast differentiation [39], was in-
creased in the endosteal niche of the tibia with tumors
composed of EOs plus triple-negative breast cancer cells,
as compared to admixes of “uneducated” osteoblasts plus
triple-negative breast cancer cells, or triple-negative breast
cancer cells injected alone. In addition, we demonstrated
that exposure to EO-conditioned medium reduces breast
cancer cell proliferation and leads to a reduction in the
number of cells in the S phase of the cell cycle of both
triple-negative and estrogen receptor-positive (ER+) breast
cancer cells in vitro. We found that this effect was medi-
ated in part by an antibody to NOV (CCN3) or recombin-
ant decorin protein. Furthermore, direct co-culture with
EOs increased triple-negative and ER+ breast cancer ex-
pression of p21 compared to cultures with “uneducated”
osteoblasts in vitro. Thus, our data suggest that osteoblasts
may be “educated” by breast cancer cells in vivo to alter
osteoblast protein expression. Our data further suggest that
there is a subpopulation of osteoblasts that demonstrate a
functional role in retarding breast cancer growth.

Materials and methods
Cells
All cells tested negative for Mycoplasma spp. infection
using a MycoSensor PCR Assay kit (Agilent Technolo-
gies, Santa Clara, CA).

Osteoblasts
MC3T3-E1 cells, a murine pre-osteoblast line capable
of differentiation and mineralization in culture [40] (Dr.
Norman Karin, Roswell Park Cancer Institute), were
maintained in alpha Minimum Essential Medium
(αMEM) (Gibco, Grand Island, NY), 10% neonatal FBS
(HyClone, Logan, UT), and penicillin 100 U/ml/strepto-
mycin 100 μg/ml (Gibco). Twenty-four hours later, the
medium was replaced with 1× differentiation medium
(αMEM, 10% neonatal FBS, penicillin 100 U/ml/
streptomycin 100 μg/ml, 50 μg/ml ascorbic acid (Sigma,
St. Louis, MO), and 10 mM β-glycerophosphate (Sigma,

St. Louis, MO)). MC3T3-E1 cells were grown to two
stages of differentiation: early differentiation (10 days)
or late differentiation (20 days) and were used at pas-
sage ≤ 20 [41]. Differentiation medium was exchanged
every third day. Cells were cultured in a humidified
chamber of 5% CO2 and 95% air at 37 °C.
NHOst human primary osteoblasts derived from a sin-

gle donor with no evidence of disease were purchased
directly from Lonza (Walkersville, MD). NHOst cells
were maintained in a growth media of osteoblast basal
medium plus FBS, ascorbic acid, and gentamicin/ampho-
tericin-B (Lonza). Media were exchanged every other
day. Cells were cultured in a humidified chamber of 5%
CO2 and 95% air at 37 °C.

Mouse fibroblasts
NIH-3T3 murine fibroblast cells are a mesenchymal cell
line established from NIH Swiss mouse primary embryo
cultures [42]. These cells were a gift from Dr. Andrea
Mastro, The Pennsylvania State University. Media were
exchanged every other day. NIH-3T3 cells were main-
tained in a growth media of alpha-MEM (Gibco), 10%
FBS (Hyclone), and penicillin 100 U/ml/streptomycin
100 μg/ml (Gibco). Cells were cultured in a humidified
chamber of 5% CO2 and 95% air at 37 °C.

Human mammary epithelial cells
hTERT-HME1 human mammary epithelial cells were de-
rived from a patient undergoing reduction mammoplasty
with no history of breast cancer. The human mammary
epithelial cells were immortalized by infection with
pBabepuro-hTERT vector retrovirus [43]. hTERT-HME1
cells were maintained in mammary epithelial cell growth
medium (MEBM) supplemented with bovine pituitary
extract, hydrocortisone, human epidermal growth factor
(10 μg/ml), 0.5% recombinant human insulin, and genta-
micin/amphotericin-B (Lonza). hTERT-HME1 cells were
purchased from the ATCC (Manassas, VA). Cells were
cultured in a humidified chamber of 5% CO2 and 95% air
at 37 °C.

Cancer cells
MDA-MB-231 human metastatic breast cancer cells were
derived from a pleural effusion of an adenocarcinoma
[44]. MDA-MB-231BRMS human metastasis-suppressed
cells are the isologous line in which metastasis is sup-
pressed to the bone as well as to the other organs by
transfection of the BRMS1 gene [45, 46] and were a gift
from Dr. Danny Welch, Kansas University Medical Cen-
ter. MDA-MB-231 and MDA-MB-231BRMS cells were
maintained in a breast cancer growth medium of DMEM
(Gibco), 5% neonatal FBS, and 1% penicillin 100 U/ml/
streptomycin 100 μg/ml. Cells were cultured in a humidi-
fied chamber of 5% CO2 and 95% air at 37 °C. MCF-7
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human ER+ breast cancer cells were derived from a
pleural effusion [47] and were purchased directly from
the ATCC (Manassas, VA). MCF-7 cells were main-
tained in EMEM (Gibco) supplemented with 10% FBS
(Hyclone), 100 U/ml penicillin 100 mg/ml streptomycin
(Gibco), and 0.01 μg/ml of recombinant human insulin
(MP Biomedicals, Solon, OH).
For in vivo experiments, cell lines expressing the

green fluorescent protein (GFP) and luciferase (pLe-
Go-IG2-Luc2 vector) were utilized and were a gift
from Dr. Alessandro Fatatis, Drexel University.
MDA-MB-231GFP/luciferase cells are analogous to
MDA-MB-231 cells but have been engineered to ex-
press GFP and the Luc2 vector [48].

Conditioned media
MC3T3-E1 cells, grown for 10 or 20 days, were rinsed
with phosphate-buffered saline (PBS) and serum-free
αMEM added (20 ml per T-150 flask, ~ 9.1 × 104 cells/
cm2) for 24 h. Osteoblast-conditioned medium (OBCM)
was collected, centrifuged to remove cellular debris, and
stored at − 80 °C.
MDA-MB-231 triple-negative metastatic breast cancer,

MDA-MB-231BRMS metastasis-suppressed breast cancer
cells, MCF-7 ER+ breast cancer cells, or hTERT-HME1
human mammary epithelial cells were rinsed with PBS
and serum-free αMEM added (~ 1.3 × 105 cells/cm2).
Twenty-four hours later, breast cancer cell-conditioned
medium (BCCM) or hTERT-HME1-conditioned medium
was collected, centrifuged to remove cellular debris, and
stored at − 80 °C.

Generation of EOs in vitro
Differentiated MC3T3-E1 cells were rinsed and treated
with either BCCM or hTERT-HME1-conditioned media
treatment formulation: 3 parts 1.5× differentiation
medium (αMEM, 15% neonatal FBS, 75 μg/ml ascorbic
acid (Sigma), 15 mM β-glycerophosphate (Sigma), and
penicillin 100 U/ml/streptomycin 100 μg/ml) plus 1 part
either MDA-MB-231, MDA-MB-231BRMS, or MCF-7
breast cancer-conditioned medium; or hTERT-HME1
mammary epithelial cell-conditioned medium for an
additional 21 days [49] (days 31 or 41, respectively).
Media were changed every second day. Vehicle medium
(VM) consisting of MC3T3-E1 differentiation medium
was used for comparison.

EO-conditioned media
EO cells were rinsed with PBS and serum-free αMEM
added. Twenty-four hours later, EO cell-conditioned
media were collected, centrifuged to remove cellular
debris, and stored at − 80 °C.

Alkaline phosphatase staining
Bone alkaline phosphatase is a biochemical marker of
osteoblast differentiation in vitro and bone turnover in vivo
[50]. Twenty-day differentiated EO cells were plated at 1 ×
105 cells/cm2 in EO cell growth medium and grown to
confluence. The medium was exchanged every third day.
For MC3T3-E1 cells (control), the cells were plated at 1 ×
105 cells/cm2 in a MC3T3-E1 growth medium. Twenty-
four hours later, the medium was exchanged for
MC3T3-E1 differentiation medium. Cells were grown for
20 days (late differentiation). The medium was exchanged
every third day. To stain for alkaline phosphatase, growth
media were removed, cells washed with PBS, and fixed for
10min with 4% paraformaldehyde (PFA; Electron Micros-
copy Sciences, Hatfield, PA). The cells were rinsed with
PBS in three sequential washes, and cells covered with al-
kaline phosphatase stain (1.3 mg Napthol AS-BI Phosphate
(Sigma), 0.2M Tris, pH 8.5 (Sigma), and 7.5 mg Fast Blue
RR Salt (Sigma) in a total volume of 13ml). The stain was
filtered and cells incubated for 30min at 37 °C. Cells were
rinsed and photographed using a light microscope.

Mineralization
To assay for the state of osteoblast mineralization, EO
cells were stained for Von Kossa, a biochemical marker
of bone mineralization [51, 52]. Twenty-day differenti-
ated EO cells were plated at 1 × 105 cells/cm2 in EO cell
growth medium and grown to confluence. The medium
was exchanged every third day. For MC3T3-E1 cells
(control), the cells were plated at 1 × 105 cells/cm2 in a
MC3T3-E1 growth medium. Twenty-four hours later,
the medium was exchanged for MC3T3-E1 differenti-
ation medium. Cells were grown for 20 days (late differ-
entiation). The medium was exchanged every third day.
To stain for Von Kossa, growth media were removed,
cells washed with PBS, and fixed for 10 min with 10%
formalin (VWR). Formalin was removed, cells were
rinsed with PBS in three sequential washes, then cells
were incubated with 5% silver nitrate (Sigma) for 30 min
at room temperature in the dark. Cells were then rinsed
with dH2O and photographed using a light microscope.

Western blotting
Cells were lysed in an ice-cold RIPA lysis buffer containing
50mM Tris-HCl (pH 7.4, Sigma), 1% NP-40 (v/v, Thermo
Scientific, Waltham, MA), 0.25% Na-deoxycholate (v/v,
Sigma), 150mM NaCl (Sigma), 1mM EDTA (Sigma), 1
mM PMSF (Sigma), 1mM Na3VO4 (Sigma), and 1mM
NaF (Sigma) plus Halt™ Protease and Phosphatase Inhibi-
tor Cocktail (Thermo Scientific), then gently agitated for
30min at 4 °C. Next, lysates were centrifuged for 20min at
14,000 rpm at 4 °C, quantified using a DC™ Protein Assay
(Bio-Rad, Hercules, CA), boiled with loading buffer, then
loaded onto a 12% SDS-PAGE gel (Bio-Rad). Separated
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proteins were transblotted onto Immobilon-P polyvinyli-
dene difluoride membranes (EMD Millipore, Billerica,
MA). The membranes were blocked using either
Tris-buffered saline (TBS)-Tween (TBS-T, 1× TBS plus
5% Tween-20 (v/v, Sigma)) containing 5% non-fat dry
milk powder (Biotium, Hayward, CA) (osteopontin,
alpha-smooth muscle actin, type I collagen, MCP-1,
alpha-tubulin, and beta-actin), or SuperBlock Blocking
buffer (Thermo Scientific) (alkaline phosphatase, p21,
MMP3, VEGF, FSP, FOXN1, and IL-6) and incubated
with primary antibodies overnight at 4 °C. Primary
antibodies included goat anti-mouse IL-6 (0.5 μg/ml;
R&D Systems, Minneapolis, MN), rabbit anti-mouse
MCP-1 (1:10,000; Abcam, Cambridge, MA), rabbit
anti-mouse/human osteopontin (1:500; Abcam), rabbit
anti-mouse/human alkaline phosphatase (1:10,000;
Abcam), goat anti-mouse fibroblast-specific protein
(FSP) (0.5 μg/ml; R&D Systems), goat anti-mouse
VEGF (0.1 μg/ml; R&D Systems), rabbit anti-mouse
MMP3 (1:2000; Lifespan Biosciences, Seattle, WA),
rabbit anti-collagen type I (1:1000; Bio-Rad), mouse
anti-mouse/human alpha-SMA (1:50; Abcam), rabbit
anti-human p21 (1:100; Cell Signaling, Danvers, MA),
rabbit anti-mouse FOXN1 (1:300; Bioss, Woburn, MA),
mouse anti-α-tubulin (1:3000; Sigma), and mouse
anti-beta actin (1:5000; Sigma). Secondary antibodies
included horse anti-mouse HRP (1:1000; Cell Signal-
ing), goat anti-rabbit HRP (1:1000; Cell Signaling), and
donkey anti-goat HRP (1:5000; Abcam). Signals were
detected using SuperSignal™ West Femto Chemilumin-
escent Substrate detection kit (Thermo Scientific).

EO proliferation assay
Cells were plated in at 1 × 105 cells/cm2 in 35 × 10 mm
dishes. Beginning on day 2 after plating, and continuing
every other day for 10 days, cells were detached and
counted using a hemocytometer. Three individual repli-
cates per time point were counted per condition.

Breast cancer proliferation assay
Breast cancer cells were plated in breast cancer growth
media at 1 × 105 cells/cm2 in 35 × 10 mm dishes.
Twenty-four hours later (day 0), growth media were re-
moved and cancer cells treated with 1ml breast cancer
growth media plus either (a) MC3T3-E1 osteoblast condi-
tioned media (OBCM), (b) EO-conditioned media, or (c)
the respective breast cancer-conditioned media (BCCM).
Breast cancer cells were then counted beginning on day 1
after plating and continuing every day for 5 days, cells were
detached and counted using a hemocytometer. Three indi-
vidual replicates per time point were counted per condition.
To examine the effect of decorin and NOV on breast

cancer proliferation, breast cancer cells were plated in
breast cancer growth media at 1 × 105 cells/cm2 in 35 ×

10 mm dishes. Twenty-four hours later (day 0), growth
media were removed and cancer cells treated with 1ml
breast cancer growth media plus either 1 ml (a)
EO-conditioned media plus either 5 μg/ml anti-NOV
(R&D Systems) or 5 ng/ml recombinant decorin protein
(R&D Systems), (b) EO-conditioned media plus 5 μg/ml
anti-NOV (R&D Systems) plus 15 ng/ml recombinant
NOV protein (R&D Systems), (c) EO-conditioned media
plus 5 ng/ml recombinant decorin protein (R&D Sys-
tems) plus 5 μg/ml anti-decorin (R&D Systems), (d)
EO-conditioned media, or (e) MC3T3-E1-conditioned
media (OBCM). Breast cancer cells were then counted
beginning on day 1 after plating and continuing every
day for 5 days, cells were detached and counted using a
hemocytometer. Three individual replicates per time
point were counted per condition.

Propidium iodide staining
Breast cancer cells were plated in breast cancer growth
media at 1 × 105 cells/cm2 in 35 × 10 mm dishes.
Twenty-four hours later, growth media were removed
and cancer cells treated with 1 ml breast cancer growth
media plus either (a) vehicle media (DMEM for
MDA-MB-231; EMEM for MCF-7) (control) or (b)
EO-conditioned media. Media were exchanged every
day. Breast cancer cells were then detached and fixed for
at least 2 h with 95% cold ethanol beginning on day 1
after plating and continuing every day for 5 days. Fixed
cells were stored at − 20 °C until use. For propidium iod-
ide staining, ethanol was decanted and fixed cells were
washed once with PBS. Cells were resuspended in a so-
lution of 50 ng/ml propidium iodide (Thermo Fisher),
100 ng/ml RNAse A (ThermoFisher), and PBS per 1 ×
106 cells and incubated for 30 min in the dark at room
temperature. Stained cells were then analyzed for propi-
dium iodide staining using a Becton Dickinson LSR II
flow cytometer at excitation 535 nm and emission at
617 nm. A minimum of 10,000 events were counted per
sample. Dead cells and debris were eliminated by for-
ward and side scatter gating. Cell cycle phase was ana-
lyzed using BDFACS Diva software and FlowJo software.
Three individual replicates per time point were counted
per condition.

EdU staining
Breast cancer cells were plated at 5 × 103 cells/cm2 in
4-well chamber slides in culture media plus 0.5 μM
5-ethynyl-2-doxyuridine (EdU) for imaging using the
Click-iT EdU Imaging Kit (Invitrogen; Carlsbad, CA) for
1, 2, 3, 4, and 5 days. Cells were maintained in media
plus EdU for the entire length of the time course. At the
end of the time course, the media containing EdU were
removed and cells were washed in PBS, fixed with 4%
paraformaldehyde for 10 min at room temperature, and
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then washed three times with PBS. For EdU imaging,
cells were permeabilized with 0.2% Triton X-100 for 10
min at room temperature and subsequently washed with
PBS. Cells were then incubated with the Click-iT reac-
tion cocktail (prepared as described by the manufac-
turer) for 30 min at room temperature in the dark. The
reaction cocktail was removed, the cells were washed
three times with PBS, and the nuclei were stained for 4
min with 4',6-diamidino-2-phenylindole (DAPI; 0.2 ng/
µl). After DAPI was removed, cells were washed again
with PBS and visualized using fluorescence microscopy.

F-actin staining
For phalloidin staining to elicit F-actin organization,
cells were fixed for 10 min using 4% paraformaldehyde
followed by washing with PBS. Cells were then stained
with Alexa Fluor® 594 phalloidin (300 units; Life Tech-
nologies, Carlsbad, CA) in PBS for 20 min at room
temperature. Following staining, cells were washed with
PBS and stained with DAPI for 4 min. Cells were then
washed and mounted with Fluoromount G (Southern
Biotech, Birmingham, AL). Fluorescence images were
obtained using an Olympus FV3000 microscope (Olym-
pus) equipped with a Hamamatsu color camera (Hama-
matsu Photonics, Iwata City, Japan), using a 100x
silicone oil immersion objective. Image analysis was
performed with Olympus cellSens. Quantification of
stress fiber anisotropy was performed using an Olym-
pus cellSens Count and Measure Tool.

LC3 staining
MC3T3-E1, EO-231, and EO-BRMS cells were grown to
~ 70% confluence, then growth media removed, cells
washed with PBS, then fixed in 100% ice-cold methanol for
15min at − 20 °C. For a positive control, MC3T3-E1 osteo-
blasts were treated with serum-free media for 48 h [53],
then the media were removed and cells washed with PBS
then fixed in 100% ice-cold methanol for 15min at − 20 °C.
For all cells, methanol was removed and cells washed in
PBS then blocked using Dako Universal Blocking buffer
(Dako Products, Santa Clara, CA) for 1 h at room
temperature followed by incubation overnight at 4 °C with
rabbit anti-mouse LC3A/B antibody (1:800; Cell Signaling
Technologies). Cells were then incubated with goat
anti-rabbit 488 (1:3000; Biotium, Fremont, CA) for 1 h at
room temperature, followed by staining with DAPI. Cells
were then mounted with Fluoromount G (Southern Bio-
tech). The sections without the primary antibody served as
negative controls. Images were viewed using an Olympus
FV 3000 fluorescent microscope using a 40x objective
(Olympus) equipped with Hamamatsu color camera (Ha-
mamatsu Photonics).

Intratibial inoculations
MDA-MB-231GFP/Luc2 cells, MC3T3-E1 cells, and
EO-231 cells, 90% confluent, were detached, washed,
and resuspended in PBS. MDA-MB-231GFP/Luc2 cells
were admixed with MC3T3-E1 or EO-231 cells at a 2:1
ratio, whereby a total of 5 × 105 cells total in 10 μl PBS
were injected into the tibias of female athymic mice aged
5–6 weeks (Harlan Sprague-Dawley, Indianapolis, IN).
MDA-MB-231GFP/Luc2 cells inoculated alone served as
controls (5 × 105 cells in 10 μl PBS). Briefly, mice were
anesthetized via an intraperitoneal injection of a mixture
of ketamine (129 mg/kg) and xylazine (4 mg/kg). Once
the mice were fully anesthetized as evidenced by a toe
pinch and lack of movement, the hind leg was bent to a
90° position and 27 gauge needle with cells inserted
through the patellar tendon and into the proximal tibia
using gentle pressure and twisting motion [54]. The
contralateral tibia was injected with PBS as a control. Six
mice were utilized per experimental group. IVIS Imaging
(Perkin Elmer, Waltham, MA) was used to monitor
tumor formation for luciferase expression. Mice were
euthanized via CO2 inhalation followed by cervical dis-
location once tumors reached an average radiance (p/s/
cm2/sr) of 1 × 108. Mice were maintained under the
guidelines of the NIH and Thomas Jefferson University.
All protocols were approved and monitored by the Insti-
tutional Animal Care and Use Committee.

In vivo imaging
For in vivo imaging, animals were injected with 100 μl of
30 mg/ml D-luciferin (Perkin Elmer) via intraperitoneal
injection and anesthetized using 2.5% isoflurane. Ani-
mals were then transferred to the chamber of an IVIS
Lumina XR (Perkin Elmer) where they received 2%
isoflurane throughout the image acquisition. Ten to 15
min after injection of the substrate, exposures of both
dorsal and ventral views were obtained along with X-ray,
and quantification and analysis of bioluminescence was
performed using Living Image software.

Bone preparation for immunochemistry
Tibia were dissected from mice, then fixed for 24–48 h
at 4 °C in 4% paraformaldehyde (Electron Microscopy
Sciences), and decalcified for an additional 24–48 h at 4 °
C with 0.5 mol/l EDTA in dH2O (Sigma) [5, 24]. For em-
bedding, the bones were soaked in 30% sucrose in PBS
for 24 h, placed in Shandon CryomatrixTM embedding
medium (Thermo Shandon, Waltham, MA), and snap
frozen in liquid nitrogen using the Gentle-Jane Snap-
Freezing technique (Instrumedics Inc., Hackensack, NJ).
Frozen samples were wrapped in aluminum foil and
stored at − 20 °C. CryoJane frozen section preparation
cryosectioning was performed on a Leica CM3050 Cryo-
stat (Leica, Inc., Nussloch, Germany). For sectioning,
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tibia were oriented with the end proximal to the knee
pointed toward the blade. Ten-micron-thick longitu-
dinal, serial sections were cut using a Diamond High
Profile Knife (C.L. Sturkey, Lebanon, PA). Pre-chilled ad-
hesive transfer tape windows (Leica Inc.) were used to
transfer cut serial sections onto pre-chilled adhesive-
coated slides (CJ4X adhesive-coated slides; Leica Inc.).
Two bone serial sections were placed onto each slide.
Transfer tape windows were removed from the slides at
− 20 °C. The bone sections were permanently bonded to
slides after 30 min of exposure to ultraviolet light. The
slides were stored in slide boxes at − 20 °C until use.

Immunochemistry of the murine tibia
The serial bone sections of tibia from mice were allowed to
equilibrate to room temperature for at least 30min prior to
use. The sections were circled with an ImmEdge Hydro-
phobic Barrier Pen (Vector Laboratories, Burlingame, CA)
and permeabilized for 10min using 0.2% Triton-X (Sigma)
in PBS. The sections were boiled for 30–45 s in 0.01M so-
dium citrate buffer pH 6.0 for antigen retrieval.
Non-specific binding was blocked with Dako Universal
Blocking Buffer (Dako Products) for 1 h. The slides were in-
cubated overnight at 4 °C with either mouse
anti-alpha-smooth muscle actin (1:100, Abcam), rabbit-anti
GFP (1:25, Invitrogen, Carlsbad, CA), rabbit anti-alkaline
phosphatase (1:100, Abcam), rabbit anti-osteopontin (1:500,
Abcam), rabbit anti-collagen type I (1:75, Bio-Rad), rabbit
anti-MMP3 (1:75, Lifespan Biosciences, Seattle, WA), rabbit
anti-MCP-1 (10 μg/ml, Abcam), goat anti-VEGF (25 μg/ml,
R&D Systems), goat anti-IL-6 (40 μg/ml, R&D Systems),
rabbit anti-mouse FOXN1 (1:25, Bioss), rabbit anti-mouse
RUNX2 (1:500, Abcam), goat anti-mouse decorin (40 μg/
ml, R&D Systems), or rat anti-mouse NOV (40 μg/ml,
R&D Systems). Next, the slides were incubated for 1 h at
room temperature with either donkey anti-mouse 594,
chicken anti-rabbit 594, chicken anti-goat 594, donkey
anti-rat 594, or goat anti-rabbit 488 (1:1000, Biotium).
Sections were stained with DAPI (0.2 ng/μl) then mounted
with Fluoromount G (Southern Biotech). The sections
without the primary antibody and non-cancer-bearing
murine bones served as negative controls. Images were
viewed using an Olympus FV 3000 fluorescent micro-
scope (Olympus) equipped with Hamamatsu color camera
(Hamamatsu Photonics). Fluorescent images were ana-
lyzed using the Adaptive Threshold and Count and Meas-
ure function on the Olympus cellSens software. At least
three independent, serial sections were stained per bone,
and three bones examined per condition.

Immunochemistry of human osteoblasts
Human NHOst cells were grown to confluence in 4-well
chamber slides (Sarstedt, Numbrecht, Germany), fixed for
10min at room temperature with 4% paraformaldehyde

(EMD Biosciences), then circled with an ImmEdge Hydro-
phobic Barrier Pen (Vector Laboratories). Next, cells were
permeabilized for 10min using 0.2% Triton-X (Sigma) in
PBS. Non-specific binding was blocked with Dako Univer-
sal Blocking Buffer (Dako Products) for 1 h at room
temperature. The slides were incubated overnight at 4 °C
with either mouse anti-human osteocalcin (R&D Systems,
10 μg/ml), rabbit anti-human RUNX2 (Abcam, 1:500),
mouse anti-human alpha-smooth muscle actin (1:100,
Abcam), rabbit anti-human alkaline phosphatase (1:100,
Abcam), rabbit anti-human osteopontin (1:500, Abcam),
or goat anti-human IL-6 (40 μg/mL, R&D Systems), Next,
slides were incubated for 1 h at room temperature with ei-
ther donkey anti-mouse 594, chicken anti-rabbit 594, don-
key anti-goat 488, or goat anti-rabbit 488 (1:1000,
Biotium). Cells were stained with DAPI (0.2 ng/μl) then
mounted with Fluoromount G (Southern Biotech). The
cells without the primary antibody served as negative con-
trols. Images were viewed using an Olympus FV 3000
fluorescent microscope (Olympus) equipped with Hama-
matsu color camera (Hamamatsu Photonics).

Multi-plex immunochemistry of human bone samples
De-identified human tissue specimens from patients
with bone metastatic breast cancer undergoing total hip
replacement at Thomas Jefferson University were col-
lected from consented patients, immediately put on ice,
and processed within 20 min of extraction. Patients
were between the ages of 70 and 77 years old and were
diagnosed with ER+ bone metastases. All patients re-
ceived Herceptin as a primary line of treatment. Sam-
ples were embedded in paraffin and sent to the Thomas
Jefferson University Histology Core for sectioning.
Samples were serially cut at 6 μm and bound to Color-
frost Plus slides (Thermo Scientific). To deparaffinize
and rehydrate, the sections were taken through a series
of xylenes, decreasing concentrations of alcohols,
followed by water and TBS. Sections were circled with
an ImmEdge Hydrophobic Barrier Pen (Vector Labora-
tories) and permeabilized for 10 min using 0.2%
Triton-X (Sigma) in PBS. The sections were boiled for
30–45 s in 0.01M sodium citrate buffer pH 6.0 for anti-
gen retrieval. Non-specific binding was blocked with
Dako Universal Blocking Buffer (Dako Products) for 1
h. The slides were first incubated overnight at 4 °C with
either rabbit anti-human RUNX2 (Abcam, 1:500),
rabbit anti-human osteopontin (1:75, Abcam), or goat
anti-human decorin (40 μg/ml, R&D Systems), followed
by incubation for 1 h with either goat anti-rabbit 488,
chicken anti-rabbit 594, or donkey anti-goat 488
(1:1000, Biotium), respectively. Next, the slides were
again blocked with Dako Universal Blocking Buffer
(Dako Products) for 1 h at room temperature followed
by overnight incubation at 4 °C with either mouse
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anti-human osteocalcin (R&D Systems, 10 μg/ml), rabbit
anti-human RUNX2 (1:500, Abcam), or goat anti-human
NOV (40 μg/ml, R&D Systems). Next, the slides were incu-
bated for 1 h at room temperature with either chicken
anti-rabbit 594, chicken anti-rabbit 488, or donkey anti-goat
594 (1:1000, Biotium). Sections were stained with DAPI (0.2
ng/μl) then mounted with Fluoromount G (Southern Bio-
tech). The sections without the primary antibody served as
negative controls. Images were viewed using an Olympus
FV 3000 fluorescent microscope (Olympus) equipped with
Hamamatsu color camera (Hamamatsu Photonics).
To carry out the multi-plex immunofluorescence, cover-

slips were first removed from mounted slides by soaking
in PBS for 30min at room temperature. Next, the slides
were boiled for 3 min in 0.01M sodium citrate buffer pH
6.0 to quench the first set of fluorophores. The slides were
allowed to cool in water followed by TBS, then blocked
using Dako Universal Blocking Buffer for 1 h. Slides were
first incubated overnight at 4 °C with goat anti-human
IL-6 (40 μg/ml, R&D Systems), followed by incubation for
1 h with donkey anti-goat 488 (1:1000, Biotium). Next, the
slides were again blocked with Dako Universal Blocking
Buffer (Dako Products) for 1 h at room temperature
followed by overnight incubation at 4 °C with mouse
anti-human alpha-smooth muscle actin (1:100, Abcam).
Next, the slides were incubated for 1 h at room
temperature with donkey anti-mouse 594 (1:1000, Bio-
tium). Slides were then washed with TBS, and sections
stained with DAPI (0.2 ng/μl). Slides were then mounted
with Fluoromount G (Southern Biotech). Sections without
the primary antibody served as negative controls. Images
were viewed using an Olympus FV 3000 fluorescent micro-
scope (Olympus) equipped with Hamamatsu color camera
(Hamamatsu Photonics). IL-6 and alpha-SMA were false
colored using cellSens (IL-6, 488 [green] false colored to
purple; alpha-SMA, 594 [red] false colored to yellow).
Fluorescent images were analyzed using the Adaptive
Threshold and Count and Measure function on the Olym-
pus cellSens software.

Statistical analysis
Statistical analyses were carried out using GraphPad
Prism 7 (GraphPad, La Jolla, CA). For all proliferation
and cytokine analyses, unpaired t test with Welch’s cor-
rection was used to assess for multiple comparisons. For
quantification of F-actin deposits, one-way ANOVA with
Tukey’s multiple comparisons test was used. Significance
was defined at a two-sided alpha level of 0.05.

Results
Crosstalk occurs between osteoblasts and breast cancer
cells in the tumor microenvironment in vivo
Recruitment of stromal cells from normal tissue has been
established as a prerequisite for tumor invasion and

metastasis [55, 56]. There is mounting evidence to suggest
that bone metastatic cancer cells act on osteoblasts in the
tumor microenvironment to alter osteoblast production of
proteins [32, 33, 57, 58]. Our previous results suggested
that osteoblasts are significantly altered in the presence of
breast cancer cells to increase osteoblast production of
IL-6, IL-8, VEGF, MCP-1, and GRO-alpha [32, 33] in
late-stage disease. These cytokines facilitate breast cancer
cell colonization in the bone microenvironment [32, 33].
To assay for additional ways bone metastatic breast cancer
cells may alter osteoblast properties in bone, we injected
athymic nude mice via intratibial injection with an admix
of MDA-MB-231GFP/Luc2 human breast cancer cells
plus MC3T3-E1 murine osteoblasts. PBS was injected into
the contralateral tibia as a control. Eight weeks later, the
mice were euthanized and their tibia harvested and sec-
tioned. To identify osteoblasts in the tumor microenviron-
ment, we stained the sections using immunofluorescence
for osteopontin (OPN), a bone turnover marker [59], and
alpha-smooth muscle actin (aSMA), a marker for cells of
the osteogenic lineage [60]. We also stained the sections
for DAPI (nuclear stain) and GFP to identify GFP-express-
ing human breast cancer cells (Fig. 1). Unexpectedly, we
saw two distinct populations of osteoblasts based on pro-
tein marker expression in cancer-bearing bones: (1) or-
ange arrows point to osteoblasts both OPN-positive (red)
and aSMA-positive (yellow)—combined colors result in
osteoblasts orange in color; (2) white arrows point to oste-
oblasts OPN-positive (red), but aSMA low (yellow)—com-
bined colors result in osteoblasts red in color (Fig. 1a,
inset). The two populations of osteoblasts are adjacent to
GFP-expressing breast cancer cells (green) (Fig. 1). This is
in contrast to non-cancer-bearing bones, which exhibited
only OPN-positive and aSMA-positive osteogenic popula-
tions (Fig. 1b). Although our evidence (Fig. 1a) suggests a
larger population of OPN-positive and aSMA-positive os-
teoblasts adjacent to tumor cells, we expect this does not
fully represent the three-dimensional spatial distributions
of the two different osteoblast populations in the tumor
niche in vivo. These results suggest that there are two
distinct populations of osteoblasts in the tumor niche in
vivo as defined by protein markers compared to
non-cancer-bearing bone control.
We considered the possibility that the osteoblast subpop-

ulations that we found were a result of injecting exogenous
MC3T3-E1 cells into mouse bone where endogenous
mouse osteoblasts would be present. In order to distin-
guish our injected mouse MC3T3-E1 cells from the
endogenous mouse osteoblasts, we exploited the know-
ledge that homozygous Nu/Nu mice have a spontaneous
mutation in the Forkhead Box N1 (FOXN1) gene (resulting
in hairlessness and athymia), and thus are deficient for
FOXN1 [61–63]. First, we tested if MC3T3-E1 cells
express the FOXN1 protein by western blot and
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immunocytochemistry (Additional file 1: Figure S1).
FOXN1 protein was expressed in MC3T3-E1 cells as ob-
served by both western blot (Additional file 1: Figure S1A)
and immunofluorescence (Additional file 1: Figure S1B).
Next, we stained the tibia of mice injected with an admix
of MDA-MB-231GFP/Luc2 human breast cancer cells plus
MC3T3-E1 murine osteoblasts using antibodies for
FOXN1, to show the population of injected MC3T3-E1
cells, and RUNX2 a unique marker of osteoblasts [64].
RUNX2 is a protein essential for the development of the
osteoblast phenotype; thus, both endogenous mouse osteo-
blast cells as well as injected MC3T3-E1 cells will express
RUNX2 [65–67]. In the examples shown, FOXN1 (yellow,
arrows), representing the injected MC3T3-E1 cells, is
observed interspersed in a random fashion throughout the
total osteoblast population in the trabecular bone which
stained positive for RUNX2 (red) (Additional file 1:
Figure S1C). The integration of injected MC3T3-E1
cells into the trabecular bone, especially as evident in
the example shown from tibia 1, suggests that the
injected MC3T3-E1 cells and native endogenous
mouse osteoblasts are functioning as one unified popu-
lation in vivo. Therefore, these results suggest that the

osteoblast subpopulations that we observed in vivo
were not a result of injecting exogenous MC3T3-E1
cells into the mouse bone.

Osteoblasts are “educated” by metastatic breast cancer
cells
In order to replicate our in vivo results in vitro, we used
MC3T3-E1 cells, which are pre-osteoblasts capable of
differentiation to states of matrix mineralization in vitro
[40]. We conditioned early (10 days) or late (20 days)
differentiated osteoblasts with either (a) hTERT-HME
human mammary epithelial CM (negative control), (b)
MDA-MB-231 triple-negative breast cancer CM, (c)
MDA-MB-231BRMS metastasis-suppressed breast cancer
CM, or (d) MCF-7 ER+ luminal breast cancer CM over a
period of 21 days [68]. Differentiated MC3T3-E1 osteo-
blasts treated with vehicle media were used as additional
controls. We examined for alterations in the expression of
proteins associated with (1) bone turnover (osteopontin,
alkaline phosphatase, fibroblast-specific protein), (2)
inflammatory cytokines (IL-6, MCP-1), (3) neovasculariza-
tion (alpha-smooth muscle actin, VEGF), and (4) extracel-
lular matrix remodeling (matrix metalloproteinase 3,

Fig. 1 Osteoblast subpopulations in the tumor microenvironment in vivo. a Athymic nude mice were injected via intratibial injection with an
admix of MDA-MB-231GFP/Luc2 human breast cancer cells plus osteoblasts or b PBS. Eight weeks later, mice were euthanized and their tibia
harvested. Sections were stained for alpha-smooth muscle actin, osteopontin, green fluorescent protein, and DAPI via immunofluorescence. Inset:
Orange arrows show alpha-smooth muscle actin-positive, osteopontin-positive osteoblasts. White arrows show alpha-smooth muscle actin low,
osteopontin positive "educated" osteoblasts. a T, tumor; Bo, bone. b Non-cancer bearing bone (control). TB, trabecular bone; BM, bone marrow
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collagen type I) (Fig. 2). These proteins were chosen due to
their association with osteoblasts and bone matrix
remodeling [39, 69–72], or osteoblasts and bone metastatic
cancer [32, 33, 73]. We observed the largest differences
between conditioned and vehicle-treated osteoblast protein
expression in late (20 days) differentiated osteoblasts,
which are shown in Fig. 2. Compared to vehicle-treated
osteoblasts, osteoblasts “educated” with the condi-
tioned medium of hTERT-HME1 cells (EO-HMEC) or
MDA-MB-231, MDA-MB-231BRMS, or MCF-7 breast
cancer cells (EO-231, EO-BRMS, and EO-MCF7, re-
spectively) exhibited minimal to no change in the ex-
pression of osteopontin (Fig. 2a). Minimal to no change
was observed in the EO cell expression of alkaline phos-
phatase when compared to MC3T3-E1 cells, and no
fibroblast-specific protein expression was detected in
MC3T3-E1 or EO cells (Fig. 2a). However, compared to
vehicle-treated osteoblasts, EO-231, EO-BRMS, and
EO-MCF7 cells exhibited a reduction in IL-6 protein ex-
pression, where very little IL-6 expression was found in
these cells via western blot (Fig. 2b). Osteoblasts “edu-
cated” with the conditioned medium of hTERT-HME1
cells (EO-HMEC) also exhibited a reduction in IL-6 ex-
pression compared to vehicle-treated MC3T3-E1 cells
(Fig. 2b). However, at least three times the amount of IL-6
protein was expressed in EO-HMEC cells than EO-231,
EO-BRMS, and EO-MCF7 cells (Fig. 2b).
A reduction in protein expression was also observed in

EO-231 and EO-BRMS expression of alpha-SMA when
compared to vehicle-treated osteoblasts. Minimal to no
change in alpha-SMA expression was observed in
EO-HMEC or EO-MCF7 cells (Fig. 2c). There is a ~ 50%
reduction in the inflammatory cytokine MCP-1 protein
expression in EO-MCF7 cells when compared to
vehicle-treated osteoblasts. Little to no change was seen in
MCP-1 expression of EO-HMEC, EO-231, or EO-BRMS
cells (Fig. 2b). Furthermore, a reduction in VEGF protein
expression was observed in EO-MCF7 cells when com-
pared to vehicle-treated osteoblasts. Little to no change
was seen in VEGF expression of EO-HMEC, EO-231, or
EO-BRMS cells (Fig. 2c).
By contrast, collagen I expression was upregulated in

EO-231, EO-BRMS, and EO-MCF7 cells. A small increase
in collagen expression was observed in EO-HMEC cells
compared with vehicle-treated osteoblasts (Fig. 2d). Further-
more, MMP-3 expression was upregulated in EO-231 cells
when compared to vehicle-treated osteoblasts. Small in-
creases in MMP3 expression were observed in EO-HMEC,
EO-BRMS, and EO-MCF7 cells when compared to
vehicle-treated osteoblasts (Fig. 2d). These results suggest
that when differentiated osteoblasts are in the presence of
BCCM for a prolonged period of time (chronic exposure as
opposed to acute), the osteoblasts are “educated” to produce
proteins in different concentrations than vehicle-treated

osteoblasts. These results additionally suggest that alter-
ations in osteoblast protein expression are correlated with
the type of breast cancer cell treatment, where osteoblasts
treated with triple-negative BCCM exhibited a different pro-
tein expression profile than osteoblasts treated with ER+ lu-
minal BCCM. Combined, reductions in cancer cell
CM-educated osteoblasts were seen in the expression of
IL-6 and alpha-SMA, whereas increases in educated osteo-
blast protein expression were observed with collagen type I.
While differentiated osteoblast treatment with human mam-
mary epithelial cell CM did elicit some alterations in osteo-
blast protein expression, these changes were minimal in
comparison with alterations observed with treatment of
breast cancer cell variant CM.
We define an “educated osteoblast” (EO) by character-

istics outlined in Fig. 2e, which distinguish it from an
“uneducated” osteoblast. These features include
expression of bone turnover markers osteopontin and al-
kaline phosphatase, reduced expression of inflammatory
cytokines (IL-6 and MCP-1), alterations in neovasculari-
zation markers alpha-SMA and VEGF, and increased ex-
pression of markers associated with extracellular matrix
remodeling (collagen type I and MMP3), which are cor-
related with estrogen receptor status of the cancer cell
variant CM treatment (Fig. 2a–d). In the following sec-
tions, we provide additional in vivo evidence that expres-
sion of these factors are uniquely altered only in tumors
formed in the bone from admixes including EO cells
when compared to “uneducated” osteoblasts or cancer
cells injected alone, thereby illustrating the involvement
of EOs as important modulators of metastatic progres-
sion in the bone.

Marker expression in intratibial tumors harboring EO cells
To determine the relationship between EO cells, bone
metastatic breast cancer cells, and the bone metastatic
tumor microenvironment, we utilized a mouse model
of intratibial injection which recapitulates the bone
microenvironment in vivo during established metastatic
disease [74]. In addition, since we observed the largest
changes in protein expression when late-differentiated
(20 days) osteoblasts were treated with human MDA-
MB-231 metastatic breast cancer-conditioned medium
(Fig. 2), we proceeded with the use of these cells for in
vivo studies. MDA-MB-231 cells are a human
triple-negative breast cancer cell line that frequently
metastasize to and colonize the bone [44, 74–76].
MDA-MB-231GFP/Luc2 breast cancer cells were
admixed with either EO-231 cells or vehicle-treated
osteoblasts prior to intratibial injection. MDA-MB-
231GFP/Luc2 cells inoculated alone were used as a
control. Tumor growth was monitored using biolumin-
escence imaging.
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Cortical and trabecular bone (endosteal niche)
To determine how the presence of EO cells in the bone
alters the tumor microenvironment, we stained the
tibia sections for markers corresponding to the four
groups tested in Fig. 2: osteopontin and alkaline phos-
phatase as bone turnover markers, IL-6 and MCP-1 as

inflammatory cytokines, alpha-SMA and VEGF as neovas-
cularization markers, and type I collagen and MMP3 as
extracellular matrix proteins. FSP was not tested due to the
lack of expression in both vehicle-treated osteoblasts and
EO cells (Fig. 2a). We utilized the adaptive threshold and
count and measure the function in Olympus cellSens

Fig. 2 EO cells express different markers than normal osteoblasts. MC3T3-E1 cells were plated at 1 × 105 cells/cm2 in 35 × 10 mm dishes. Twenty-
four hours later, the media were replaced with differentiation medium, and cells grown to late differentiation (20 days). Differentiation medium was
exchanged every third day. EO cells were plated at 1 × 105 cells/cm2 and grown in three parts 1.5× differentiation medium plus one part either MDA-
MB-231, MDA-MB-231BRMS, or MCF-7 breast cancer-conditioned medium or hTERT-HME1 mammary epithelial cell-conditioned medium. Media were
changed every second day. To collect cell lysates, growth or differentiation media were removed, and cells washed with cold PBS, then lysates
removed using ice-cold RIPA buffer. EO and MC3T3-E1 lysates were quantitated, then subjected to western blotting for proteins associated
with a bone turnover (osteopontin (OPN), alkaline phosphatase (ALP), and fibroblast-specific protein (FSP)), b inflammatory cytokines (IL-6 and
MCP-1), c neovascularization (alpha-smooth muscle actin (alpha-SMA) and VEGF) and d extracellular matrix (MMP3 and type I collagen). EO
variants examined include EO cells made with hTERT-HME human mammary epithelial (EO HMEC), MDA-MB-231 human metastatic breast
cancer (EO 231), MDA-MB-231BRMS human breast cancer metastasis-suppressed (EO BRMS), or MCF-7 human estrogen receptor-positive
breast cancer (EO MCF7)-conditioned medium. Three biological replicates were carried out per condition, per time, and the experiment is
repeated twice. Shown are representative results. e A “EO” can be defined as an osteoblast-like cell with altered expression of four defining
characteristics which distinguish it from a normal osteoblast: bone turnover markers (OPN, ALP, and FSP), inflammatory cytokines (IL-6 and
MCP-1), neovascularization (alpha-SMA and VEGF), and extracellular matrix markers (MMP3 and collagen I)
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software to determine the percent tissue stained for a given
protein, as distinguished per fluorophore, in each section.
We compared three different sites for protein expression
within tumor-bearing bone: (a) the endosteal niche includ-
ing the cortical and trabecular bone (where osteoblasts are
predominantly located), (b) the hematopoietic niche in-
cluding the bone marrow, and (c) the tumor itself. Within
the cortical and trabecular bone, IL-6 was expressed in ~
37% of cells in the trabecular bone of tumor-bearing mice
injected with MDA-MB-231GFP/Luc2 cells alone (Fig. 3).
IL-6 was only expressed in ~ 2% of cells in the trabecular
bone of tumor-bearing mice injected with MDA-MB-
231GFP/Luc2 cells plus EO-231 cells (Fig. 3), correspond-
ing to in vitro results (Fig. 2). On the other hand, MCP-1
expression was completely absent in the trabecular bone
near the tumor in mice inoculated with MDA-MB-
231GFP/Luc2 cells alone (0% of cells), while some MCP-1
expression was observed in the trabecular and cortical
bones of tumor-bearing mice injected MDA-MB-231GFP/
Luc2 cells plus either MC3T3-E1 cells (~ 16% of cells) or
EO-231 cells (~ 1% of cells) (Fig. 3).
We next examined the bones of tumor-bearing mice for

markers associated with the extracellular matrix. Type I
collagen expression was expressed in ~ 55% of cells in the
trabecular and cortical bone of tumor-bearing mice
injected with MDA-MB-231GFP/Luc2 cells plus EO-231
cells, ~ 64% of cells in tumor-bearing mice injected with
MDA-MB-231GFP/Luc2 cells plus MC3T3-E1 cells, or ~
55% of cells in tumor-bearing mice injected with MDA-
MB-231GFP/Luc2 cells injected alone (Fig. 3). Interest-
ingly, in the trabecular or cortical bone of tumor-bearing
mice injected with MDA-MB-231GFP/Luc2 cells injected
alone, MMP3 expression was observed near or adjacent to
GFP breast cancer cells (~ 17% of cells) (Fig. 3). By con-
trast, MMP expression in the trabecular or cortical bone
of tumor-bearing mice injected with MDA-MB-231GFP/
Luc2 cells plus either EO-231 cells (~ 44% of cells) or
MC3T3-E1 cells (~ 41% of cells) was observed in the
trabecular bone away from breast cancer cells (Fig. 3).
We next examined the trabecular and cortical bone

for the neo-vascularization markers alpha-SMA and
VEGF. Alpha-SMA was expressed in both the cortical
and trabecular bones of tumor-bearing mice in all
conditions tested: MDA-MB-231GFP/Luc2 cells plus
MC3T3-E1 cells (~ 63% of cells), MDA-MB-231GFP/
Luc2 cells plus EO-231 cells (~ 71% of cells), or
MDA-MB-231GFP/Luc2 cells injected alone (~ 50% of
cells) (Fig. 3). We observed the expression of moderate
amounts of VEGF in the trabecular bone of
tumor-bearing mice injected with either MDA-MB-
231GFP/Luc2cells plus MC3T3-E1 cells (~ 25% of
cells) or MDA-MB-231GFP/Luc2 cells plus EO-231
cells (~ 33% of cells) (Fig. 3). VEGF expression in the
trabecular bone was absent in tumor-bearing mice

injected with MDA-MB-231GFP/Luc2 cells alone (0%
of cells) (Fig. 3).
Finally, we examined the trabecular and cortical

bone for bone turnover markers including osteopontin
and alkaline phosphatase. Osteopontin was expressed
in ~ 47% of cells in the bones of tumor-bearing mice
injected with MDA-MB-231GFP/Luc2 cells plus
EO-231 cells and expressed in ~ 80% of cells in the
bones of tumor-bearing mice injected with
MDA-MB-231GFP/Luc2 cells plus MC3T3-E1 cells
(Fig. 3). By contrast, osteopontin was expressed in ~
39% of cells in the bones of tumor-bearing mice
injected with MDA-MB-231GFP/Luc2 cells alone,
when compared to the bones of tumor-bearing mice
injected with either MDA-MB-231GFP/Luc2 cells plus
EO-231 cells or MDA-MB-231GFP/Luc2 cells plus
MC3T3-E1 cells (Fig. 3). We observed the expression
of alkaline phosphatase in the trabecular and cortical
bone of tumor-bearing mice injected with MDA-
MB-231GFP/Luc2 cells plus EO-231 cells (~ 29% of
cells) (Fig. 3). By contrast, the expression of alkaline
phosphatase was absent in the trabecular and cortical
bone of tumor-bearing mice injected with either
MDA-MB-231GFP/Luc2 cells plus MC3T3-E1 cells or
MDA-MB-231GFP/Luc2 cells injected alone (0% of
cells) (Fig. 3).
Combined, similar expression of proteins examined,

except for alkaline phosphatase, were observed in the
cortical and trabecular bone of tumor-bearing mice
injected with MDA-MB-231GFP/Luc2 cells plus
MC3T3-E1 cells (Fig. 3). Interestingly, we observed the
most change (reduction) in the proteins expressed
(ALP, VEGF, MCP-1; all absent) in the cortical and tra-
becular bone of tumor-bearing mice injected with
MDA-MB-231GFP/Luc2 cells alone (Fig. 3). IL-6 ex-
pression, on the other hand, was increased approxi-
mately 20-fold in the cortical and trabecular bone of
tumor-bearing mice injected with MDA-MB-231GFP/
Luc2 cells alone when compared to mice injected with
MDA-MB-231GFP/Luc2 cells plus either EO-231 or
MC3T3-E1 cells (Fig. 3).
When assayed alone in vitro, MC3T3-E1 osteoblasts

expressed alpha-SMA, MCP-1, MMP-3, collagen type I,
IL-6, VEGF, alkaline phosphatase, and osteopontin in mod-
erate to high amounts (Additional file 2: Figure S2).
MDA-MB-231 cells expressed no to negligible amounts of
VEGF, MCP-1, MMP-3, collagen type I, and IL-6, indicating
that mouse-specific antibodies were not cross-reactive with
human-specific epithelium (Additional file 3: Figure S3).
MDA-MB-231 cells did, however, express alpha-SMA,
alkaline phosphatase, and osteopontin (Additional file 3:
Figure S3), which corroborated with the manufacturer’s de-
scription. The secondary antibodies donkey anti-goat
488, goat anti-rabbit 488, and donkey anti-mouse 594
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were neither reactive against mouse nor human cells
(Additional file 4: Figure S4).

Bone marrow (hematopoietic niche)
We next examined for the changes in the hematopoietic
niche including the bone marrow. IL-6 was expressed in
similar amounts in the bone marrow of all conditions
examined: tumor-bearing mice injected with either

MDA-MB-231GFP/Luc2 cells plus EO-231 cells (~ 27%
of cells), MDA-MB-231GFP/Luc2 cells plus MC3T3-E1
cells (~ 40% of cells), or MDA-MB-231GFP/Luc2 cells
alone (~ 27% of cells) (Fig. 4). MCP-1 was expressed in
similar amounts in the bone marrow of all conditions
examined: tumor-bearing mice injected with either
MDA-MB-231GFP/Luc2 cells plus EO-231 cells (~ 35%
of cells), MDA-MB-231GFP/Luc2 cells plus MC3T3-E1

Fig. 3 Unique protein expression occurs with EO cell presence in the endosteal niche of tumor-bearing bones. Athymic nude mice were injected via
intratibial injection with an admix of MDA-MB-231GFP/Luc2 human breast cancer cells plus either EO-231 cells or MC3T3-E1 osteoblasts, or MDA-MB-
231GFP/Luc2 cells alone. Eight weeks later, mice were euthanized and their tibia harvested. Tibia sections from athymic mice were prepared as
described in the “Materials and methods” section. Sections were stained for osteopontin, alkaline phosphatase, VEGF, alpha-smooth muscle actin,
MMP3, collagen type I, MCP-1, IL-6, and green fluorescent protein via immunofluorescence. The cortical and trabecular bone microenvironment was
examined via fluorescent microscopy. As shown on the tibia at the left, the black box represents the positioning of the tumor in the examples shown,
whereas the green circle represents the locations in the bone where the images were taken. At least three independent, serial sections were stained
per bone and three bones examined per condition. Shown are representative images. Scale bar = 50 μm
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cells (~ 39% of cells), or MDA-MB-231GFP/Luc2 cells
alone (~ 32% of cells) (Fig. 4).
We next examined the bones of tumor-bearing mice for

markers associated with the extracellular matrix. Type I
collagen was present in the bone marrow of tumor-bearing
mice injected with MDA-MB-231GFP/Luc2 cells alone (~
37% of cells) (Fig. 4). By contrast, no type I collagen (0% of
cells) was detected in the bone marrow of tumor-bearing
mice injected with MDA-MB-231GFP/Luc2 cells plus
either EO-231 or MC3T3-E1 cells (Fig. 4). Interestingly,
MMP3 was expressed in ~ 33% of cells in the bone marrow
of tumor-bearing mice injected with MDA-MB-231GFP/
Luc2 cells alone (Fig. 4). By contrast, MMP3 was expressed
in ~ 25% of cells in the bone marrow of tumor-bearing
mice injected with MDA-MB-231GFP/Luc2 cells plus
MC3T3-E1 cells and in ~ 12% of cells in the bone marrow
of tumor-bearing mice injected with MDA-MB-231GFP/
Luc2 cells plus EO-231 cells (Fig. 4).
We next examined the bone marrow for the

neo-vascularization markers alpha-SMA and VEGF.
Alpha-SMA was expressed in the bone marrow of tumor-
bearing mice in all conditions tested: MDA-MB-231GFP/
Luc2 cells plus MC3T3-E1 cells (~ 57% of cells), MDA-
MB-231GFP/Luc2 cells plus EO-231 cells (~ 54% of cells),
or MDA-MB-231GFP/Luc2 cells injected alone (~ 42% of
cells) (Fig. 4). Similar to the trabecular and cortical bone,
we observed the expression of VEGF in the bone marrow
of tumor-bearing mice injected with either MDA-MB-
231GFP/Luc2 cells plus MC3T3-E1 cells (~ 41% of cells)
or MDA-MB-231GFP/Luc2 cells plus EO-231 cells (~ 23%
of cells) (Fig. 4). VEGF expression in the bone marrow was
absent in tumor-bearing mice injected with MDA-MB-
231GFP/Luc2 cells alone (0% of cells) (Fig. 4).
Finally, osteopontin was expressed in ~ 45% of cells in

the bone marrow of bones of tumor-bearing mice injected
with MDA-MB-231GFP/Luc2 cells plus EO-231 cells, but
was expressed in only ~ 17% of cells in the bone marrow
of tumor-bearing mice injected with MDA-MB-231GFP/
Luc2 cells alone (Fig. 4). By contrast, osteopontin expres-
sion was completely absent in the bone marrow of bones
of tumor-bearing mice injected with MDA-MB-231GFP/
Luc2 cells plus MC3T3-E1 cells (0% of cells) (Fig. 4). We
observed the expression of alkaline phosphatase in ~ 15%
of cells in the bone marrow of mice injected with
MDA-MB-231GFP/Luc2 cells plus EO-231 cells, ~ 27% of
cells in the bone marrow of mice injected with
MDA-MB-231GFP/Luc2 cells plus MC3T3-E1 cells, and
~ 13.5% of cells in the bone marrow of mice injected with
MDA-MB-231GFP/Luc2 cells alone (Fig. 4).
When compared to protein expression in the endosteal

niche, the hematopoietic niche exhibited reduced amounts
of ECM remodeling proteins in the tumor-bearing bones
of mice injected with MDA-MB-231GFP/Luc2 cells plus
either MC3T3-E1 cells or EO-231 cells (Fig. 4). Mice

injected with MDA-MB-231GFP/Luc2 cells alone, how-
ever, expressed more ECM remodeling proteins (especially
type I collagen) in the bone marrow (Fig. 4). Minimal to
no change was seen in the expression of inflammatory cy-
tokines present in the bone marrow of tumor-bearing
mice of all conditions tested: MDA-MB-231GFP/Luc2
cells plus either MC3T3-E1 cells or EO-231 cells or
MDA-MB-231GFP/Luc2 cells alone (Fig. 4). Interestingly,
while alpha-SMA was present in all conditions tested and
VEGF expression was high in the bone marrow of mice
injected with MDA-MB-231GFP/Luc2 cells plus either
MC3T3-E1 cells or EO-231 cells, VEGF was completely
absent in the bone marrow of mice injected with
MDA-MB-231GFP/Luc2 cells alone (Fig. 4). In addition,
osteopontin expression was completely absent in the bone
marrow of tumor-bearing mice injected with MDA-
MB-231GFP/Luc2 cells plus MC3T3-E1 cells when com-
pared to mice injected with either MDA-MB-231GFP/Luc2
cells plus EO-231 cells or MDA-MB-231GFP/Luc2 cells
alone (Fig. 4). We observed an increase (~ 50%) in the ex-
pression of alkaline phosphatase in the bone marrow of
tumor-bearing mice injected with MDA-MB-231GFP/Luc2
cells plus MC3T3-E1 cells when compared to mice injected
with either MDA-MB-231GFP/Luc2 cells plus EO-231 cells
or MDA-MB-231GFP/Luc2 cells alone (Fig. 4).

Tumor
Lastly, we examined the tumor itself for the changes in
protein expression in vivo as a result of the presence of
EO cells. Tumors were present via the expression of
GFP in all the tibia examined (Additional file 5: Figure
S5). We observed the expression of IL-6 in the tumors
of mice injected with MDA-MB-231GFP/Luc2 cells plus
EO-231 cells (~ 17%) (Additional file 6: Figure S6). IL-6
expression was absent (0% of cells) in the tumors of
both mice injected with MDA-MB-231GFP/Luc2 cells
plus MC3T3-E1 cells or MDA-MB-231GFP/Luc2 cells
alone (Additional file 6: Figure S6). On the other hand, a
small amount of MCP-1 was expressed in the tumors of
mice injected with MDA-MB-231GFP/Luc2 cells plus
MC3T3-E1 cells (~ 5% of cells) (Additional file 6: Figure
S6). By contrast, no MCP-1 was expressed in the tumors
of mice injected with either MDA-MB-231GFP/Luc2
cells plus EO-231 or MDA-MB-231GFP/Luc2 cells alone
(Additional file 6: Figure S6).
Next, we examined the bones of tumor-bearing mice

for markers associated with the extracellular matrix. We
observed ~ 24% of cells to be positive for type I collagen
expression in the tumors of mice injected with
MDA-MB-231GFP/Luc2 cells plus MC3T3-E1 cells
(Additional file 6: Figure S6). Similarly, ~ 24% of cells
expressed type I collagen in the tumors of mice injected
with MDA-MB-231GFP/Luc2 cells plus EO-231 cells or
MDA-MB-231GFP/Luc2 cells alone (Additional file 6:
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Figure S6). Little to no MMP3 was observed in the
tumor of mice injected with MDA-MB-231GFP/Luc2
cells plus either EO-231 (~ 17% of cells) or MC3T3-E1
cells (~ 5% of cells). Small to moderate amounts of
MMP3 were observed in the tumors of mice injected
with MDA-MB-231GFP/Luc2 cells alone (~ 33% of cells)
(Additional file 6: Figure S6).
We examined the tumors of mice for the neo-

vascularization markers alpha-SMA and VEGF.

Alpha-SMA was expressed in all conditions tested:
MDA-MB-231GFP/Luc2 cells plus MC3T3-E1 cells (~
15% of cells), MDA-MB-231GFP/Luc2 cells plus
EO-231 cells (~ 28% of cells), or MDA-MB-231GFP/
Luc2 cells injected alone (~ 19% of cells) (Add-
itional file 6: Figure S6). We observed the expression
of VEGF in the tumors of mice injected with
MDA-MB-231GFP/Luc2 cells alone (~ 17% of cells)
(Additional file 6: Figure S6). VEGF expression was

Fig. 4 Unique protein expression occurs with EO cell presence in the hematopoietic niche of tumor-bearing bones. Athymic nude mice were injected
via intratibial injection with an admix of MDA-MB-231GFP/Luc2 human breast cancer cells plus either EO-231 cells or MC3T3-E1 osteoblasts, or MDA-
MB-231GFP/Luc2 cells alone. Eight weeks later, mice were euthanized and their tibia harvested. The tibia sections from athymic mice were prepared as
described in the “Materials and methods” section. The sections were stained for osteopontin, alkaline phosphatase, VEGF, alpha-smooth muscle actin,
MMP3, collagen type I, MCP-1, IL-6, and green fluorescent protein via immunofluorescence. The bone marrow microenvironment was examined via
fluorescent microscopy. As shown on the tibia at the left, the black box represents the positioning of the tumor in the examples shown, whereas the
red triangle represents the locations in the bone where the images were taken. At least three independent, serial sections were stained per bone and
three bones examined per condition. Shown are representative images. Scale bar = 50 μm
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also detected in the tumors of mice injected with
either MDA-MB-231GFP/Luc2 cells plus either
MC3T3-E1 (~ 13% of cells) or EO-231 cells (~ 29% of
cells) (Additional file 6: Figure S6).
Finally, we observed the expression of alkaline phosphat-

ase within the stroma near tumor cells of tumor-bearing
mice injected with MDA-MB-231GFP/Luc2 cells alone (~
12%) (Additional file 6: Figure S6). No alkaline phosphatase
expression was observed within the tumor of mice injected
with MDA-MB-231GFP/Luc2 cells plus either MC3T3-E1
cells or EO-231 cells (0% of cells) (Additional file 6: Figure
S6). Similarly, osteopontin was expressed within the stroma
of the tumor in the tumor-bearing bones of mice injected
with MDA-MB-231GFP/Luc2 cells alone (~ 15% of cells)
(Additional file 6: Figure S6). Osteopontin was observed in
the tumor-bearing bones of mice injected with
MDA-MB-231GFP/Luc2 cells plus EO-231 cells (~ 35% of
cells); however, no osteopontin expression was found in
the tumor of mice injected with MDA-MB-231GFP/Luc2
cells plus MC3T3-E1 cells (0% of cells) (Additional file 6:
Figure S6).
Overall, protein expression was reduced or completely

absent in the tumors of mice injected with MDA-
MB-231GFP/Luc2 cells plus EO-231 cells. The tumors of
mice injected with MDA-MB-231GFP/Luc2 cells alone
harbored the greatest amount of proteins tested when com-
pared to mice injected with MDA-MB-231GFP/Luc2 cells
plus either EO-231 or MC3T3-E1 cells (Additional file 6:
Figure S6).
A summary of these results can be found in Table 1.

Combined, these results suggest that there are differences
in the proteins we examined that are expressed in tumor-
bearing bone depending on the osteogenic composition of
the bone-tumor microenvironment. In particular, the pres-
ence of EO cells in the tumor appears to reduce protein ex-
pression across all proteins examined (Additional file 6:
Figure S6, Table 1). In addition, the presence of EO cells in-
creased the expression of the bone turnover and osteoblast
differentiation marker alkaline phosphatase in the cortical
and trabecular bone of tumor-bearing mice (Fig. 3, Table 1).
The presence of EO cells also suppressed ECM protein ex-
pression in the hematopoietic niche when compared to the
presence of vehicle-treated MC3T3-E1 cells or MDA-MB-
231GFP/Luc2 cells inoculated alone (Fig. 4, Table 1). These
results imply that EO cells promote osteoblast differenti-
ation while suppressing tumor progression and matrix
remodeling.

EO cells in the bone of patients with bone metastatic
breast cancer
In order to determine if EO cells were present in the
bones of patients with metastatic breast cancer, we first
sought to identify osteoblasts present in the tumor
niche. Antibodies to human osteocalcin and RUNX2,

both unique markers of osteoblasts [59, 64], were opti-
mized using NHOst human osteoblasts (Additional file 7:
Figure S7). RUNX2 is a protein essential for the develop-
ment of the osteoblast phenotype [65–67]. Osteocalcin is
an abundant bone matrix protein preferentially expressed
by osteoblasts [77, 78]. Next, we obtained de-identified hu-
man bone samples from the femoral heads of patients
undergoing total hip replacement or proximal femur re-
placement with breast cancer metastases to the bone. Hu-
man bone metastatic breast cancer patient samples
exhibited isolated areas of cells that were positive for both
RUNX2 and osteocalcin expression demonstrating the
presence of osteoblasts among tumor cells (Additional file 8:
Figure S8). The osteoblasts were located both adjacent to
(Additional file 8: Figure S8A) and away from
(Additional file 8: Figure S8B) tumor cells.
Next, to identify the presence of EO cells in human

bone metastatic patient samples, we employed multi-plex
immunofluorescent staining to examine the combined ex-
pression of RUNX2, osteocalcin, osteopontin, IL-6, and
alpha-SMA cells. We define an osteoblast by its expres-
sion of RUNX2, osteocalcin, osteopontin, and IL-6 plus
alpha-smooth muscle actin (Fig. 2, Additional file 2: Figure
S2, Additional file 7: Figure S7, Additional file 8: Figure
S8, and Additional file 9: Figure S9). We further define an
EO cell by its expression of RUNX2, osteocalcin, and
osteopontin but reduced expression of alpha-SMA and
lack of expression of IL-6 (Figs. 1 and 2). Antibodies to
human osteopontin, IL-6, and alpha-SMA were optimized
using human NHOst osteoblasts (Additional file 9: Figure
S9). Then, human bone samples from the femoral heads
of patients undergoing total hip replacement or proximal
femur replacement with breast cancer metastases to the
bone were stained for RUNX2, OCN, IL-6, and alpha-
SMA using multi-plex immunofluorescence (Fig. 5). Oste-
oblasts positive for both RUNX2 and OCN (Fig. 5, left
panel; red plus green co-labeled cells, white arrows) were
found throughout the bone samples from patients with
bone metastases. Among those osteoblasts, approximately
40% were positive for both IL-6 and alpha-SMA (Fig. 5,
middle panel; purple plus yellow = white cells, blue ar-
rows). Osteoblasts expressing high levels of alpha-SMA
but low levels of IL-6 were also present (~ 30%; Fig. 5,
middle panel; yellow cells, yellow arrows), as well as a
smaller number of osteoblasts that expressed high levels
of IL-6 but low levels of alpha-SMA (~ 10%; Fig. 5, middle
panel; purple cells, purple arrows). A small number of EO
cells were identified among the RUNX2 and OCN osteo-
blast population as defined by their lack of expression of
both IL-6 and alpha-SMA (~ 20%; Fig. 5, right panel;
DAPI, green arrows). Thus, these results suggest that
there are subpopulations of osteoblasts present in the
bone of patients with bone metastases as defined by their
expression of protein markers.
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EO cells differentiate and mineralize
Because we observed differences in the protein expression
between osteoblast subpopulations both in vitro and in
vivo, we next wanted to determine if there were other dis-
tinguishing characteristics between “uneducated” osteo-
blasts and EO cells. To determine if EO cells differentiate
or mineralize, alkaline phosphatase and Von Kossa staining
were used to define the bone turnover and mineralization,
respectively [50–52]. MC3T3-E1 cells (control) were grown
to late differentiation (20 days). EO-HMEC, EO-231,
EO-BRMS, and EO-MCF7 cells were grown to confluence.
Media were removed, then cells were fixed and stained for
alkaline phosphatase expression or Von Kossa for depos-
ition of calcium, indicatingmineralization (Additional file 10:
Figure S10). EO-HMEC, EO-231, and EO-MCF7 cells
stained positive for alkaline phosphatase (Additional file 10:
Figure S10A, arrows) at similar levels as 20-day differenti-
ated MC3T3-E1 cells (control). Low to negligible levels of
alkaline phosphatase expression were detected in
EO-BRMS cells (Additional file 10: Figure S10A). Similar
levels of Von Kossa staining were apparent in EO-HMEC,
EO-231, EO-MCF7, and 20-day differentiated MC3T3-E1
cells (Additional file 10: Figure S10B, brown spots, arrows).
Interestingly, low levels of Von Kossa staining were de-
tected in EO-BRMS cells (Additional file 10: Figure S10B,
brown spots, arrows). The amount of mineralization as
detected by Von Kossa staining in EO-BRMS cells was
considerably less than amounts observed in EO-HMEC,
EO-231, EO-MCF7, and 20-day differentiated MC3T3-E1
cells. Therefore, EO-HMEC, EO-231, and EO-MCF7 cells

differentiate and mineralize in a similar manner as 20-day
differentiated MC3T3-E1 cells.

EO cells have increased rates of proliferation compared to
normal osteoblasts
We next compared EO proliferation to “uneducated” osteo-
blast proliferation in vitro. Proliferation was graphed in
terms of the mean number of cells over the course of 10
days. We compared several EO “variants”: EO cells
“educated” using MDA-MB-231 human triple-negative
breast cancer conditioned media, EO cells “educated” using
MDA-MB-231BRMS human breast cancer metastasis sup-
pressor conditioned media, EO cells “educated” using
MCF-7 ER+ human breast cancer conditioned media, and
EO cells “educated” using hTERT-HME1 human epithelial
cell conditioned media (control). Compared to vehicle-
treated osteoblast proliferation, exposure to MDA-MB-231,
MDA-MB-231BRMS, or MCF-7 conditioned medium
elicited a statistically significant increase in osteoblast
proliferation at all time points examined (Additional file 11:
Figure S11). Interestingly, osteoblasts “educated” with
MDA-MB-231BRMS conditioned media were the EO cells
that proliferated the slowest, as opposed to EO-231 cells,
which proliferated the fastest. We did also find an in-
crease in osteoblast proliferation upon treatment with
hTERT-HME1 conditioned medium (Additional file 11:
Figure S11), suggesting that the increases observed in
EO proliferation in vitro when compared to “unedu-
cated” osteoblasts may not be cancer cell specific.

Table 1 Expression of proteins in the cortical and trabecular bone, bone marrow, and tumor of mice inoculated via intratibial injection.
Athymic nude mice were injected via intratibial injection with an admix of MDA-MB-231GFP/Luc2 human breast cancer cells plus either EO-
231 cells or MC3T3-E1 osteoblasts, or MDA-MB-231GFP/Luc2 cells alone. Eight weeks later, mice were euthanized and their tibia harvested.
Sections were stained for osteopontin, alkaline phosphatase, VEGF, alpha-smooth muscle actin, MMP3, collagen type I, MCP-1, IL-6, and
green fluorescent protein via immunofluorescence. At least three independent sections were stained per bone, and three bones examined
per condition. Protein expression is listed as a percentage of the total population of cells as quantified using Count and Measure per
fluorophore in cellSens (Olympus)

Cell type
injected

Bone turnover Neovascularization Inflammatory cytokines Extracellular matrix remodeling

ALP (%) OPN (%) aSMA (%) VEGF (%) IL-6 (%) MCP-1 (%) Col-1 (%) MMP3 (%)

Cortical and trabecular bone (endosteal niche)

EO + 231 29 47 71 33 2 1 55 44 (away from BC)

OB + 231 0 80 63 25 55 16 64 41 (away from BC)

231 alone 0 39 50 0 37 0 55 17 (close to BC)

Bone marrow (hematopoietic niche)

EO + 231 15 45 54 23 27 35 0 12

OB + 231 27 0 57 41 40 39 0 25

231 alone 13.5 17 42 0 27 32 37 33

Tumor itself

EO + 231 0 35 28 29 17 0 24 17

OB + 231 0 0 15 13 0 5 24 5

231 alone 12 15 19 17 0 31 23.5 33

Kolb et al. Breast Cancer Research           (2019) 21:31 Page 17 of 30



F-actin organization is altered in EO cells
There has been evidence to suggest that co-culture with
metastatic breast cancer cells or treatment with their condi-
tioned media causes a reduction in osteoblast focal adhesion
plaques, stress fiber formation, and F-actin organization
[26]. Next, we sought to determine if we observed similar
phenomena with EO cells as compared to “uneducated” os-
teoblasts. We utilized a phalloidin stain to examine F-actin
organization in EO cells and “uneducated” osteoblasts.
When compared to “uneducated” osteoblasts, we observed
an increase in the number of F-actin clusters along the per-
iphery of the cell in the EO cell variants produced using
triple-negative breast cancer conditioned media: EO-231
and EO-BRMS (Additional file 12: Figure S12A, white ar-
rows). There was a statistically significant increase in the
number of the structures in EO-231 and EO-BRMS cells
when compared to “uneducated” osteoblasts, which had
negligible amounts of the structures (Additional file 12:

Figure S12B). F-actin deposits were also observed in
EO-MCF7 cells; however, these were small in number and
comparable to that found on “uneducated” osteoblasts
(Additional file 12: Figure S12A, green arrows; Add-
itional file 12: Figure S12B). We observed a small number
of F-actin deposits on EO-HMEC cells (control); however,
these were comparable to numbers seen on “uneducated”
osteoblasts (Additional file 12: Figure S12A-B).
We considered that the F-actin deposits we observed

in EO-231 and EO-BRMS cells might be a result of cel-
lular autophagy. Under conditions of stress, autophagy
by cells is an adaptive response in order to promote cell
survival. Upon internalization of the material targeted
for degradation, autophagosomes within cells travel to
the cytoplasm to fuse with a lysosome, forming an auto-
lysosome that degrades its contents via lysosomal hydro-
lases [79]. To explore whether the F-actin deposits were
in fact autophagosomes, we stained EO-231 and

Fig. 5 EOs are present in patient samples of bone metastatic breast cancer. Human patient samples of bone metastatic breast cancer were stained using
multi-plex immunofluorescence for RUNX2 (green), osteocalcin (OCN, red), IL-6 (purple), and alpha-SMA (yellow). Left panel—osteoblast identification:
white arrows show osteoblasts positive for both RUNX2 and OCN. Middle panel—“uneducated” and “educated” osteoblast identification: blue arrows show
“uneducated” osteoblasts alpha-SMA and IL-6 positive; yellow arrows show “educated” osteoblasts alpha-SMA high, but IL-6 low; purple arrows show
“educated” osteoblasts IL-6 high, but alpha-SMA low. Right panel—“educated” osteoblast identification: green arrows show “educated” osteoblasts both IL-
6 and alpha-SMA low, DAPI positive. T, tumor; arrows, osteoblast. DAPI, nuclear stain. Scale bar = 50 μm
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EO-BRMS cells (Additional file 13: Figure S13) with an
antibody to light chain 3 (LC3), which examines for the
expression of LC3, a marker of autophagosomes and a
central protein involved in the autophagy pathway [80].
LC3 is a soluble protein that is ubiquitously expressed in
tissue and is used as a marker of autophagy [81–83].
During autophagy, the cytosolic form of LC3 (LC3-I) is
engulfed, cleaved, and conjugated with phosphatidyletha-
nolamine [81, 82, 84]. LC3-phosphatidylethanolamine
conjugate (LC3-II) is recruited to the autophagosomal
membrane, serving as an indicator of autophagy [83, 85].
Immunofluorescent staining revealed that EO-231 and
EO-BRMS elicited no evidence of the LC3 stain which
was comparable to that of “uneducated” MC3T3-E1 os-
teoblasts, suggesting that the structures we observed
were not that of autophagosomes (Additional file 13:
Figure S13).

EO cells decrease breast cancer cell proliferation in vitro
Because EO cells exhibit characteristics different from
“uneducated” osteoblasts, and since we found alterations
in protein expression in the bone tumor microenviron-
ment when EO cells were present, we next sought to de-
termine the effect of EO cells on breast cancer cells.
First, we exposed MDA-MB-231, MDA-MB-231BRMS,
or MCF-7 human breast cancer cells to the respective
EO cell conditioned media (i.e., EO-231, EO-BRMS, or
EO-MCF7). As controls, cancer cells were exposed to
OBCM, as well as the respective like-BCCM (i.e.,
MDA-MB-231 cells exposed to MDA-MB-231 cell con-
ditioned media). Then, the breast cancer cells were
counted on days 1, 2, 3, 4, and 5 to examine for alte-
rations in proliferation. Interestingly, there was a statisti-
cally significant decrease in breast cancer proliferation
upon exposure to EO-CM when compared to exposure
to OBCM or like-BCCM in all cell lines examined (Fig. 6,
green line compared to red and blue lines). The reduc-
tion in breast cancer cell proliferation was the most
prominent at days 3–5 of cancer cell growth (Fig. 6a–c).
We next sought to determine if direct interaction with

EO cells also affected breast cancer cell proliferation. We
co-cultured human breast cancer cells with their respec-
tive EO cell (i.e., MDA-MB-231 cells plus EO-231 cells)
for 6, 10, 14, or 18 days. Breast cancer cells co-cultured
with vehicle-treated osteoblasts served as controls. Cell
lysates were harvested and assayed for the presence of
human-specific p21 (Additional file 14: Figure S14,
species-specific, mouse osteoblast vs. human breast cancer
cell), a cyclin-dependent kinase inhibitor that regulates
cell cycle progression at the G1 checkpoint [86]. When
compared to co-culture with vehicle-treated osteoblasts,
co-culture with EO cells increased breast cancer cell-spe-
cific expression of p21 on days 10 and 14 (MDA-MB-231
and MDA-MB-231BRMS, as well as days 6, 10, and 14

(MCF-7 cells) (Fig. 7). No to negligible p21 expression was
observed in all of the breast cancer cells by day 18 of
co-culture (Fig. 7). These results suggest that EO cells regu-
late breast cancer proliferation in part via p21.

EO cell cytokine expression
Since we saw a decrease in breast cancer cell prolifera-
tion upon treatment with EO CM (Fig. 6) and direct
co-culture with EO cells (Fig. 7), we next sought to
determine the factors that may be responsible. To deter-
mine the differences in the levels of soluble factors be-
tween EOs and “uneducated” OBs, we analyzed the CM
of EOs and naïve MC3T3-E1 osteoblasts (“uneducated”
osteoblasts) using a Raybiotech Quantibody Array
Q4000™, which surveys the protein expression of 400
cytokines. CM from EO-HMECs was used as an add-
itional control. We carried out a literature search of the
biological properties of the top 10 proteins with altered
levels in EO cells compared to “uneducated” osteoblasts.
Among the top 10 proteins with upregulated levels in
EO cells, we decided to focus on NOV. Among the top
10 proteins with downregulated levels in EO cells, we
focused on decorin. Decorin is a protein with
anti-tumor properties and was explored as an
anti-tumor agent in breast cancer [87–90]. Decorin is
produced in high amounts by several key cells in the
normal extracellular bone matrix, including osteo-
blasts, and is upregulated in normal stromal tissue
[91]. NOV (CCN3) is a secreted, abundantly expressed
extracellular matrix-associated signaling protein cap-
able of regulating cellular activities including prolifer-
ation, migration, and cell adhesion and reduces the
proliferation of glioblastoma cells and Ewing’s sarcoma
[92–94]. NOV is an inhibitor of breast cancer invasion
and is negatively correlated with late-stage bone meta-
static breast cancer disease progression [94, 95]. Com-
pared to vehicle-treated osteoblasts, we observed a
statistically significant decrease in the expression of dec-
orin in the CM of EO-231 and EO-BRMS cells (Fig. 8a).
While the expression of decorin in EO-MCF7 cells was
not statistically significant from vehicle-treated osteoblast
CM, there was a trend toward a reduction in EO cell de-
corin expression (Fig. 8a). On the other hand, we observed
a statistically significant increase in the amount of NOV
expressed in the CM of EO-231 and EO-MCF7 cells when
compared to vehicle-treated osteoblast CM (Fig. 8b).
Interestingly, levels of NOV in the CM of EO-BRMS were
comparable to that of vehicle-treated osteoblast CM
(Fig. 8b).
We next wanted to determine if the rescue of decorin or

NOV expression to that of expression levels seen in
vehicle-treated osteoblasts would increase breast cancer
cell proliferation (Fig. 9). Since NOV was increased in the
CM of EO cells compared to the CM of vehicle-treated
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osteoblasts (Fig. 8b), we treated breast cancer cells with
EO CM plus an antibody to NOV (Fig. 9a–c). Inhibition
of NOV protein expression in the CM of EO cells caused
an increase in breast cancer cell proliferation compared to
breast cancer cell exposure to vehicle-treated osteoblast
CM (purple line, Fig. 9a–c).

In a similar fashion, since the expression of decorin
was reduced in the CM of EO cells compared to the CM
of vehicle-treated osteoblasts (Fig. 8a), we treated breast
cancer cells with EO CM plus recombinant decorin pro-
tein (Fig. 9d–f ). Restoration of decorin protein in the
CM of EO cells increased breast cancer cell proliferation

Fig. 6 EO cells decrease breast cancer proliferation in vitro. MDA-MB-231, MDA-MB-231BRMS, or MCF-7 cells were plated at 1 × 105 cells/cm2 in
35 × 10 mm dishes, then treated with either MC3T3-E1 CM, CM from cancer cells of the same type (e.g., MDA-MB-231 cells treated with MDA-MB-
231 cell CM), or corresponding EO cell variant (e.g., MDA-MB-231 cells treated with EO-231 CM). Three individual replicates per time point per
condition were plated. On days 1, 2, 3, 4, and 5, cancer cells were detached and counted using a hemocytometer. a MDA-MB-231 cells treated
with either MC3T3-E1, MDA-MB-231, or EO-231 CM. b MDA-MB-231BRMS cells treated with either MC3T3-E1, MDA-MB-231BRMS, or EO-BRMS CM.
c MCF-7 cells treated with either MC3T3-E1, MCF-7, or EO-MCF7 CM. *P < 0.05 MC3T3-E1 CM treatment vs. EO CM treatment; #P < 0.05 cancer cell
CM treatment vs. EO CM treatment. N = 3 per condition, per time point

Fig. 7 Human breast cancer cell p21 expression is increased over time in co-cultures with EO cells. MDA-MB-231, MDA-MB-231BRMS, or MCF-7
cells were co-cultured with either MC3T3-E1 osteoblasts or EO cells in 35 × 10 mm dishes. 6, 10, 14, or 18 days later, lysates were obtained and
examined for human breast cancer cell expression of human-specific p21 by western blot. N = 3 dishes per condition, per time point. a MDA-MB-
231 cells co-cultured with either MC3T3-E1 or EO-231 cells, b MDA-MB-231BRMS cells co-cultured with either MC3T3-E1 or EO-BRMS cells, c MCF-
7 cells co-cultured with either MC3T3-E1 or EO-MCF7 cells
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to levels comparable of exposure to the vehicle-treated
osteoblast CM (orange line, Fig. 9d–f ).
Finally, we assessed if the rescue of decorin or NOV

expression in the presence of EO CM would return
breast cancer proliferation to that seen upon exposure to
EO CM alone (Fig. 10). We specifically focused these
efforts on breast cancer cell subtypes that most directly

reflect human disease, i.e., triple-negative (MDA-MB-231)
and ER+ (MCF-7). The addition of recombinant NOV
protein, antibody to NOV, plus EO CM (green line)
restored both MDA-MB-231 (Fig. 10a) and MCF-7
(Fig. 10b) breast cancer cell proliferation to levels at or
below that seen upon exposure to EO CM alone (blue
line). Moreover, when an antibody to decorin was added

Fig. 8 EO cells produce altered amounts of cytokines compared with normal osteoblasts. Differences in the levels of soluble factors between EOs and
“uneducated” OBs were analyzed using a Raybiotech Quantibody Array Q4000, which surveys the protein expression of 400 cytokines. Conditioned
medium was prepared from vehicle-treated MC3T3-E1, EO-HMEC, EO-231, EO-BRMS, or EO-MCF7 cells grown to confluence and analyzed for cytokine
content via a RayBiotech Mouse Quantibody Array. Three individual conditioned media batches per analyte, per condition, were analyzed. A literature
search of the biological properties of the top 10 proteins with altered levels in EOs compared to “uneducated” OBs was then carried out. Among the
top 10 proteins with upregulated cytokine levels in EO cells, we focused on NOV. Among the top 10 proteins with downregulated levels in EO cells,
we focused on decorin. a Decorin and b NOV cytokine expression. *P < 0.05; #P < 0.05; ****P < 0.0001, ####P < 0.0001

Fig. 9 EO-altered breast cancer cell proliferation can be modulated by the cytokines NOV and decorin. MDA-MB-231, MDA-MB-231BRMS, or MCF-7
cells were plated at 1 × 105 cells/cm2 in 35 × 10 mm dishes, then treated with either MC3T3-E1 CM, corresponding EO variant CM (e.g., MDA-MB-231
cells treated with EO-231 CM) or corresponding EO variant CM in the presence of either anti-NOV or decorin protein. Three individual replicates per
time point per condition were plated. On days 1, 2, 3, 4, and 5, cancer cells were detached and counted using a hemocytometer. a MDA-MB-231 cells
treated with either MC3T3-E1, EO-231 CM, or EO-231 CM plus anti-NOV. b MDA-MB-231BRMS cells treated with either MC3T3-E1, EO-BRMS CM, or EO-
BRMS CM plus anti-NOV. c MCF-7 cells treated with either MC3T3-E1, EO-MCF7 CM, or EO-MCF7 CM plus anti-NOV. d MDA-MB-231 cells treated with
either MC3T3-E1, EO-231 CM, or EO-231 CM plus decorin protein. e MDA-MB-231BRMS cells treated with either MC3T3-E1, EO-231 CM, or EO-231 CM
plus decorin protein. f MCF-7 cells treated with either MC3T3-E1, EO-MCF7 CM, or EO-MCF7 CM plus decorin protein. #P < 0.05, **P < 0.005 EO CM
treatment vs. anti-NOV or decorin treatment. N = 3 per condition, per time point
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to EO CM plus recombinant decorin protein, both
MDA-MB-231 (Fig. 10c) and MCF-7 (Fig. 10d) (green
line) breast cancer cell proliferation were restored to levels
at or below that of the addition of EO CM alone (blue
line). These results suggest that alterations in breast can-
cer cell proliferation by EO cells are mediated, in part, by
NOV and/or decorin.

NOV and decorin expression in the tumors of human
patients with bone metastatic breast cancer
Since we identified EO cells in the tumor-bearing bones of
human patients with metastatic breast cancer, and since
EO cells express altered the amounts of NOV and decorin,
which, in part, mediate breast cancer cell proliferation, we
sought to assess the expression of NOV and decorin in
human patient bone samples from individuals with bone
metastatic breast cancer. Osteopontin was used as an indi-
cator for osteoblasts (Figs. 2 and 5). Serial sections were
utilized. In two of our patient samples, we observed the
expression of decorin (Additional file 15: Figure S15A, B,
arrows). When osteoblasts were located near the tumor tis-
sue as in Additional file 15: Figure S15A, we observed dec-
orin expression in 15% of the total cells. When osteoblasts

were located away from the tumor cells (Additional file 15:
Figure S15B, arrows), decorin was expressed in 43% of cells.
Our findings correlate with previous reports in the litera-
ture suggesting that decorin expression is reduced in sites
of bone metastases [89, 91]. When we examined for NOV,
we observed NOV expression in 43% of cells (Add-
itional file 15: Figure S15C, arrows). Since Additional file 15:
Figure S15A and C are serial sections from the same patient
sample, our results suggest that when osteoblasts are in the
presence of tumors cells, decorin expression is low; how-
ever, NOV expression is moderate in comparison.

Altered cell growth of breast cancer cells as induced by
EO CM is due to altered breast cancer cell cycle
To determine if the alterations in breast cancer cell pro-
liferation as induced by EO CM is due to the altered cell
cycle, we carried out both propidium iodide staining
(Additional file 16: Figure S16 and Additional file 17:
Figure S17) to assess cell cycle state as well as incorpor-
ation of 5-ethynyl-2′-deoxyuridine (EdU) (Fig. 11) to
detect cells undergoing S phase (DNA synthesis). First,
we exposed MDA-MB-231 or MCF-7 human breast can-
cer cells to either vehicle media (+DMEM or +EMEM,

Fig. 10 Rescue of decorin and NOV restores breast cancer cell proliferation to levels seen with the addition of EO-conditioned media. MDA-MB-231 or
MCF-7 cells were plated at 1 × 105 cells/cm2 in 35 × 10 mm dishes, then treated with either corresponding EO variant CM (e.g., MDA-MB-231 cells
treated with EO-231 CM), corresponding EO variant CM in the presence of either anti-NOV or decorin protein or corresponding EO variant CM in the
presence of either either anti-NOV PLUS recombinant NOV protein or decorin recombinant protein PLUS decorin antibody. Three individual replicates
per time point per condition were plated. On days 1, 2, 3, 4, and 5, cancer cells were detached and counted using a hemocytometer. a MDA-MB-231
cells treated with either EO-231 CM, EO-231 CM plus anti-NOV, or EO-231 CM plus anti-NOV plus NOV protein. b MCF-7 cells treated with either EO-
MCF7 CM, EO-MCF7 CM plus anti-NOV, or EO-MCF7 CM plus anti-NOV plus NOV protein. c MDA-MB-231 cells treated with either EO-231 CM, EO-231
CM plus decorin protein, or EO-231 CM plus decorin protein plus anti-decorin. d MCF-7 cells treated with either EO-MCF7 CM, EO-MCF7 CM plus
decorin protein, or EO-MCF7 CM plus decorin protein plus anti-decorin. *P < 0.05, **P < 0.005, ***P < 0.001 EO CM plus anti-NOV or decorin vs. EO CM
plus either anti-NOV plus NOV protein or decorin protein plus anti-decorin treatment. N = 3 biological replicates per condition, per time point
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control) or corresponding EO CM, then assessed alte-
rations in the cell cycle at 1–5 days post-exposure. For
MDA-MB-231 breast cancer cells, when normalized to a
total number of cells analyzed per condition, on days 4
and 5 post-EO CM exposure, there were more cancer cells
in G0/G1 populations compared to those cells exposed to
vehicle control (Additional file 16: Figure S16). Further-
more, the number of cells found in the S phase of cell
cycle was comparatively reduced in cancer cells exposed
to EO CM vs. cancer cells exposed to vehicle medium.
Moreover, the number of cells entering the G2/M phase
was reduced in MDA-MB-231 exposed to EO CM on days
4 and 5 when compared to cells treated with vehicle media
(Additional file 16: Figure S16).
We also assessed for EdU incorporation into MDA-

MB-231 cells as measured by Click-IT technology. There
were statistically significant decreases in the number of
MDA-MB-231 breast cancer cells in the S phase of the
cell cycle from days 1–5 upon treatment with EO CM
when compared to treatment with vehicle media (Fig. 11).
We also assessed for alterations in the cell cycle of

MCF-7 and ER+ cells upon exposure to EO CM. Distinct
from MDA-MB-231 cells, the number of MCF-7 cells in
G0/G1 was consistently higher upon exposure to EO CM,
except for day 3 post-treatment (Additional file 17: Figure
S17). When MCF-7 cells were examined for the S phase of
cell cycle as measured by EdU incorporation, the number
of cells in the S phase of the cell cycle was decreased upon
treatment with EO CM on days 1–5 when compared to
treatment with vehicle media, although statistical signifi-
cance was only evident on days 1 and 5 (Fig. 11). Thus,

alterations in breast cancer cell cycle, especially entrance
into the S phase, are responsible, in part, for the decreases
in breast cancer proliferation observed when triple-negative
or ER+ breast cancer cells are exposed to EO CM.

Discussion
The focus of this investigation was to understand the
crosstalk that occurs in the bone microenvironment
between osteoblasts and metastatic breast cancer cells
during disease progression. We used an intratibial model
of metastasis to the bone with admixes of osteoblasts
and breast cancer cells to study the direct interactions
between the two cell types (Figs. 1, 3, and 4). We identi-
fied two distinct populations of osteoblasts in vivo based
on their marker expression of alpha-SMA and osteopon-
tin (Fig. 1). We were able to replicate our in vivo results
in vitro, whereby chronic osteoblast treatment with the
conditioned media of triple-negative breast cancer cells
resulted in osteoblasts that express osteopontin, but have
reduced IL-6 and alpha-SMA protein expression (Fig. 2).
We termed this population of osteoblasts “educated os-
teoblasts” due to their contact with bone metastatic
breast cancer cells by direct or indirect means.
We also used de-identified human patient tissue with

breast cancer metastases to the bone to identify osteo-
blasts in the bone tumor niche and describe the alter-
ations to osteoblasts that occurred during interaction
with metastatic breast cancer cells in the bone tumor
niche in vivo. We interrogated the cancer-bearing bones
of patients presenting with ER+ breast cancer. We spe-
cifically utilized bone tissue from patients with ER+ breast

Fig. 11 Breast cancer cells exposed to EO CM exhibit a reduced number of cells in S phase of cell cycle. MDA-MB-231 or MCF-7 cells were plated
at 5 × 103 cells in 4-well chamber slides in 50% growth media plus either 50% vehicle media (control) or 50% EO CM. Culture media was also
supplemented with 0.5 μM 5-ethynyl-2-doxyuridine (EdU) for imaging using the Click-iT EdU Imaging Kit. Cells were maintained in media plus
EdU for the entire length of the time course. On days 1, 2, 3, 4, and 5 post-treatment, cells were fixed with 4% paraformaldehyde and washed
with PBS. For EdU imaging, cells were permeabilized, washed, then incubated with the Click-iT reaction cocktail. Cells were subsequently stained
with DAPI, then visualized using fluorescence microscopy. *P < 0.01, **P < 0.005, #P < 0.0005, ##P < 0.0001 +EO CM vs. +DMEM or +EMEM
treatment. N = 3 biological replicates per condition, per time point
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cancer because bone-disseminated breast cancer cells can
remain in a growth suppressive-like state for up to de-
cades in the bones of individuals with this disease subtype
[96, 97]. Our data suggest that there are at least two dis-
tinct populations of osteoblasts in the tumor niche in vivo
as defined by protein markers compared to non-cancer-
bearing bone control (Figs. 1 and 5). In human tissue
from patients with bone metastatic breast cancer, we
found areas of RUNX2-positive, osteocalcin-positive
expressing osteoblasts in the tumor microenvironment
(Additional file 8: Figure S8). These same osteoblasts
were assessed for their expression of IL-6, an inflam-
matory cytokine, and alpha-SMA, a marker of cells of
the osteogenic lineage. Immunofluorescent staining of
the RUNX2+/OCN+ cells revealed the presence of
four different IL-6/alpha-SMA subpopulations: (1)
IL-6+/alpha-SMA+, (2) IL-6+/alpha-SMA−, (3) IL-6
−/alpha-SMA+, and (4) IL-6−/alpha-SMA−, the most
abundant being IL-6+/alpha-SMA+ (~ 40%). Our in
vitro data (Fig. 2) suggest that the IL-6+/alpha-SMA+
cells are “uneducated” osteoblasts. “Educated” osteo-
blasts (IL-6−/alpha-SMA−; Fig. 2), on the other hand,
composed ~ 20% of the osteoblast population (Fig. 5).
How is it possible that advanced bone lesions occurred in
the presence of EO cells given that our data suggest EO
cells to be cancer growth inhibitory? There are several
possible answers to this question. First, it is possible that
EO-derived mechanisms that suppress breast cancer pro-
liferation in early disease are inhibited in late stage disease.
Second, it is possible that the number of EO cells in the
bone is greater in earlier stages of the disease, but become
reduced in number during advanced disease, thus permit-
ting the outgrowth of macrometastatic lesions. We have
an ongoing work in our laboratory aimed at answering
these questions. Of note, our prior data using advanced
bone metastatic breast cancer mouse models suggest that
increased osteoblast-derived expression of IL-6, among
other proteins, drives metastatic progression in the bone
[33]. EO cells described here express no to negligible
amounts of IL-6 when compared to “uneducated osteo-
blasts” (Figs. 2 and 5). These results suggest that
alterations in the expression of osteoblast-derived IL-6
may also influence the metastatic progression in the bone
tumor microenvironment. Combined, these results sug-
gest that osteoblasts may be altered and respond differ-
ently to breast cancer cells depending on the stage of the
disease.
Based on our in vivo data, we hypothesized that EOs

expressed a unique set of proteins as compared to “un-
educated” osteoblasts. In fact, we determined that EOs
express reduced amounts of alpha-SMA, inflammatory
cytokines IL-6 and MCP-1, and decorin but express in-
creased amounts of the extracellular matrix remodeling
proteins collagen type I and MMP3, as well as NOV

protein expression when compared to “uneducated” os-
teoblasts (Figs. 2 and 8). Both EOs and “uneducated” os-
teoblasts express alkaline phosphatase, osteopontin, and
VEGF in similar amounts (Fig. 2). These results were
unique to interaction with breast cancer cells or breast
cancer cell CM; osteoblast expression of proteins upon
treatment with the conditioned media from
hTERT-HME1, a non-malignant mammary epithelial
breast cancer line, was similar to osteoblast treatment
with vehicle media (Fig. 2). These findings suggest that
osteoblast expression of proteins associated with inflam-
mation and matrix remodeling are altered when osteo-
blasts are in contact with bone metastatic breast cancer
cells.
Bone-derived protein production in the presence of

EOs was also examined ex vivo. Interestingly, the ana-
lysis of the endosteal niche of the tibia of mice inocu-
lated via intratibial injection with either MC3T3-E1
“uneducated” osteoblasts plus MDA-MB-231GFP/Luc2
cells, EO-231 “educated” osteoblasts plus MDA-MB-
231GFP/Luc2 cells, or MDA-MB-231GFP/Luc2 cells
alone revealed that alkaline phosphatase, a marker of
osteoblast differentiation, was only expressed in the tibia
injected with an admix of EO-231 “educated” osteoblasts
plus MDA-MB-231GFP/Luc2 cells, when compared to
the tibia injected with either MC3T3-E1 “uneducated”
osteoblasts plus MDA-MB-231GFP/Luc2 cells or MDA-
MB-231GFP/Luc2 cells alone (Fig. 3, Table 1). In
addition, minimal amounts of the inflammatory cytokine
IL-6 was found in the trabecular bone of the tibia
injected with EO-231 “educated” osteoblasts plus
MDA-MB-231GFP/Luc2 cells, when compared to large
amounts of IL-6 present in the trabecular bone of the
tibia injected with MDA-MB-231GFP/Luc2 cells alone
(Fig. 3, Table 1). These data suggest that both osteoblast
differentiation was increased, and inflammatory cytokine
expression was decreased in the tibia with EO cells
present when compared to the tibia containing either
“uneducated” osteoblasts plus breast cancer cells or
breast cancer cells injected alone.
Of note, in the hematopoietic (bone marrow) niche,

there were increased expression of the extracellular
matrix remodeling proteins collagen type I and MMP3
in the tibia of mice injected with MDA-MB-231GFP/
Luc2 cells alone, as compared to no to negligible expres-
sion of either protein in the bone marrow of the tibia of
mice injected with either MC3T3-E1 “uneducated” oste-
oblasts or EO-231 “educated” osteoblasts (Fig. 4, Table 1).
Importantly, tumors that formed in the tibia of mice
injected with EO-231 cells plus MDA-MB-231GFP/Luc2
cells had low to no expression of any of the proteins ex-
amined (Additional file 6: Figure S6, Table 1), whereas
tumors that formed in the tibia of mice injected with either
MDA-MB-231GFP/Luc2 cells alone or MC3T3-E1
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osteoblasts plus MDA-MB-231GFP/Luc2 cells contained
moderate to high levels of vascularization and extracellular
matrix remodeling markers (Additional file 6: Figure S6,
Table 1). These results suggest that the presence of EO
cells in tumors suppresses the expression of extracellu-
lar matrix markers, inflammatory cytokines, and neo-
vascularization markers.
We also found that the CM from EOs reduced the prolif-

eration of both triple-negative and ER+ breast cancer cells
(Fig. 6) and that this effect could be mediated by either
NOV or decorin (Figs. 9 and 10). These data suggest that
factors involved in NOV or decorin signaling may, in part,
help to facilitate suppressed breast cancer growth by EOs.
NOV (neuroblastoma overexpressed; CCN3) is a matricular
protein widely expressed in high levels by germ cells [98].
NOV supports cell adhesion and survival, as well as induces
directed cell chemotaxis [98]. Interestingly, NOV is a nega-
tive regulator of bone deposition via inhibition of BMP2
signaling pathways [99]. Decorin, on the other hand, is a
small leucine-rich proteoglycan produced by osteogenic
cells. Importantly, decorin has emerged as a promising
anti-cancer agent produced by normal cells [89]. Decorin
suppresses cancer cell growth by blockade of cancer cell
TGF-beta signaling [89]. In addition, data have shown that
osteoblasts naturally express decorin [100], implying that
osteoblasts may naturally possess inhibitory effects toward
metastatic cancer cells.
Interestingly, it is reported that decorin inhibits the

growth of colon carcinoma cells by the upregulation of
p21 [101]. Similarly, we observed an increase in the ex-
pression of human-specific p21 expression in breast can-
cer cells when directly co-cultured with EOs (Fig. 7).
These effects were evident with both triple-negative and
ER+ human breast cancer cells and were most apparent
upon 6–14 days of co-culture with EOs (Fig. 7). Breast
cancer cell co-culture with “uneducated” osteoblasts did
not elicit increased human-specific breast cancer cell p21
expression suggesting that these effects occur as a result
of a unique osteoblast subpopulation with inhibitory or
anti-tumor effects toward breast cancer cells.
To determine if alterations in breast cancer cell prolifera-

tion as generated by EO CM were a result of altered breast
cancer cell cycle, we carried out both propidium iodide
staining and EdU staining of breast cancer cells (Fig. 11,
Additional file 16: Figure S16, and Additional file 17:
Figure S17). We observed a statistically significant re-
duction in the number of breast cancer cells entering
the S phase of the cell cycle as determined by EdU in-
corporation (Fig. 11). This finding was recapitulated by
propidium iodide staining in both triple-negative and
ER+ breast cancer cells, especially on days 4 and 5
post-exposure to EO CM (Additional file 16: Figure S16
and Additional file 17: Figure S17). It should be noted
that propidium iodide staining cannot distinguish

resting/quiescent cells (G0) from cells in the G1 phase
[102]. Thus, the determination of cells entering quies-
cence, that is dormancy, is unable to be detected by this
method [102]. Regardless, our in vitro data suggest that
breast cancer cell cycle is affected by EO cells at the S
phase, as evidenced by both a reduction in the number of
breast cancer cells incorporating EdU (Fig. 11), and by an
increase in breast cancer cell expression of p21 upon di-
rect co-culture with EO cells (Fig. 7). p21 is a cell cycle in-
hibitor that acts during entry into the S phase, among
other functions [103].
It is becoming increasingly evident that osteoblasts in the

bone microenvironment play vital roles in cancer cell pro-
gression in bone [19, 32–36]. According to one study that
used dynamic longitudinal imaging and intravital micros-
copy, osteoblast cells in the endosteal niche suppressed mul-
tiple myeloma cancer cell proliferation and maintained
bone-disseminated cancer cells in a dormant state during
early disease [104]. This was in contrast to the effects seen
when multiple myeloma cells were treated with the CM of
osteoclasts, which promoted myeloma cell proliferation
[104]. Another study demonstrated that co-culture of osteo-
blasts plus prostate cancer cells resulted in a reduction of
prostate cancer cell proliferation [105]. And another group
demonstrated that proteins produced by osteoblasts induced
prostate cancer cell dormancy both in vitro and in vivo
[106]. Our data provided in this publication provide further
support that crosstalk with osteoblasts reduces cancer cell
proliferation. To our knowledge, we are the first laboratory
to extend these findings to bone metastatic breast cancer,
whereby we discovered a subpopulation of osteoblasts called
“educated osteoblasts” (Figs. 1, 2, and 5) that reduce breast
cancer proliferation (Fig. 6) and entry into the S phase of cell
cycle (Fig. 7), in part via the proteins NOV and decorin
(Figs. 9 and 10). These data suggest that this mechanism
may be one way in which bone-disseminated breast cancer
cells enter metastatic latency (dormancy) in the bone micro-
environment (Fig. 12a). These data also suggest that osteo-
blasts possess growth inhibitory properties, a trait capable of
exploitation, that may be used to both promote metastatic la-
tency and prevent metastatic progression in the bone. Meta-
static latency (dormancy) is a period of cancer progression
whereby tumor cells that have disseminated from a primary
tumor to secondary sites are able to persist in a growth
suppressive-like state for up to decades [96]. Dormant cancer
cells are often characterized by their reduced cell growth and
G0-G1 arrest [96].
Mounting evidence suggests bone metastatic breast

cancer cells act on osteoblasts in the tumor niche to
alter osteoblast production of proteins [32, 33, 57, 58].
Our new in vivo evidence suggests bone metastatic
breast cancer cells induce a non-normal osteoblast state
of osteopontin (OPN) high, alpha-smooth muscle actin
(aSMA) low, and IL-6 low (Figs. 1, 2, 5, and 12b). We
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define this subpopulation of osteoblasts as “educated os-
teoblasts.” Educated osteoblasts are distinct in their ex-
pression of biomarkers compared to naïve, “uneducated
osteoblasts” (Figs. 1, 2, 5, and 12b). Our evidence sug-
gests that educated osteoblasts, in turn, engage in cross-
talk with bone-disseminated breast cancer cells via
proteins (i.e., decorin and NOV) and soluble factors,
among others, which lead to a reduction in breast cancer
cell proliferation via an increase in the cell cycle inhibi-
tor p21 and reduction in the number of breast cancer
cells entering the S phase of cell cycle. Our data suggest
that this mechanism may be one way in which the bone
microenvironment both suppresses breast cancer cell
proliferation and engages disseminated breast cancer
cells into metastatic latency (dormancy) in early disease
(Fig. 12a).

Conclusions
Much less attention is given to osteoblast interactions
with tumor cells at sites of bone metastases. This is

partly due to the observations that osteoblast popula-
tions are reduced at sites of advanced osteolysis. How-
ever, we propose that osteoblasts may indeed be valuable
endogenous targets to aid in the restriction of cancer cell
growth in the niche in concert with therapeutic drugs to
kill the cancer cells. Our data here suggest there is a
subpopulation of osteoblasts that demonstrate a func-
tional role in suppressing breast cancer cell growth; a
property capable of exploitation (Fig. 12a). For these rea-
sons, osteoblasts and EOs are intuitively suitable candi-
dates for therapeutic targeting.

Additional files

Additional file 1: Figure S1. Murine MC3T3-E1 cells express FOXN1 and
are distinguishable from native endogenous osteoblasts in vivo. MC3T3-
E1 cells and NIH-3T3 fibroblasts (control) were plated then maintained in
growth media in 35 × 10 mm dishes. A) For western blot, cells were
grown to ~ 80% confluence, then growth media were removed, cells
washed, and lysates prepared. Lysates were examined for the expression
of murine FOXN1 protein by western blot. N = 3 dishes per condition.

Fig. 12 EO cells are distinct from “uneducated osteoblasts” and suppress breast cancer cell proliferation in the bone. a When disseminated breast
cancer cells first enter the bone microenvironment, they engage in crosstalk with osteoblasts, leading to the generation of a subpopulation of
osteoblasts defined as “educated osteoblasts.” “Educated osteoblasts,” in turn, engage in crosstalk with bone-disseminated breast cancers via
proteins and soluble factors, among others, leading to a reduction in breast cancer cell proliferation in the bone microenvironment that may play
a role in metastatic latency. b EO marker panel key: protein alterations in RUNX2, OCN, OPN, aSMA, IL-6, type I collagen, MMP3, ALP, and VEGF
distinguish EOs from OBs. Red arrow indicates high protein expression, green arrow indicates low protein expression, and blue sideways arrow
indicates average protein expression as determined by western blot and/or immunofluorescence
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Shown is a representative example. B-C) For immunochemistry, cells were
grown to ~ 80% confluence and stained for the expression of B) FOXN1
(green, 488), or C) FOXN1 (yellow, arrows) and RUNX2 (red, 594) by im-
munofluorescence. TB = trabecular bone. N = 3 dishes per condition.
Shown are representative examples. Scale bar = 50 μm. (TIF 5602 kb)

Additional file 2: Figure S2. Antibody validation using MC3T3-E1
mouse osteoblasts. MC3T3-E1 osteoblast cells were grown to ~ 90% con-
fluence then fixed and stained for alpha-SMA, MCP-1, MMP-3, collagen
type I, IL-6, and VEGF. *10 day-differentiated MC3T3-E1 cells were used to
stain for ALP and OPN. Scale bar = 50 μm. (TIF 5116 kb)

Additional file 3: Figure S3. Antibody validation using MDA-MB-231
human breast cancer cells. MDA-MB-231 cells were grown to ~ 90% con-
fluence then fixed and stained for VEGF, MCP-1, MMP-3, collagen type I,
IL-6, alpha-SMA, ALP, OPN, and Ki67. Scale bar = 50 μm. (TIF 5674 kb)

Additional file 4: Figure S4. Secondary antibodies were not reactive
against mouse or human cells. A) MC3T3-E1 murine osteoblasts and B)
MDA-MB-231 human breast cancer cells were grown to 75–80% conflu-
ence then fixed and stained. Primary antibody was replaced with anti-
body diluent to generate delete. Secondary antibodies were donkey anti-
goat 488, goat anti-rabbit 488, and donkey anti-mouse 594. Scale bar =
50 μm. (TIF 4438 kb)

Additional file 5: Figure S5. Intratibial injection tumor formation with
MDA-MB-231, MC3T3-E1, and EO Cells. Athymic nude mice were injected
via intratibial injection with an admix of MDA-MB-231GFP/Luc2 human
breast cancer cells plus either EO-231 cells or MC3T3-E1 osteoblasts, or
MDA-MB-231GFP/Luc2 cells alone. Eight weeks later, mice were eutha-
nized and their tibia harvested. Sections were stained for green fluores-
cent protein via immunofluorescence. Scale bar = 50 μm. (TIF 1109 kb)

Additional file 6: Figure S6. Unique protein expression occurs with EO
cell presence in tumor-bearing bones. Athymic nude mice were injected
via intratibial injection with an admix of MDA-MB-231GFP/Luc2 human
breast cancer cells plus either EO-231 cells or MC3T3-E1 osteoblasts, or
MDA-MB-231GFP/Luc2 cells alone. Eight weeks later, mice were eutha-
nized and their tibia harvested. Tibia sections from athymic mice were
prepared as described in the “Materials and methods” section. Sections
were stained for osteopontin, alkaline phosphatase, VEGF, alpha-smooth
muscle actin, MMP3, collagen type I, MCP-1, IL-6, and green fluorescent
protein via immunofluorescence. As shown on the tibia at left, the black
box represents the positioning of the tumor in the examples shown and
illustrates locations in the bone where the images were taken. At least
three independent, serial sections were stained per bone, and three
bones examined per condition. Shown are representative images. The
tumor microenvironment was examined via fluorescent microscopy. Scale
bar = 50 μm. (TIF 15079 kb)

Additional file 7: Figure S7. OCN and RUNX2 antibody optimization
using NHOst human osteoblasts. NHOst cells were grown to confluence
then fixed and stained for expression of osteocalcin (red, 594) and RUNX2
(green, 488) by immunofluorescence. Scale bar = 50 μm. (TIF 1206 kb)

Additional file 8: Figure S8. Osteoblasts are present in patient samples of
bone metastatic breast cancer. Human patient samples of bone metastatic
breast cancer were stained using immunofluorescence for RUNX2 (green, 488)
and osteocalcin (OCN, red, 594). Osteoblasts were identified A) adjacent to
tumor cells and B) away from tumor cells. T = tumor; O, arrows =osteoblast.
DAPI, nuclear stain. Scale bar = 50μm. (TIF 1441 kb)

Additional file 9: Figure S9. Antibody optimization using NHOst
human osteoblasts. NHOst cells were grown to confluence then fixed
and stained for expression of osteopontin (green, 488), IL-6 (green, 488),
alpha-SMA (red, 594), and alkaline phosphatase (green, 488) by immuno-
fluorescence. Scale bar = 50 μm. (TIF 2887 kb)

Additional file 10: Figure S10. EO cells differentiate and mineralize. EO
cells were plated at 1 × 105 cells/cm2 in 35 × 10 mm dishes, then grown
to confluence. MC3T3-E1 cells were plated in growth media at 1 × 105

cells/cm2 in 35 × 10 mm dishes. Twenty-four hours later, growth media
were removed from MC3T3-E1 cells, and replaced with differentiation
media. MC3T3-E1 cells were differentiated for 20 days. For both cell
groups, media were exchanged every third day. Once cells reached con-
fluence (EO cells) or were differentiated to 20 days (MC3T3-E1 cells),

media were removed, cells fixed, then stained for either alkaline phos-
phatase expression using Napthol AS-BI phosphate, Tris, and Fast Blue RR
salt; or Von Kossa using silver nitrate. Cells were photographed using a
light microscope. Three biological replicates were completed per condi-
tion. Shown are representative images. (TIF 3499 kb)

Additional file 11: Figure S11. EO cells have altered rates of
proliferation compared to normal osteoblasts. Vehicle-treated MC3T3-E1,
EO-HMEC, EO-231, EO-BRMS, or EO-MCF7 cells were plated at 1 × 105

cells/cm2 in 35 × 10 mm dishes. Three individual replicates per condition
were plated. On days 2, 4, 6, 8, and 10, cells were detached and counted
using a hemocytometer. A) Statistical significance was calculated at each
time point (i.e., days 2, 4, 6, 8, and 10) and represented by *P < 0.05 EO-
HMEC vs. vehicle-treated MC3T3-E1, **P < 0.05 EO-231 vs. vehicle-treated
MC3T3-E1, #P < 0.05 EO-BRMS vs. vehicle-treated MC3T3-E1, ^P < 0.05 EO-
MCF7 vs. vehicle-treated MC3T3-E1. B) MC3T3-E1 vs. EO-HMEC, *P < 0.05,
^^P < 0.01, **P < 0.005; C) MC3T3-E1 vs. EO-231, *P < 0.05, ^P < 0.01, **P
< 0.005; D) MC3T3-E1 vs. EO-BRMS, *P < 0.05, #P < 0.0005; E) MC3T3-E1 vs.
EO-MCF7, *P < 0.05, **P < 0.005, ***P < 0.0001. (TIF 3171 kb)

Additional file 12: Figure S12. EO cells have altered F-actin
organization compared to normal osteoblasts. A) MC3T3-E1 cells were
plated in 35 × 10 mm2 dishes at 1 × 105 cells/cm2 in growth media. Cells
were grown to ~ 70% confluence. Growth medium was exchanged every
third day. EO cells were plated in 35 × 10 mm dishes at 1 × 105 cells/cm2

and grown in three parts 1.5× differentiation medium plus 1 part either
MDA-MB-231, MDA-MB-231BRMS, or MCF-7 breast cancer-conditioned
medium or hTERT-HME1 mammary epithelial cell-conditioned medium.
Cells were grown to ~ 70% confluence. Media were changed every sec-
ond day. For F-actin staining, media were removed, cells washed with
PBS, then cells stained for F-actin expression using a phalloidin stain.
Three biological replicates were carried out per condition. Shown are rep-
resentative images. Arrows point to F-actin deposits. B) Quantification of
F-actin deposits. ***P = 0.0004, ****P < 0.0001. (TIF 3065 kb)

Additional file 13: Figure S13. EO cells do not exhibit autophagic
lysosomes. MC3T3-E1, EO-231, and EO-BRMS cells were plated in 35 × 10
mm dishes, then stained for LC3 expression via immunofluorescence.
MC3T3-E1 cells treated with serum-free media for 48 h served as a posi-
tive control. N = 3 dishes per condition. Shown are representative images.
(TIF 1721 kb)

Additional file 14: Figure S14. Human-specific p21 antibody does not
cross-react with murine cells. Murine MC3T3-E1 osteoblasts differentiated
to 20 days and human MCF-7 lysates were collected and analyzed for
human-specific p21 by western blot. N = 2 biological replicates per condi-
tion. (TIF 268 kb)

Additional file 15: Figure S15. NOV and decorin are expressed in the
tumor-bearing bones of human patients with bone metastatic breast can-
cer. Serial sections of human patient samples of bone metastatic breast
cancer were stained using immunofluorescence for decorin (yellow), NOV
(yellow), and osteopontin (OPN, red). A) Patient 1 staining for decorin; B)
patient 2 staining for decorin; C) patient 1 staining for NOV. N = 2 slides
stained per protein using serial sections. At least three patient samples
were stained per protein. Shown are representative examples. OB =
osteoblast; T = tumor; DAPI, nuclear stain. Scale bar = 50 μm. (TIF 2012
kb)

Additional file 16: Figure S16. Altered cell growth of MDA-MB-231
cells treated with EO CM is due to altered cell cycle. MDA-MB-231 cells
were plated at 1 × 105 cells/cm2 in 35 × 10 mm dishes. Twenty-four hours
later, growth media were removed and cancer cells treated with 1 ml
breast cancer growth media plus either a) vehicle media (DMEM, control)
or b) EO-conditioned media. Breast cancer cells were fixed for at least 2 h
with 95% cold ethanol beginning on day 1 after plating, and continuing
every day for 5 days. For propidium iodide staining, ethanol was dec-
anted and fixed cells washed once with PBS. Cells were resuspended in a
solution of 50 ng/ml propidium iodide, 100 ng/ml RNAse A, and PBS per
1 × 106 cells and incubated for 30 min in the dark at room temperature.
Stained cells were analyzed for propidium iodide staining using a BD
LSRII flow cytometer at excitation 535 nm and emission at 617 nm. A
minimum of 10,000 events were counted per sample. Cell cycle phase
was analyzed using BDFACS Diva software and FlowJo software. Three
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biological replicates per time point were counted per condition. Shown
are representative images. (TIF 2281 kb)

Additional file 17: Figure S17. Altered cell growth of MCF-7 cells
treated with EO CM is due to altered cell cycle. MCF-7 cells were plated
at 1 × 105 cells/cm2 in 35 × 10 mm dishes. Twenty-four hours later,
growth media were removed and cancer cells treated with 1 ml breast
cancer growth media plus either a) vehicle media (EMEM, control) or b)
EO-conditioned media. Breast cancer cells were fixed for at least 2 h with
95% cold ethanol beginning on day 1 after plating, and continuing every
day for 5 days. For propidium iodide staining, ethanol was decanted and
fixed cells washed once with PBS. Cells were resuspended in a solution
of 50 ng/ml propidium iodide, 100 ng/ml RNAse A, and PBS per 1 × 106

cells and incubated for 30 min in the dark at room temperature. Stained
cells were analyzed for propidium iodide staining using a BD LSRII flow
cytometer at excitation 535 nm and emission at 617 nm. A minimum of
10,000 events were counted per sample. Cell cycle phase was analyzed
using BDFACS Diva software and FlowJo software. Three biological repli-
cates per time point were counted per condition. Shown are representa-
tive images. (TIF 2263 kb)
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