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Abstract
The Selkov oscillator, a simple description of glycolysis, is a system of two ordinary
differential equations with mass action kinetics. In previous work the authors estab-
lished several properties of the solutions of this system. In the present paper we extend
this to prove that this system has solutions which diverge to infinity in an oscillatory
manner at late times. This is done with the help of a Poincaré compactification of the
system and a shooting argument. This systemwas originally derived from another sys-
temwithMichaelis–Menten kinetics. A Poincaré compactification of the latter system
is carried out and this is used to show that theMichaelis–Menten system, like that with
mass action, has solutions which diverge to infinity in a monotone manner. It is also
shown to admit subcritical Hopf bifurcations and thus unstable periodic solutions. We
discuss to what extent the unbounded solutions cast doubt on the biological relevance
of the Selkov oscillator and compare it with other models for the same biological
system in the literature.

Keywords Glycolysis · Oscillations · Dynamical system

Mathematics Subject Classification 92C40 · 34C11 · 37N25

1 Introduction

When trying to understand a biological system with the help of mathematical mod-
elling it often happens that there are several different models for the same biological
situation in the literature. In view of this it is important to have criteria for deciding
between models. One strategy for identifying criteria of this type is to look at rela-
tively simple examples in great detail. In order to do this effectively it is necessary to
have a sufficiently comprehensive understanding of the properties of solutions of the
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models being studied. In this paper, with this strategy in mind, we look in detail at the
dynamical properties of certain models for glycolysis.

Glycolysis is part of the process by which living organisms extract energy from
sugar (Alberts et al. 2008). A suitable model system for studying this phenomenon
experimentally is yeast extract or a suspension of yeast cells. The first indication
that this system might have interesting dynamical properties was given by damped
oscillations reported in Duysens and Amesz (1957). Later it was discovered that a
constant continuous supply of sugar can lead to sustained oscillations (cf. Boiteux et al.
1975). Looking for the source of these oscillations revealed that they are produced by
a small reaction network describing the action of the enzyme phosphofructokinase.
A mathematical model for this network was set up and studied by Higgins (1964). It
was found by Selkov that this model was not adequate for describing the oscillations
and he introduced a modified one (Selkov 1968). The starting point for the model
of Selkov is a reaction network with five chemical species. Assuming mass action
kinetics leads to a system of five ordinary differential equations. Using quasi-steady
state assumptions this can be reduced to a system of two equations with nonlinearities
of Michaelis–Menten type. For brevity we call it ’the Michaelis–Menten system’ in
what follows. Setting one of the coefficients in this system to zero leads to a further
simplification, giving a system of two equations with mass action kinetics, which we
call the ’basic Selkov system’ in what follows.

The aim of this paper is to obtain a better understanding of the dynamics of solutions
of the three systems just described. A number of properties of solutions of the basic
Selkov systemwere already established in Selkov (1968) but for many years no further
rigorous results on this subject were obtained. Important progress was made in a
paper of d’Onofrio (2010) and a number of additional properties of the solutions
were established in a recent paper of the authors (Brechmann and Rendall 2018). In
particular it was proved that for any values of the parameters there exist unbounded
solutions of this system which are eventually monotone in the sense that for a solution
of this type both concentrations are monotone after a certain time. In Selkov (1968) it
is claimed that this system admits solutions which oscillate with an amplitude which
grows without limit at late times. In what follows solutions of this type are referred
to as ’solutions with unbounded oscillations’. The paper Selkov (1968) provides no
justification for the claim other than a mention of numerical simulations, about which
no details are given. Up to now there was no proof of the truth or falsity of this claim of
Selkov (1968). One of the main results of the present paper is a proof of the existence
of solutions of the basic Selkov system with unbounded oscillations. Our discovery
of this proof was stimulated by the paper (Merkin et al. 1987), which belongs to the
domain of theoretical chemistry. It deals with a system which turns out to be identical
to the basic Selkov system when a parameter γ in the latter system takes the value
two.

In Merkin et al. (1987) a claim of the existence of solutions with unbounded oscil-
lations is also made. It is supported by an intricate heuristic argument using matched
asymptotic expansions. It is not at all clear how this argument could be translated into
a rigorous one but it provided us with some ideas which, when combined with the
results of Brechmann and Rendall (2018), do give a proof of the existence of solutions
with unbounded oscillations.When written in dimensionless form the system contains
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one parameter α. As claimed in Merkin et al. (1987), solutions with unbounded oscil-
lations occur for precisely one value α1 of α. When α is slightly less than α1 there
exists a stable periodic solution. As α approaches α1 from below the amplitude of the
periodic solution tends to infinity. One important element of this proof is to study the
limit of the system for α → ∞ after a suitable rescaling. The existence of α1 is then
proved by a shooting argument. A monotonicity property, which was apparently not
previously known, is used to obtain the uniqueness of α1.

The presence of unbounded solutions, whether monotone or oscillatory, might be
seen as a feature which is unrealistic from the point of view of the biological applica-
tions.Themonotoneunbounded solutions of the basicSelkov systemare notmentioned
at all in Selkov (1968). That system is the limit of the Michaelis–Menten system when
a parameter ν tends to zero. It is stated in Selkov (1968) that solutions with unbounded
oscillations do not exist for ν > 0. On the other hand simulations reported in Keener
and Sneyd (2009) suggest that the amplitude of periodic solutions of the Michaelis–
Menten system diverges rapidly to infinity when a parameter is varied in a finite range.
This indicates that, in contrast to the claim of Selkov, the existence of unbounded
oscillations is a phenomenon which may persist for ν > 0. If this is true then the
presence of these biologically problematic solutions of the basic Selkov system is not
just an artefact of taking the limit ν → 0. The issue of the existence of solutions with
unbounded oscillations in the case of the Michaelis–Menten system is not resolved in
what follows but some partial results are obtained. In particular it is shown that for the
Michaelis–Menten system with arbitrary parameters there are unbounded solutions
which are eventually monotone and whose leading order asymptotics are identical to
those found in the basic Selkov system. It is also shown that for certain combinations
of the parameters (α, ν) with ν > 0 all positive solutions except the steady state have
these late-time asymptotics. It turns out that there are parameter values for which there
exist unstable periodic solutions of the Michaelis–Menten system. This is in contrast
to the basic Selkov system where it was proved in Brechmann and Rendall (2018) that
all periodic solutions are asymptotically stable.

The structure of the paper is as follows. The various systems considered in the paper
are defined in Sect. 2. In Sect. 3, after some necessary results on the basic Selkov
system proved in Brechmann and Rendall (2018) have been recalled, the existence of
solutions with unbounded oscillations is proved. Similarities and differences between
the properties of solutions of the basic Selkov system and the Michaelis–Menten
systemare discussed in the next three sections. Section 4 discusses theHopf bifurcation
exhibited by theMichaelis–Menten system. Its Poincaré compactification is computed
in Sect. 5. Global properties of the Michaelis–Menten system are discussed in Sect. 6.
The paper ends with a conclusion and outlook.

2 Survey of the systems considered

In Selkov (1968) a simple reaction network describing glycolysis is introduced.
Assuming mass action kinetics for this network leads to a system of five ordinary
differential equations, system (4) of Selkov (1968). In a slightly modified notation this
system is
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ds1
dt

= v1 − k1s1x1 + k−1x2,

ds2
dt

= k2x2 − γ k3s
γ
2 e + γ k−3x1 − v2s2,

dx1
dt

= −k1s1x1 + (k−1 + k2)x2 + k3s
γ
2 e − k−3x1,

dx2
dt

= k1s1x1 − (k−1 + k2)x2,

de

dt
= −k3s

γ
2 e + k−3x1.

In fact a factor γ was omitted in two places in Selkov (1968) and this error has been
corrected here. All the parameters are positive and it is assumed that γ > 1, which
encodes the biological property of cooperativity. Note that e0 = e + x1 + x2 is a
conserved quantity (total amount of enzyme) and this can be used to eliminate e from
the first four evolution equations and discard the evolution equation for e. This reduces
the system to four equations.

Dimensionless variables can be introduced by defining

σ1 = k1s1
k−1 + k2

, σ2 =
(

k3
k−3

) 1
γ

s2, u1 = x1
e0

, u2 = x2
e0

, θ = e0k1k2
k−1 + k2

t .

This leads to the system

dσ1

dθ
= ν − k2 + k−1

k2
u1σ1 + k−1

k2
u2, (1)

dσ2

dθ
= η

(
u2 − γ

k−3

k2
σ

γ
2 (1 − u1 − u2) + γ

k−3

k2
u1 − χσ2

)
, (2)

ε
du1
dθ

= u2 − σ1u1 + k−3

k2 + k−1
(σ

γ
2 (1 − u1 − u2) − u1), (3)

ε
du2
dθ

= σ1u1 − u2 (4)

where

ε = e0k1k2
(k2 + k−1)2

, ν = v1

k2e0
, η = k2 + k−1

k1

(
k3
k−3

) 1
γ

, χ = v2

k2e0

(
k−3

k3

) 1
γ

.

Formally setting ε = 0 in the Eqs. (3) and (4) gives u2 = σ1u1 and u1 = σ
γ
2

1+σ
γ
2 +σ1σ

γ
2

and substituting these relations into the evolution equations for σ1 and σ2 gives

dσ1

dθ
= ν −

(
σ1σ

γ
2

1 + σ
γ
2 + σ1σ

γ
2

)
, (5)
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dσ2

dθ
= η

(
σ1σ

γ
2

1 + σ
γ
2 + σ1σ

γ
2

− χσ2

)
. (6)

As has been discussed in Brechmann and Rendall (2018) geometric singular perturba-
tion theory (GSPT) can be used to show that solutions of (1)–(4) converge to solutions
of (5) and (6) in the limit ε → 0.

In Selkov (1968) a further simplification of this system is introduced. Consider the
rescaled quantities

x = νγ−1

χγ
σ1, y = χ

ν
σ2, α = ηχγ+1

νγ
, β = νγ−1

χγ
, τ =

(
ν

χ

)γ

θ.

Expressing the Eqs. (5) and (6) in terms of these gives

dx

dτ
= 1 − xyγ

1 + νyγ (β + x)
, (7)

dy

dτ
= α

[
xyγ

1 + νyγ (β + x)
− y

]
. (8)

This system has a regular limit when ν tends to zero with α and β fixed. In the limit
we get the basic Selkov system, system (II) of Selkov (1968), which is

dx

dτ
= 1 − xyγ , (9)

dy

dτ
= αy(xyγ−1 − 1). (10)

It is the system of central interest in Selkov (1968) and the dynamical properties of its
solutions are studied in detail in Brechmann andRendall (2018). Of course (9) and (10)
can be thought of as the special case of (7) and (8) where ν = 0. Note that it follows
from (7) and (8) that d

dτ
(αx + y) = α(1− y). Since any solution with positive initial

data remains positive as long as it exists this relation shows that it remains bounded
on any finite time interval. Hence, when maximally extended, it exists globally in the
future.

3 The basic Selkov system

The following proposition collects some of the properties of solutions of the basic
Selkov system established in Brechmann and Rendall (2018).

Proposition 1 The basic Selkov system (9) and (10) has the following properties.

1. For each value of the parameter α the unique positive steady state P0 has coordi-
nates (1, 1).

2. For each α ∈
(
0, 1

γ−1

)
the positive steady state P0 is asymptotically stable and

there exist no periodic solutions.
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3. For α = α0 = 1
γ−1 a generic supercritical Hopf bifurcation occurs.

4. For each value of the parameter α there exist positive numbers x0 and y0 such that
if a solution satisfies x(t) ≥ x0 and y(t) ≤ y0 at some time t it satisfies ẋ(t) > 0
and ẏ(t) < 0 at all later times, limt→∞ x(t) = ∞ and limt→∞ y(t) = 0.

Using the standard theory of Hopf bifurcations it follows from statement 3. of the
proposition that for anyα slightly greater thanα0 there exists a stable periodic solution.
For the convenience of the reader we recall one of the main results of Brechmann and
Rendall (2018) (Theorem 3 of that paper). The points Pi in the statement are those
occurring in Fig. 1 and whose definition is explained below.

Theorem 1 In the case α > α0 of the system (9) and (10) exactly one of the following
three situations occurs

1. The centre manifolds of P1 and P3 coincide so that there is a heteroclinic cycle
at infinity. Any solution which starts below this centre manifold converges to P4
as t → ∞ while any solution other than the steady state which starts above this
manifold converges to the heteroclinic cycle at infinity as t → ∞.

2. The centre manifolds of P1 and P3 do not coincide. There exists a unique periodic
solution. Any solution which starts below the centre manifold of P3 converges to
P4 as t → ∞ while any solution other than the steady state which starts above
this manifold converges to the periodic solution as t → ∞.

3. The centre manifolds of P1 and P3 do not coincide. Any solution other than the
steady state which does not lie on the centre manifold of P3 converges to P4 as
t → ∞.

A key question left open in Brechmann and Rendall (2018) is that of what happens
to the periodic solution when α gets large. This question is answered in this section.

Theorem 2 There exists a number α1 > α0 such that the basic Selkov system (9) and
(10) has the following properties.

1. For α = α1 there exist solutions with the properties that lim inf t→∞ x(t) =
lim inf t→∞ y(t) = 0 and lim supt→∞ x(t) = lim supt→∞ y(t) = ∞.

2. For α0 < α < α1 there exists a unique periodic solution and it is asymptotically
stable.

3. For α > α1 each solution other than the steady state P0 is unbounded and has the
properties described in statement 4. of Proposition 1.

4. As α tends to α1 from below the diameter of the image of the periodic solution
tends to infinity.

We adopt some of the notation of Brechmann and Rendall (2018). There the
Poincaré compactification of the basic Selkov system is computed and one of the
resulting points at infinity is blown up. After this has been done there are four steady
states at infinity called P1, P2, P3 and P4. Their positions can be seen in Fig. 1, which
is a modification of Fig. 1 of Brechmann and Rendall (2018). Each of the points P1
and P3 has a one-dimensional centre manifold with the flow on the centre manifolds
being away from P1 and towards P3. As a starting point for the proof of Theorem 2 we
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Fig. 1 Poincaré compactification
of the basic Selkov system (9)
and (10)

L

P2
P3

P4

P1

P0

γ1

γ2

L
P0

U2

U4

U3

U1

N2,−

N1,−

N2,+

N1,+

Fig. 2 Nullclines of the basic Selkov system (9) and (10)

establish some further properties of the centre manifolds of the points P1 and P3, both
of which are unique. Let L be the segment of the line y = 1 where 0 < x ≤ 1. We use
the notation for the componentsUi of the complement of the nullclines N1 = N+

1 ∪N−
1

and N2 = N+
2 ∪N−

2 which can be seen in Fig. 2, amodification of Fig. 2 of Brechmann

and Rendall (2018). Here N1 and N2 are the zero sets of dx
dτ

and dy
dτ
, respectively.

Lemma 1 In the basic Selkov system the centre manifolds of P1 and P3 both contain
a point of L in their closures.

Proof For a point on the centre manifold of P1 sufficiently near to P1 we have ẋ > 0.
Hence the manifold initially lies in the region U1. As long as x < 1 it must remain in
U1 and both coordinates of a solution on the centre manifold are monotone functions
of time. Hence a solution on the centre manifold of P1 either reaches a point of L with
x < 1 after a finite time or it tends to the positive steady state as t → ∞. Similarly
a solution on the centre manifold of P3, when followed backwards in time, either
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reaches a point of L with x < 1 after a finite time or it tends to the positive steady
state as t → −∞. �	

For a given value of α let ξ1(α) be the x-coordinate of the point where the centre
manifold of P1 meets L if such a point exists and otherwise let ξ1(α) = 1. Define
ξ2(α) similarly in terms of the centre manifold of P3. Note that each centre manifold
depends smoothly on the parameter α, in the sense that we can choose initial data
for solutions on the centre manifold for different values of α in such a way that the
solutions depend smoothly onα. This can be seen by considering the suspended system
obtained by adjoining the equation α̇ = 0 to the basic Selkov system and noting that
it has a two-dimensional centre manifold at the points corresponding to P1 and P3.
This manifold is foliated by curves of constant α which are centre manifolds for the
original system. Their smooth dependence on α follows from the smoothness of the
two-dimensional centre manifold.

Lemma 2 The function ξ1−ξ2 describing the separation of the points where the centre
manifolds of P1 and P3 reach y = 1 is continuous.

Proof Consider a value of αc for which ξ1(αc) < 1. The centre manifold for that value
crosses L transversely and so, by the implicit function theorem, ξ1 is a smooth function
of α close to αc. This also shows that the set of values of α for which ξ1(α) < 1 is open.
Consider now a value α∗ of α for which ξ1(α

∗) = 1 and a sequence αn satisfying
limn→∞ αn = α∗. It will be shown that limn→∞ ξ1(αn) = 1. Together with the
information already obtained this implies that ξ1 is continuous everywhere. The desired
statement will be proved by contradiction. If ξ1(αn) did not converge to one then by
passing to a subsequence we could assume that limn→∞ ξ1(αn) = ξs < 1. Consider
now the sequence of solutions of the basic Selkov system with xn(0) = ξ1(αn),
yn(0) = 1 and α = αn and the solution with xs(0) = ξs , ys(0) = 1 and α = α∗.
We are interested in these solutions for t ≤ 0. The sequence (xn, yn) converges to
(xs, ys) uniformly on compact time intervals. We claim that (xs, ys) lies on the centre
manifold of P1 for α = α∗. If (xs, ys) lies to the left of the centre manifold then it
reaches negative values of x for finite negative values of t . Then for n sufficiently large
the solutions (xn, yn) would do the same, a contradiction. If (xs, ys) lies to the right
of the centre manifold then it must reach values of x greater than ξs for finite negative
values of t . Then for n sufficiently large the solutions (xn, yn) would do the same, a
contradiction. The conclusion is that the solution (xs, ys) lies on the centre manifold
and hence ξ1(α

∗) < 1, in contradiction to the definition of α∗. It has thus been proved
that ξ1 is continuous. A similar argument shows that ξ2 is continuous. Hence ξ1 − ξ2
is continuous. �	
Lemma 3 The function ξ1−ξ2 describing the separation of the points where the centre
manifolds of P1 and P3 reach y = 1 is positive for 0 < α ≤ α0 and negative for α

sufficiently large. There exists an α1 with ξ1(α1) = ξ2(α1).

Proof Suppose that for a given value of α we have (ξ1 − ξ2)(α) ≤ 0. The region
of the Poincaré compactification bounded by the parts of the centre manifolds of P1
and P3 ending on L and the part of L between them and above the centre manifold
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of P3 is invariant under evolution backwards in time. Consider the solution obtained
by backward time evolution of a point in this region other than the steady state. By
Poincaré–Bendixson theory its α-limit set must be a steady state or a periodic solution.
If α ≤ α0 this leads to a contradiction, because in that case no periodic solutions exist
and the positive steady state is a sink. Thus we can conclude that the function ξ1 − ξ2
is positive for 0 < α ≤ α0.

Next we investigate the behaviour of solutions for α large. The following calcula-
tions were inspired by a transformation introduced in Merkin et al. (1987) in the case

γ = 2. It is given by μ = α
− 1

γ , x̃ = α
γ−1
γ x , ỹ = α

− 1
γ y and τ̃ = ατ . The equations

become

dx̃

d τ̃
= μ − x̃ ỹγ , (11)

d ỹ

d τ̃
= x̃ ỹγ − ỹ (12)

and we are interested in the limit μ → 0. A Poincaré compactification of this system
was carried out in Merkin et al. (1987). After a suitable rescaling this leads to a system
in the standard form of a fast-slow system in GSPT. [For background on GSPT we
refer to Kuehn (2015).] Unfortunately in this system the important property of normal
hyperbolicity breaks down at the point corresponding to P3. It turns out that this
problem can be got around by using the transformations introduced in Brechmann and
Rendall (2018) to treat the behaviour of solutions for x large. These can be summed

up by defining ȳ = x− 1
γ y

1
γ and z̄ = x− 1

γ y− γ−1
γ and choosing a time coordinate s

satisfying ds
dτ

= 1
γ
xyγ−1. This transforms the basic Selkov system into system (12)

and (13) ofBrechmann andRendall (2018).Now introduce ε = α−1 and w̄ = α(z̄−1).
Then, denoting the derivative with respect to s by a prime, we get the system

ȳ′ = −γ ȳw̄ − ȳε−1[(1 + εw̄)γ − 1 − γ εw̄] + ȳγ+1

− ȳγ (1 + εw̄)γ+1, (13)

εw̄′ = γ (γ − 1)w̄ − (γ − 1)ȳγ (1 + εw̄)

+ (γ − 1)ε−1[(1 + εw̄)γ+1 − 1 − ε(γ + 1)w̄]
− ȳγ−1(1 + εw̄)γ+2 + γ ȳγ (1 + εw̄). (14)

Note that, due to cancellations in the expressions in square brackets, this system
depends smoothly on ε at ε = 0 and in fact the apparently singular term even vanishes
as ε → 0. The critical manifold has the equation γ (γ − 1)w̄ = ȳγ−1 − ȳγ =
ȳγ−1(1 − ȳ). The derivative of the right hand side of the Eq. (14) with respect to w̄,
evaluated at ε = 0, is γ (γ − 1). Thus the critical manifold is normally hyperbolic
repelling. [For the terminology see Kuehn (2015).] This implies that when the system
(13) and (14) is restricted to the slow manifold its limit as ε → 0 becomes regular.

The evolution equation on the critical manifold is

d ȳ

ds
= − γ

γ − 1
ȳγ (1 − ȳ).
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On the critical manifold there are two steady states, a source and a sink. They are
connected by a heteroclinic orbit. For ε small and positive the criticalmanifold perturbs
to a one-dimensional invariant manifold, which is the restriction of the slow manifold
to that value of ε. The points (1, 0) and (0, 0) are steady states of (13) and (14) for all
values of ε. We claim that for ε small they lie on the slow manifold and hence on the
invariant manifold mentioned above. If we consider the extended system obtained by
adjoining the equation ε′ = 0 to the system (13) and (14) then the slow manifold is
a centre manifold of each point of the critical manifold with respect to the extended
system. Since for a steady state of a dynamical system any steady state sufficiently
close to it must lie on any centre manifold of the original point the claim follows. For
(1, 0, ε) and (0, 0, ε) are close to (1, 0, 0) and (0, 0, 0), respectively when ε is small.
The steady state at ȳ = 1 is hyperbolic and so perturbs to a hyperbolic source. The
steady state at ȳ = 0 continues to exist. There are no other steady states between these
two because we know that there is only one positive steady state for ε > 0 due to the
uniqueness of P0. It follows that there is also a connection between the positive steady
state P0 of the Selkov system and the point P3 on the boundary for α sufficiently large.
(The direction of the flow on the connecting orbit is determined by the fact that P0 is a
hyperbolic source.) In other words, when α is sufficiently large the centre manifold of
P3 converges to the positive steady state in the past. This means that ξ2(α) = 1. On the
other hand, since the positive steady state is a source in this case the centre manifold
of P1 cannot converge to the positive steady state. We conclude that ξ1(α) < 1 and
that ξ1 − ξ2 is negative. By the intermediate value theorem there exists some α1 with
ξ1(α1) = ξ2(α1). Note that in the end the Eqs. (11)–(12) were not needed in the proof
but we judged it useful to include them so as to give an indication of how the argument
was found. �	

It turns out that the value of α for which the centre manifolds of P1 and P3 meet
is unique. This follows from a monotonicity property of the dependence of the centre
manifolds on α.

Lemma 4 The function ξ1−ξ2 describing the separation of the points where the centre
manifolds of P1 and P3 reach y = 1 is strictly decreasing and has a unique zero.

Proof For this proof it is convenient to think of y as a function of x for a given solution.
Suppose that a solution y(x) for a parameter α and a solution ŷ(x) for a parameter
α̂ < α satisfy y(x1) = ŷ(x1) for some x1. Then ŷ′(x1) < 0 and |ŷ′(x1)| < |y′(x1)|.
Thus if ŷ(x2) > y(x2) for some x2 it follows that ŷ(x) ≥ y(x) for all x ≥ x2. Similarly,
if ŷ(x3) < y(x3) for some x3 it follows that ŷ(x) ≤ y(x) for all x ≤ x3 The leading
order approximation to the centre manifold of P3 is given by z̄ = 1 + ν1 ȳγ−1 + . . .

where ν1 = 1
αγ (γ−1) . This translates [in terms of variables Y = ȳγ , Z = ȳγ−1 z̄

used in Brechmann and Rendall (2018)] to Z = Y
γ−1
γ + ν1Y

2(γ−1)
γ . . . and x =

y1−γ − γ ν1 + . . .. Putting these things together shows that when α is reduced the
intersection of the centremanifold of P3 with the line y = 1moves to the left. To obtain
information about the position of the centre manifold of P1 in its dependence on α it
is necessary to determine one more order in the expansion of the centre manifold than
was done inBrechmann andRendall (2018). The result is X = Zγ+1−γαZ2γ+1+. . ..
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In the original variables this gives x = y−γ − γαy−2γ + . . .. When α is reduced x
becomes larger for fixed y. This also means that y becomes larger for fixed x and this
propagates to larger values of x . Thus the intersection of the centre manifold of P1
with the line y = 1 moves to the right. This implies that the function ξ1 − ξ2 is strictly
decreasing and cannot have more than one zero. �	

Proof of Theorem 2 By Lemmas 3 and 4 there exists a unique α1 > α0 for which the
centre manifolds of P1 and P3 coincide. With this information the first statement of
Theorem 2 follows immediately from the first statement of Theorem 1. For α0 < α <

α1 the positive steady state is unstable and there is no heteroclinic cycle at infinity. It
follows from the Poincaré–Bendixson theorem that the ω-limit set of a solution which
starts near the steady state but is not the steady state itself must be a periodic solution.
In particular, a periodic solution exists and we are in the second case of Theorem 1.
Thus the second statement of Theorem 2 holds. If α > α1 then there is again no
heteroclinic cycle at infinity. The α-limit set of the solution on the centre manifold
of P3 must then, by the Poincaré–Bendixson theorem, be either a periodic solution
or the positive steady state. Moreover, if a periodic solution exists then only the first
possibility can occur. Since, however, it follows from Brechmann and Rendall (2018)
that any periodic solution which exists is stable the first possibility is ruled out. There
can be no periodic solution and the third case of Theorem 1 of must be realised. This
completes the proof of the third statement. Finally, the fourth statement will be proved
by contradiction. Let βi be a sequence tending to α1 from below. For a given i the
system with parameter βi has a unique periodic solution and there is a unique point
in its image of the form (1, zi ) with zi > 1. If this sequence did not tend to infinity
then it would have a convergent subsequence. Thus after passing to a subsequence zi
tends to a finite limit z∗. The periodic solutions through the points (1, zi ) converge to
a solution through the point (1, z∗), which is a periodic solution of the system with
parameter value α1. This contradicts the fact that there are no such solutions. �	

4 TheMichaelis–Menten system

In the system (7) and (8) the x-axis is an invariant manifold of the flow and the vector
field is directed towards positive values of x on the y-axis. For each fixed choice of

the parameters with ν < 1 there is a unique positive steady state at
(
1+βν
1−ν

, 1
)
. For

ν ≥ 1 there is no positive steady state. Linearizing the system about the steady state
leads to the Jacobian

J =
⎡
⎣− (1−ν)2

1+βν
−γ

(
1−ν
1+βν

)
α

(1−ν)2

1+βν
α

(
γ

(
1−ν
1+βν

)
− 1

)
⎤
⎦ .

The determinant of J is α
(1−ν)2

1+βν
which is always positive. Thus the stability of the

steady state is determined by the trace of J , which is
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1 Page 12 of 23 P. Brechmann, A. D. Rendall

α

[
γ

(
1 − ν

1 + βν

)
− 1

]
− (1 − ν)2

1 + βν
.

If γ ≤ 1+βν
1−ν

then the trace of J is negative for all values of α and the steady state is

always stable. If γ >
1+βν
1−ν

define α0 = (1−ν)2

γ (1−ν)−(1+βν)
. Then for α < α0 the trace of

J is negative and the steady state is asymptotically stable while for α > α0 the trace
of J is positive and the steady state is a source. For α = α0 there is a pair of imaginary
eigenvalues. If we consider the real part of the eigenvalues as a function of α then it
passes through zero when α = α0 and its derivative with respect to α at that point is
non-zero. Thus a Hopf bifurcation occurs.

In the limiting case ν = 0 it was shown in Brechmann and Rendall (2018) that
the Hopf bifurcation is supercritical so that there exists a stable periodic solution for
any α slightly greater than α0. The computation of the Lyapunov number required to
obtain this conclusion becomes considerably more complicated for ν > 0. Rather than
trying to do this in general we will confine ourselves to obtaining some information
for restricted sets of parameters. The Lyapunov number of the Hopf bifurcation is a
function of the parameters α, β, γ and ν and we are interested in its sign. A general
formula for this quantity is given in Sect. 4.4 of Perko (2001). It is of the form −3π

2b�3/2 f ,
where the first factor is positive in the present case and f is a function of (α, β, γ, ν)

which is negative when ν = 0. This shows that in that case the Hopf bifurcation is
supercritical. For ν small and positive f is still negative and the bifurcation supercrit-
ical. It will now be proved that there also exist parameters for which f is positive,
so that there exists a subcritical Hopf bifurcation. In that case there exist unstable
periodic solutions for α slightly less than α0. Note for comparison that it was shown in
Brechmann and Rendall (2018) that for ν = 0 unstable periodic solutions never exist.
It suffices to treat the case β = 0 since an example with β small and positive follows
by continuity. Since we are only looking for some example we can also restrict to the
case γ = 2.

With a suitable normalization the function f is of the following form.

α(1 − ν)2(−a211 + 2αa11a02)

+ 2(1 − ν)(α2a211 − αa11(a02 + a20))

+α2(1 − ν)2(a11a02 − 2αa202) + 2α(1 − ν)2(α2a202 − a20a02)

+ 4(1 − ν)(−a220 + α2a20a02) + 4(2αa220 − α2a11a20)

+ (2α(1 − ν) + 2(1 − ν)2)(−α2a11a02 + a11a20) + (1 − ν)2[2α − (1 − ν)]
× [3(−α2(1 − ν)a03 + 2a30) + 2(1 − ν)(−a21 + αa12) + α((1 − ν)a12 − 2a21)]

Here the notation ai j is taken from Perko (2001). In order that there exist a bifurcation
a restriction on ν must be satisfied and in the case γ = 2 it is given by ν < 1

2 . Consider

now the limit ν → 1
2 . Since α = (1−ν)2

1−2ν at the bifurcation point it tends to infinity
in this limit. The highest power of α in the above expression is α3 and two terms
containing α3 cancel. Substituting in the expression for the bifurcation point gives a
function depending on ν alone and we want to examine its behaviour near ν = 1

2 . To
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Unbounded solutions of models for glycolysis Page 13 of 23 1

do this it suffices to retain only those terms in the above expression which contain a
power of α which is at least two. At steady state and with β = 0 we have

a11 = −2(1 − 2ν)(1 − ν)2, a03 = 4ν(1 − 2ν)(1 − ν). (15)

Hence the coefficients a11 and a03 contain a factor of 1−2ν. Thus to order (1−2ν)−2

we get the expression

1

4
α2[−4(αa11)a02 − 3(αa03) + 8a20a02 + 3a12 − 4a21] + . . .

The expression in square brackets tends to a positive value as ν → 1
2 . Thus the

leading term in the expression for the Lyapunov number is positive for ν close to its
limiting value. This proves that there are parameters for which the Hopf bifurcation is
subcritical and thus that there exist unstable periodic solutions.

5 The Poincaré compactification

In Brechmann and Rendall (2018) it was investigated using the Poincaré compactifi-
cation in which ways solutions of (9) and (10) can tend to infinity for large times. Here
we want to carry out corresponding calculations for (7) and (8). A useful preliminary
step is to introduce a new time coordinate T satisfying dτ

dT = 1 + νyγ (β + x). Then
we get the system

dx

dT
= 1 − xyγ + νyγ (β + x),

dy

dT
= α[xyγ − y − νyγ+1(β + x)].

This makes the right hand side into a polynomial while leaving the phase portrait
unchanged.

The phase portrait is more complicated than that in the case of mass action kinetics.
A schematic picture of it is given in Fig. 3 and its properties are summarized in the
following lemmawhich is the analogue of Lemma2 inBrechmann andRendall (2018).

Lemma 5 Suppose that ν < 1. There is a smooth mapping of the closure of the positive
quadrant into itself mapping the axes into themselves with the following properties.
The restriction of φ to the open quadrant is a diffeomorphism onto its image. This
image is a region whose closure is a compact set bounded by intervals [0, x0] and
[0, y0] on the x- and y-axes and four smooth curves γi , 1 ≤ i ≤ 4. The curve γ1 joins
the point P1 = (0, y0) with a point P3 in the positive quadrant. γ2 joins the point P3
with the point P4. For 3 ≤ i ≤ 4 the curve γi joins the point P2i−2 with the point P2i
and P8 = (x0, 0). The image of the dynamical system can be rescaled so as to extend
smoothly to the closure of the image of φ in such a way that P3 and P2i , 2 ≤ i ≤ 4, are
steady states and the γi and the image of the x-axis under φ are invariant manifolds.
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Fig. 3 Poincaré compactification
of the Michaelis–Menten system
(7) and (8)

L P0

γ1

γ4

γ3

γ2

P1
P2

P3

P8

P7

P6

P5P4

There are further steady states P2 and P2i+1, 2 ≤ i ≤ 3, on the boundary belonging
to the interior of γ1 and γi+1, 2 ≤ i ≤ 3, respectively.

The statements of Lemma 5 are proved in the remainder of this section. To analyse
the case where x becomes large [Case 1 in the terminology of Brechmann and Rendall
(2018)] introduce the variables Y = y

x , Z = 1
x . Define a new time variable t satisfying

dt
dT = Z−γ−1. The result of the transformation is

dY

dt
= αY γ Z + Y γ+1Z − αY Zγ+1 − Y Zγ+2

− νY γ+1(α + Z)(1 + βZ),

dZ

dt
= Y γ Z2 − Zγ+3 − νY γ Z2(1 + βZ).

Both axes are invariant under the flow and the flow there is towards the origin. The
linearization of the system about the origin is identically zero. Thus we do a quasi-
homogeneous directional blow-up. An appropriate transformation can be obtained by
using a Newton polygon as in Dumortier et al. (2006). The coefficients are α̃ = γ and
β̃ = γ −1. (These are the same values as occurred in the blow-up of the corresponding
point for the model (9) and (10). The notation has been changed compared to that of
the sources quoted by the addition of a tilde to avoid confusion with other uses of the
same letters elsewhere in the present paper.) Thus we use variables ȳ and z̄ satisfying
(Y , Z) = (ȳγ , ȳγ−1 z̄). In addition we introduce a new time coordinate s satisfying
ds
dt = γ −1 ȳγ 2−1. The system becomes

d ȳ

ds
= α ȳ z̄ + ȳγ+1 z̄ − α ȳ z̄γ+1 − ȳγ z̄γ+2

− ν(α + ȳγ−1 z̄)ȳ2(1 + β ȳγ−1 z̄),
dz̄

ds
= −α(γ − 1)z̄2 + ȳγ z̄2 + α(γ − 1)z̄γ+2 − ȳγ−1 z̄γ+3
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Unbounded solutions of models for glycolysis Page 15 of 23 1

+ ν[(γ − 1)α − ȳγ−1 z̄]ȳ z̄(1 + β ȳγ−1 z̄).

Both axes are invariant under the flow. There is a steady state at the origin and one at
the point (0, 1), which corresponds to P7. The linearization at the origin is identically
zero.

Next the centre manifold of P7 will be studied. Introducing w = z̄ − 1 moves the
steady state to origin. The centre subspace is given w = ρ ȳ with ρ = 1−αν

2α for γ = 2
and ρ = − ν

γ
for γ > 2.

Lemma 6 The relation ȳ′ = − γ
γ−1 ȳ

γ + o(ȳγ ) holds on the centre manifold of P7 for
all γ ≥ 2.

Proof In the case γ = 2 we have

ȳ′ = α ȳ z̄ − α ȳ z̄3 − αν ȳ2 − ȳ2 + O(ȳ3).

Substituting the relation z̄ = 1+ρ ȳ+O(ȳ2) which holds on the centre manifold into
this relation gives

ȳ′ = αρ ȳ2 − 3αρ ȳ2 − αν ȳ2 − ȳ2 + O(ȳ3) = −2 ȳ2 + O(ȳ3)

and this completes the proof for γ = 2. For γ > 2 we use the relation

z̄′ = −ȳγ−1 + (γ − 1)[−αz̄2 + αz̄γ+2 + αν ȳ z̄] + O(ȳγ ).

Substituting this into the evolution equation for ȳ gives

ȳ′ = − γ

γ − 1
ȳγ − 1

γ − 1
ȳ z̄−1 z̄′ + O(ȳγ+1).

Suppose that we know that ȳ′ = O(ȳk) for some k with 2 ≤ k ≤ γ − 1. Then it
follows that z̄′ = O(ȳk+1). Hence ȳ′ = O(ȳk+1). After finitely many steps we get
the conclusion of the lemma for γ > 2. �	

We see that the flow on the centre manifold is towards P7 and since the non-zero
eigenvalue of the linearization at that point is positive P7 is a topological saddle. In
fact the flow on the boundary is everywhere away from P7. We next blow up the
origin in the coordinates (ȳ, z̄). This time the procedure described in Dumortier et al.
(2006) leads to the choice of coefficients α̃ = β̃ = 1. Blow-ups in the two coordinate
directions are required. The only terms in the resulting equations which will be written
explicitly are those which have a direct influence on the analysis which follows. In the
first transformed system, with ȳ = ỹ1 and z̄ = ỹ1 z̃1, the equations are

ỹ′
1 = ỹ1[−α(ν − z̃1)ỹ1 + · · · ],
z̃′1 = ỹ1[γα(ν − z̃1)z̃1 + · · · ].
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1 Page 16 of 23 P. Brechmann, A. D. Rendall

Achange of time coordinate eliminates the common factor ỹ1. On the boundary there is
a steady state at the point (0, ν), which corresponds to P5. The origin of this coordinate
system corresponds to P4. The termswhich have been retained suffice to determine the
steady states on the boundary and the linearization of the system at those points. The
point P5 also appears in the second transformed system but since it can be analysed in
the chart corresponding to the first transformed system the second transformed system,
with ȳ = ỹ2 z̃2 and z̄ = z̃2, is only needed to analyse the steady state P6 at the origin
of that coordinate system. For this purpose the only terms which need to be retained
are

ỹ′
2 = z̃2[γα ỹ2 + · · · ],
z̃′2 = z̃2[−α(γ − 1)z̃2 + · · · ].

The common factor z̃2 can be eliminated by a change of time coordinate. The origin
of this coordinate system corresponds to P6. We see that in both cases, after a suitable
change of time coordinate, the origin is a hyperbolic saddle.

Next the centre manifold of P5 will be studied in the case γ = 2. We do not expect
that the case γ > 2 is essentially different but since the algebra becomes significantly
more complicated only the case γ = 2 has been worked out. The centre subspace is
parallel to the ỹ1-axis. We have z̃′1 = O(ỹ31) on the centre manifold and this implies
that if z̃1 = ν + w then

2ανw = [ν2(1 − ν) + 2αν4 + 2αβν3]ỹ21 + . . .

It follows that provided ν < 1 the flow on the centre manifold of P5 is away from P5.
For the rest of the discussion we return to the case of general γ .

In the case where x gets large it remains to do one further quasihomogeneous
directional blow-up of the origin in the (Y , Z) coordinate system. In this case (Y , Z) =
(ȳ z̄γ , z̄γ−1). The time coordinate is transformed using the relation ds

dt = 1
γ−1 z̄

γ 2−1.
The resulting system is

ȳ′ = (γ − 1)[α ȳγ − α ȳ − αν ȳγ+1 z̄(1 + β z̄γ−1)

+ ȳγ+1 z̄γ − ȳ z̄γ−1 − ν ȳγ+1 z̄γ (1 + β z̄γ−1)]
− γ [ȳγ+1 z̄γ − ȳ z̄γ−1 − ν ȳγ+1 z̄γ (1 + β z̄γ−1)], (16)

z̄′ = ȳγ z̄γ+1 − z̄γ − ν ȳγ z̄γ+1(1 + β z̄γ−1). (17)

There is a steady state at the point (1, 0) but since it is just another representation of P7
it does not need to be analysed further. The origin of this coordinate systemcorresponds
to P8. The z̄-axis is a centre manifold for P8 and the flow there is towards P8. Since
the non-zero eigenvalue of the linearization at P8 is negative it can be concluded that
P8 is a sink.

Having completed the analysis of the case where x gets large we now turn to the
case where where y gets large [Case 2 in the terminology of Brechmann and Rendall
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(2018)], with new variables X = x
y and Z = 1

y . The result is

dX

dT
= 1

Zγ+1 [Zγ+2 − X Z + νZ(X + βZ)

−αX2Z + αX Zγ+1 + ανX(X + βZ)],
dZ

dT
= 1

Zγ+1 [−αX Z2 + αZγ+2 + ανZ(X + βZ)].

The common factor 1
Zγ+1 can be removed by a suitable change of time coordinate

satisfying dt
dT = Z−γ−1. The linearization of the resulting system about the origin is

identically zero so that it is again necessary to do a blow-up. In this case a calculation
using a Newton polygon gives the exponents α̃ = 1 and β̃ = 1. The transformation
in the X direction uses the relation (X , Z) = (x̄1, x̄1 z̄1). The resulting system is

dx̄1
dt

= x̄1[x̄γ+1
1 z̄γ+2

1 − x̄1 z̄1 + ν x̄1 z̄1(1 + β z̄1)

−α x̄21 z̄1 + α x̄γ+1
1 z̄γ+1

1 + αν x̄1(1 + β z̄1)],
dz̄1
dt

= x̄1[−x̄γ
1 z̄

γ+3
1 + z̄21 − ν z̄21(1 + β z̄1)].

The origin of this coordinate system corresponds to P3. By a change of time coordinate
we can remove the factor x̄1. The linearization of the systemwhich results at the origin
has one positive eigenvalue and the z̄1-axis is invariant and defines a centre manifold
at that point. It can be concluded that P3 is a source. If ν < 1 there is a steady state

at the point
(
0, 1−ν

βν

)
which corresponds to the point P2. That point is a hyperbolic

saddle whose stable manifold is the z̄1-axis.
The transformation in the Z direction uses the relation (X , Z) = (x̄2 z̄2, z̄2). The

resulting system is

dx̄2
dt

= z̄2[z̄γ2 − x̄2 + ν(β + x̄2)],
dz̄2
dt

= −αX Z2 + αZγ+2 + ανZ(X + βZ)

= z̄2[−α x̄2 z̄
2
2 + αz̄γ+1

2 + αν z̄2(β + x̄2)].

The origin of this coordinate system is P1. By a change of time coordinate we can
remove the factor z̄2. In the system which results there is inflow on the z̄2-axis while
the x̄2-axis is invariant and corresponds to the z̄1-axis in the previous system. Note
that the point P1 is not a steady state.

The facts which have now been collected imply strong restrictions on the possible
ω-limit sets of solutions. The only points of the boundary which they can contain are
those on the part connecting P5 and P7. Poincaré–Bendixson theory implies that the
ω-limit set of a positive solution must be either a point (which can only be the positive
steady state, P7 or P8), a periodic solution or a heteroclinic cycle joining P5 and P7.
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The last of these can only occur if the centre manifolds of P5 and P7 coincide. Note
that any periodic solution or heteroclinic cycle must contain the positive steady state
in its interior.

We have the following analogue of Theorem 1 of Brechmann and Rendall (2018).

Theorem 3 There exists a positive number ε > 0 such that any solution of the
Michaelis–Menten system (7) and (8) with initial data x(0) = x0 and y(0) = y0
which satisfies x0 > ε−1 and x0y

γ
0 < ε has the late-time asymptotics

x(τ ) = τ(1 + o(1)),

y(τ ) = y1e
−ατ (1 + o(1)).

for a constant y1. There exists a solution, unique up to time translation, which has the
asymptotic behaviour

x(τ ) = τ(1 + o(1)),

y(τ ) = τ
− 1

γ−1 (1 + o(1)).

Proof The proof of this theorem is very similar to that of Theorem 1 of Brechmann
and Rendall (2018), whose basic structure we now recall. Any solution which starts
close enough to the point P8 converges to that point as t → ∞. Using this information
in the system (16) and (17) allows these equations for ȳ(s) and z̄(s) to be integrated
to leading order in the limit s → ∞. The resulting asymptotic expressions can then
be transformed back to the original variables x(τ ) and y(τ ). The only extra element
is that, while in the original proof only one change of time coordinate was required,
in the present case we must first transform from s to T and then from T to τ . Since
for this type of solution the time coordinates τ and T are asymptotically equal this
extra element does not change the final answer. In particular, the parameter ν does
not contribute to the leading order asymptotics. This gives the first statement of the
theorem. The solution mentioned in the second statement of the theorem is a solution
on the centre manifold of P7. Integrate the equation for ȳ in Lemma 6 in leading order
in the limit s → ∞ and substitute the result into the equation for z̄. This provides
asymptotic expressions for ȳ(s) and z̄(s). Transforming these back to the variables
x(τ ) and y(τ ) gives the second part of the theorem. �	

6 The global phase portrait

To understand the global phase portrait it is helpful to understand the geometry of the
nullclines N1 and N2 given by ẋ = 0 and ẏ = 0, respectively.We restrict consideration
to the case ν < 1 where N1 and N2 intersect in a single point. The equation for N1
can be expressed in the equivalent forms

y =
[

1

−βν + (1 − ν)x

] 1
γ

, x = 1

1 − ν
(y−γ + βν).
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Fig. 4 Nullclines of the Michaelis–Menten system (7) and (8)

Thus on N1 the coordinate y can be expressed as a smooth function of x with a smooth
inverse. Note, however, that while the second function is defined for all positive y the
first is only defined for x >

βν
1−ν

. The equation for N2 can be expressed in the form

x = y1−γ + βνy

1 − νy
.

Thus on N2 the coordinate x can be expressed as a (locally defined) smooth function of
y. Since x can be written as a function of y in both cases and there is only one point of
intersection it is clear that the complement of N1 ∪N2 is a union of the four connected
components defined by the signs of ẋ and ẏ. A schematic picture of the null clines is
given in Fig. 4. As in Fig. 2 we denote the regions with the sign combinations (+,−),
(+,+), (−,+) and (−,−) by U1, U2, U3 and U4, respectively. Where ẏ = 0 and
ẋ �= 0 we can use the fact that N2 is a graph over the y-axis to conclude that a solution
can only pass from U3 to U4 and U1 to U2 and not the other way round. Similarly the
fact that N1 is a graph over the y-axis implies that a solution can only pass from U4
to U1 and U2 to U3 and not the other way round. Thus the possible passages between
the regionsUi are just as in the case with mass action kinetics. Let L be the part of the
horizontal line segment joining the positive steady state to the y-axis with the endpoint
on the axis excluded. The part of L excluding the steady state is contained in U1.

Lemma 7 In the Michaelis–Menten system each of the centre manifolds of P5 and P7
contains a point of L in its closure.

Proof A point on the centre manifold of P5 which is sufficiently close to P5 lies in the
regionU3. If we follow a solution which lies on this manifold forwards in time then it
must either tend to the positive steady state as t → ∞ or it must enterU4 after a finite
time and in the latter case it must enter U1. Once it has done so it must either tend to
the positive steady state as t → ∞ or it must meet L after a finite time. Similarly a
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solution on the centre manifold of P7 which starts close to P7 must, when followed
backwards in time, either converge to the positive steady state as t → −∞ or meet L
after a finite time. �	

Denote the x-coordinates of the points of L in the closure of the centre manifolds
of P5 and P7 for given value of α and ν by ξ1(α, ν) and ξ2(α, ν).

Lemma 8 The function ξ1−ξ2 describing the separation of the points where the centre
manifolds of P5 and P7 reach y = 1 is continuous.

Proof The proof is similar to that of Lemma 2. The essential facts which must be used
are that any solution which approaches P5 close enough in the past time direction and
does not lie on the centre manifold of P5 cannot remain close to P5 forever and the
corresponding statement with ’past’ replaced by ’future’ and P5 by P7. �	
Lemma 9 There are pairs of parameters (α, ν) forwhich the function ξ1−ξ2 describing
the separation of the points where the centre manifolds of P5 and P7 reach y = 1 is
negative. For ν > 0 fixed and 0 < α ≤ α0 if there exists no unstable periodic solution
then ξ1 − ξ2 is positive. If there is some α ≤ α0 for which no periodic solutions exist
then there exists an α1 with ξ1(α1, ν) = ξ2(α1, ν).

Proof Forα sufficiently large the positive steady state is a source and thus ξ1(α, ν) < 1.
Thus in order to prove the first part of the lemma it suffices to show that for some (α, ν)

we have ξ2(α, ν) = 1. To prove this we proceed as in the case of mass action kinetics.
First the system is transformed to the coordinates (ȳ, z̄) and then the quantities ε and
w̄ are introduced. The right hand side of each equation in the Michaelis–Menten case
is the sum of the right hand side of the corresponding equation in the mass action case
and an expression which can be written as ε−1ν times a function which is regular in
the limit ε → 0. Fixing ν and letting ε tend to zero would cause this term to explode.
Insteadwe let ε and ν tend to zero in such away that ν = ε2. Then the second summand
behaves in a smooth manner as ε → 0 and in fact tends to zero. Thus proceeding in
the same way as in the proof of Lemma 3 gives the first conclusion. For the second
part we can again proceed as in the proof of Lemma 3. The difference is that while
in the mass action case we knew that there was no unstable periodic solution in the
Michaelis–Menten case we have to assume it. �	

Note that for the choice of parameters in the first part of Lemma 9 there is a
heteroclinic orbit joining the positive steady state to the point P7. It follows that for
these values of the parameters no periodic solutions exist. This is because a periodic
solution would have to contain the positive steady state in its interior and therefore
would have to cross the heteroclinic orbit.

There is no straightforward generalization of the monotonicity result of Lemma 4
to theMichaelis–Menten case. The proof of monotonicity fails for the centre manifold
of P5 since it may pass through the regionU4. For this reason even in a case where the
existence of a zero of ξ1−ξ2 can be proved we do not get its uniqueness, Moreover, we
do not get the analogue of the stability statement in the mass action case. It is possible
to do a calculation analogous to that done to determine the stability of the heteroclinic
cycle in Brechmann and Rendall (2018). Unfortunately in the estimate for the return
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map the power γ is replaced by the power one and this gives no information about
stability. The following theorem sums up the results obtained.

Theorem 4 The Michaelis–Menten system (7) and (8) has the following properties.

1. For each choice of the parameters (α, ν) with ν < 1 the unique positive steady

state has coordinates
(
1+βν
1−ν

, 1
)
.

2. If γ ≤ 1+βν
1−ν

the steady state is stable. Otherwise if α < α0 = (1−ν)2

γ (1−ν)−(1+βν)
it is

stable and for α > α0 unstable.
3. For α = α0 a Hopf bifurcation occurs. Parameters can be chosen so as to make it

supercritical or subcritical.
4. For given (α, ν) there exist positive numbers x0 and y0 such that if a solution

satisfies x(t) ≥ x0 and y(t) ≤ y0 at some time t then it has the late time asymptotics
described in Theorem 3.

5. For γ = 2 there exists a choice of positive parameters α and ν for which all
solutions other than the steady state have the late time asymptotics described in
Theorem 3.

6. If for γ = 2 and given ν there exist no periodic solutions for α sufficiently small
then there exists a heteroclinic cycle passing through the steady states P7 and P5
in that order.

It should be noted that it has not been shown here whether the case described in point
6. ever occurs.

7 Conclusions and outlook

It has been shown that the basic Selkov system admits solutions with unbounded
oscillations and that the diameter of the image of a periodic solution can tend to
infinity as α approaches a finite limit, thus completing the results of Brechmann and
Rendall (2018) on that system and rigorously confirming a claim made in Selkov
(1968). Note that some statements related to this issue have been made in Erneux
(2018) but that reference does not contain rigorous proofs of those statements. One
remaining question is that of the rate with which the diameter of the image of the
periodic solution tends to infinity as the critical parameter value α1 is approached. A
suggestion for this has been made in Merkin et al. (1987) for the case γ = 2 but there
is neither a rigorous proof that this suggestion is correct nor a generalization of the
statement to higher values of γ .

It was also investigated which properties of the basic Selkov system persist in the
Michaelis–Menten system from which Selkov derived his basic model. Partial results
were obtained and it was shown in particular that the Michaelis–Menten system has
unbounded solutions which are eventually monotone for all parameter values. The
question of whether the five-dimensional system from which the Michaelis–Menten
system itself was derived has unbounded solutions remains open. It was shown that
for suitable parameter values unstable periodic solutions of the Michaelis–Menten
system exist. It was left open whether there exist unbounded oscillatory solutions or
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periodic solutions whose images have arbitrarily large diameter for bounded ranges
of the parameters.

The unbounded solutions cast doubt on the suitability of the Selkov model for
describing glycolytic oscillations. An alternative model often preferred to the Selkov
model is that of Goldbeter and Lefever (1972). There the amplitude of the periodic
solutions created in a Hopf bifurcation increases to a maximum before decreasing
again to zero at a point where the periodic solutions vanish again in a second Hopf
bifurcation. It has been proved by d’Onofrio (2011), on the basis of an analysis of a
more general class of systems in Othmer and Aldridge (1978), that all solutions of the
Goldbeter-Lefever model are bounded. Further aspects of the dynamics of solutions
of that model have been studied in d’Onofrio (2011) and a sophisticated analysis of
some of its properties has been carried out in Kosiuk and Szmolyan (2011).

The questions of the origin of the unbounded solutions and how they could be
eliminated by modifying the system have been discussed in Merkin et al. (1986). The
origin of the unbounded growth can be seen in the constant source term in the equation
for x . This corresponds to an unlimited supply of the substrate. In Merkin et al. (1986)
this is called the pooled chemical approximation. If this is replaced by a mechanism
where the substrate is formed from a precursor which itself is limited in quantity
then the oscillations only grow within a finite time period before decaying again. An
alternative modification is to introduce an additional uncatalysed conversion of the
substrate into the product. The resulting system is called the (cubic) autocatalator.
According to the analysis of Merkin et al. (1986) this leads to a situation similar to
that described above for the Goldbeter-Lefever model and the unbounded oscillations
are absent. Some aspects of this type ofmodel have been analysed rigorously inGucwa
and Szmolyan (2009).

The Selkov system and other related ones are model cases for understanding oscil-
lations in biological and chemical systems. The study of equations of this type raises
a number of issues. In what ways can heuristic and numerical results be made into
rigorous theorems? How can we understand the relations between the choices made in
modelling and the relevance of the resulting models for the applications? The present
paper is intended as a contribution to the clarification of these issues.
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