Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[1,2-Bis(diisopropylphosphanyl)ethane- $\kappa^2 P, P'$]dichloridonickel(II)

Nahury Y. Castellanos-Blanco, Juventino J. García and **Marcos Flores-Alamo***

Facultad de Química, Universidad Nacional Autónoma de México, México DF, 04510 Mexico Correspondence e-mail: mfa@unam.mx

Received 26 May 2011; accepted 2 June 2011

Key indicators: single-crystal X-ray study; T = 122 K; mean σ (C–C) = 0.005 Å; R factor = 0.030; wR factor = 0.070; data-to-parameter ratio = 20.1.

In the crystal structure of title compound, $[NiCl_2(C_{14}H_{32}P_2)]$, the Ni^{II} atom lies on a twofold rotation axis and shows a slightly distorted square-planar coordination geometry, with a dihedral angle of 10.01 (8)° between the cis-Cl-Ni-Cl and cis-P-Ni-P planes. There is no significant intermolecular interaction except very weak C-H···Cl interactions. The crystal studied was a racemic twin.

Related literature

For the synthesis, see: Scott et al. (1990). For applications of nickel complexes to catalytic systems, see: Vicic & Jones (1997); Arévalo & García (2010). For related structures, see: Cañavera-Buelvas et al. (2011); Angulo et al. (2003); Dahlenburg & Kurth (2001).

Experimental

Crystal data [NiCl₂(C₁₄H₃₂P₂)] $M_{*} = 391.95$ Tetragonal, $I\overline{4}c2$ a = 14.2402 (2) Å c = 18.4369 (7) Å V = 3738.70 (16) Å³

Z = 8
Mo $K\alpha$ radiation
$\mu = 1.48 \text{ mm}^{-1}$
T = 122 K
$0.17 \times 0.14 \times 0.07~\mathrm{mm}$

 $R_{\rm int} = 0.030$

5823 measured reflections

1850 independent reflections 1547 reflections with $I > 2\sigma(I)$

Data collection

Oxford Xcalibur Atlas Gemini	
diffractometer	
Absorption correction: analytical	
(CrysAlis PRO; Oxford	
Diffraction, 2010)	
$T_{\min} = 0.975, \ T_{\max} = 0.989$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	$\Delta \rho_{\rm max} = 0.80 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.070$	$\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.97	Absolute structure: Flack (1983)
1850 reflections	832 Friedel pairs
92 parameters	Flack parameter: 0.53 (3)
H-atom parameters constrained	

Table 1

Selected bond lengths (Å).

Ni1-P1	2.1600 (9)	Ni1-Cl1	2.2150 (8)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C3-H3B\cdots Cl1^i$	0.98	2.94	3.808 (4)	148
$C5-H5A\cdots Cl1^{ii}$	0.98	2.91	3.777 (4)	148
Summature and an (i)	1		1 - 1	

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z$; (ii) $-x + \frac{3}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank PAPIIT-DGAPA-UNAM (IN-201010) and CONACYT (080606) for their financial support of this work. We also thank Dr A. Arévalo for technical assistance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2724).

References

Angulo, I. M., Bouwman, E., van Gorkum, R., Lok, S. M., Lutz, M. & Spek, A. L. (2003). J. Mol. Catal. A Chem. 202, 97-106.

Arévalo, A. & García, J. J. (2010). Eur. J. Inorg. Chem. pp. 4063-4074.

Cañavera-Buelvas, F., Flores-Alamo, M. & García, J. J. (2011). Acta Cryst. E67, m501

Dahlenburg, L. & Kurth, V. (2001). Inorg. Chim. Acta, 319, 176-182.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.

Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.

Scott, F., Krüger, C. & Betz, P. (1990). J. Organomet. Chem. 387, 113-121.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Vicic, D. A. & Jones, W. D. (1997). J. Am. Chem. Soc. 119, 10855-10856.

supplementary materials

Acta Cryst. (2011). E67, m871 [doi:10.1107/S1600536811021209]

[1,2-Bis(diisopropylphosphanyl)ethane- $\kappa^2 P, P'$]dichloridonickel(II)

N. Y. Castellanos-Blanco, J. J. García and M. Flores-Alamo

Comment

The synthesis of the current complex [Ni (dippe)Cl₂] was documented 21 years ago (Scott *et al.*, 1990) and still the corresponding X-ray structure of this compound has not been reported. This type of nickel complexes are useful starting materials for the preparation of catalysts and catalytic precursors, for a series of active catalyst in a wide variety of model reactions (Vicic & Jones, 1997) and catalytic systems (Arévalo & García, 2010).

In the title complex, $[Ni(dippe)Cl_2]$, the Ni^{II} atom is coordinated by two P atoms of dippe ligand and two chloride anions (Fig. 1) into a slight distorted square-planar coordination geometry with a dihedral angle between the planes defined by the two *cis*-Cl–Ni–Cl and *cis*-P–Ni–P fragments [10.01 (8)°]. Additionally the Ni^{II} atom is situated 0.0837 (1) Å above the Cl1/P1/Cl1/P1 plane. These deviations from planarity, which can be attributed to some steric effect of the dippe ligand, are somewhat shorter than the distortion from ideal square-planar coordination geometry observed on [Ni (dippe)Cl₂](carbazole)₂ complex (Cañavera-Buelvas *et al.*, 2011) with the NiCl2/NiP2 dihedral angle of 15.32° and somewhat larger than the distortion from ideal square-planar coordination geometry observed for related [Ni(dcpe)Cl₂] (Angulo *et al.*, 2003) and [(1*S*,2*S*)-C₅H₈{P(C₆H₁₁)₂}₂NiCl₂] (Dahlenburg & Kurth, 2001) complexes, where the NiCl2/NiP2 dihedral angles of 3.96 and 5.37°, respectively.

In the crystal packing, there are two intermolecular contacts of the type hydrogen bond (Table 2) mainly between the carbon donor atom of the dippe to Cl1 chloride atom acceptor of the metallic complex, C5—H5A…Cl1 2.91 Å and C3—H3B…Cl1 2.94 Å.

Experimental

A concentrated THF solution of the complex [Ni(dippe)Cl₂], prepared according to the reported procedure (Scott *et al.*, 1990), was stored in a freezer at -30 °C. After a couple of days suitable crystals for X-ray diffraction studies were obtained. NMR (25 °C): ³¹P{¹H} (CDCl₃, 121.32 MHz, 25 °C): δ 85.9 (*s*). NMR ¹H (CDCl₃, 300 MHz, 25 °C): δ 1.30 (m, CH₃, 24H), 1.6 (m, CH₂, 4H), 2.48 (m, CH, 4H). Elemental analysis experimental (calculated): C 43.0 (42.9), H 8.24% (8.23%).

Refinement

H atoms attached to C atoms were placed in geometrically idealized positions, and refined as riding on their parent atoms, with C—H distances fixed to 0.98 (methyl CH₃), 0.99 (methylene CH₂) and 1.00 Å (methine CH), and with $U_{iso}(H) = 1.5U_{eq}(methyl C)$ or $1.2U_{eq}(C)$. The crystal studied was a racemic twin; the minor twin component refined to 47 (3)%.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as circles of arbitrary size.

[1,2-Bis(diisopropylphosphanyl)ethane- $\langle \kappa^2 P, P' \rangle$ dichloridonickel(II)

Crystal data

$D_{\rm x} = 1.393 {\rm ~Mg~m}^{-3}$
Mo K α radiation, $\lambda = 0.71073$ Å
Cell parameters from 3046 reflections
$\theta = 3.4 - 26.0^{\circ}$
$\mu = 1.48 \text{ mm}^{-1}$
T = 122 K
Prism, brown
$0.17 \times 0.14 \times 0.07 \text{ mm}$

Data collection

Oxford Xcalibur Atlas Gemini diffractometer	1850 independent reflections
graphite	1547 reflections with $I > 2\sigma(I)$
Detector resolution: 10.4685 pixels mm ⁻¹	$R_{\rm int} = 0.030$
ω scans	$\theta_{\text{max}} = 26.1^\circ, \ \theta_{\text{min}} = 3.4^\circ$
Absorption correction: analytical (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2010)	$h = -16 \rightarrow 17$
$T_{\min} = 0.975, T_{\max} = 0.989$	$k = -17 \rightarrow 17$
5823 measured reflections	$l = -22 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H-atom parameters constrained
$wR(F^2) = 0.070$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0391P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 0.97	$(\Delta/\sigma)_{\text{max}} = 0.001$
1850 reflections	$\Delta \rho_{max} = 0.80 \text{ e} \text{ Å}^{-3}$
92 parameters	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$
0 restraints	Absolute structure: Flack (1983), 832 Friedel pairs

Primary atom site location: structure-invariant direct Flack parameter: 0.53 (3)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.5579 (3)	0.2802 (2)	0.4018 (2)	0.0423 (9)
H1	0.5088	0.2434	0.3754	0.051*
C2	0.5856 (3)	0.3616 (3)	0.3527 (3)	0.0708 (15)
H2A	0.5296	0.3982	0.3403	0.106*
H2B	0.6144	0.3371	0.3083	0.106*
H2C	0.6307	0.4019	0.3781	0.106*
C3	0.5142 (3)	0.3145 (3)	0.4703 (2)	0.0580 (13)
H3A	0.5614	0.3477	0.4993	0.087*
H3B	0.49	0.261	0.498	0.087*
H3C	0.4625	0.3573	0.4588	0.087*
C4	0.7002 (3)	0.1639 (3)	0.33272 (17)	0.0457 (10)
H4	0.7238	0.2221	0.3086	0.055*
C5	0.6214 (3)	0.1240 (3)	0.2847 (2)	0.0676 (12)
H5A	0.6454	0.1136	0.2355	0.101*
H5B	0.569	0.1686	0.283	0.101*
H5C	0.5995	0.0642	0.3049	0.101*
C6	0.7832 (3)	0.0972 (3)	0.3400 (2)	0.0554 (12)
H6A	0.7648	0.043	0.3695	0.083*
H6B	0.8356	0.1299	0.3634	0.083*
H6C	0.8025	0.0757	0.2918	0.083*
C7	0.5952 (2)	0.0942 (2)	0.45870 (15)	0.0292 (6)
H7A	0.5299	0.0924	0.4404	0.035*
H7B	0.6277	0.0369	0.4416	0.035*
P1	0.65506 (6)	0.19836 (6)	0.42220 (5)	0.0280 (2)
Cl1	0.83890 (6)	0.31965 (6)	0.58688 (5)	0.0349 (2)
Ni1	0.75392 (2)	0.25392 (2)	0.5	0.02082 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0335 (19)	0.0391 (19)	0.054 (3)	-0.0022 (16)	-0.0121 (19)	0.0064 (18)

supplementary materials

C2 C3	0.053 (3)	0.060 (3)	0.099 (4) 0.085 (4)	0.003 (2)	-0.009(3) -0.001(2)	0.038(3)
C4	0.059(2)	0.030(2)	0.000(1)	-0.019(2)	0.007(2)	-0.0057(17)
C5	0.004 (3)	0.040(2)	0.0270(10)	-0.015(2)	-0.013(2)	-0.016(2)
C6	0.050(4)	0.074(4)	0.057(2)	-0.0013(2)	0.013(2)	-0.013(2)
C7	0.007(3)	0.042(2)	0.037(3)	-0.007(12)	-0.022(2)	-0.0015(2)
D1	0.0251(18)	0.0270(13)	0.0303(10)	-0.0077(12)	-0.0012(17)	0.0040(17)
	0.0209(4)	0.0208(4)	0.0303(3)	-0.0033(3)	-0.0020(4)	-0.0003(4)
Ni1	0.0300(4)	0.0344(3)	0.0397(3)	-0.0094(3)	-0.0042(4)	-0.0077(4)
INII	0.01088 (15)	0.01088 (13)	0.0287 (3)	-0.00202 (17)	0.00033 (18)	-0.00033 (18)
Geometric paran	neters (Å, °)					
C1—C3		1.491 (5)	С5—Н	5A	0.98	
C1—C2		1.522 (6)	С5—Н:	5B	0.98	
C1—P1		1.847 (3)	С5—Н:	5C	0.98	
C1—H1		1.00	C6—He	6A	0.98	
C2—H2A		0.98	C6—He	6B	0.98	
C2—H2B		0.98	С6—Не	6C	0.98	
C2—H2C		0.98	С7—С7	7 ⁱ	1.523	(6)
С3—НЗА		0.98	C7—P1		1.838	(3)
C3—H3B		0.98	С7—Н′	7A	0.99	
С3—НЗС		0.98	С7—Н′	7B	0.99	
C4—C6		1.522 (6)	P1—Ni	1	2.1600) (9)
C4—C5		1.538 (5)	Cl1—N	ï1	2.2150) (8)
C4—P1		1.837 (3)	Ni1—P	1 ⁱ	2.1600) (9)
C4—H4		1.00	Ni1—C	11 ⁱ	2.2150) (8)
C3—C1—C2		111.2 (3)	C4—C3	5—Н5С	109.5	
C3—C1—P1		110.3 (3)	Н5А—	С5—Н5С	109.5	
C2—C1—P1		114.0 (3)	H5B—0	С5—Н5С	109.5	
C3—C1—H1		107	C4—Ce	6—Н6А	109.5	
C2—C1—H1		107	C4—Ce	5—H6В	109.5	
P1—C1—H1		107	H6A—	С6—Н6В	109.5	
Cl—C2—H2A		109.5	C4—C6	H6C	109.5	
C1 - C2 - H2B		109.5	H6A—	C6—H6C	109.5	
H2A—C2—H2B C1—C2—H2C		109.5	H6B—0	_6—Н6С 7—Р1	109.5	7 (13)
H2A—C2—H2C		109.5	C7 ⁱ —C	7—11 7—117A	109.4	(15)
H2B-C2-H2C		109 5	P1	/H7A	109.4	
С1—С3—НЗА		109.5	C7 ⁱ —C	7—H7B	109.4	
С1—С3—Н3В		109.5	P1—C7	′—H7B	109.4	
НЗА—СЗ—НЗВ		109.5	H7A—	С7—Н7В	108	
С1—С3—Н3С		109.5	C4—P1	—C7	105.97	7 (15)
НЗА—СЗ—НЗС		109.5	C4—P1	—C1	104.33	3 (18)
НЗВ—СЗ—НЗС		109.5	C7—P1	—C1	103.68	3 (17)
C6—C4—C5		112.7 (4)	C4—P1	—Nil	117.79	9 (14)
C6—C4—P1		111.0 (3)	C7—P1	—Nil	110.76	5 (10)
C5—C4—P1		111.1 (3)	C1—P1	—Ni1	113.10) (12)

C6—C4—H4	107.2	P1—Ni1—P1 ⁱ	87.91 (5)
C5—C4—H4	107.2	P1—Ni1—Cl1	172.36 (3)
P1—C4—H4	107.2	P1 ⁱ —Ni1—Cl1	89.73 (3)
C4—C5—H5A	109.5	P1—Ni1—Cl1 ⁱ	89.73 (3)
C4—C5—H5B	109.5	P1 ⁱ —Ni1—Cl1 ⁱ	172.36 (3)
Н5А—С5—Н5В	109.5	Cl1—Ni1—Cl1 ⁱ	93.51 (5)
C6—C4—P1—C7	-72.2 (3)	C2—C1—P1—C7	-164.7 (3)
C5—C4—P1—C7	54.2 (3)	C3—C1—P1—Ni1	-50.7 (3)
C6—C4—P1—C1	178.8 (3)	C2—C1—P1—Ni1	75.3 (3)
C5—C4—P1—C1	-54.9 (3)	C4—P1—Ni1—P1 ⁱ	-129.91 (14)
C6—C4—P1—Ni1	52.4 (3)	C7—P1—Ni1—P1 ⁱ	-7.74 (12)
C5—C4—P1—Ni1	178.8 (3)	C1—P1—Ni1—P1 ⁱ	108.15 (14)
C7 ⁱ —C7—P1—C4	153.8 (3)	C4—P1—Ni1—Cl1	158.0 (3)
C7 ⁱ —C7—P1—C1	-96.6 (4)	C7—P1—Ni1—Cl1	-79.9 (3)
C7 ⁱ —C7—P1—Ni1	25.0 (4)	C1—P1—Ni1—Cl1	36.0 (3)
C3—C1—P1—C4	-179.9 (3)	C4—P1—Ni1—Cl1 ⁱ	42.82 (14)
C2-C1-P1-C4	-53.9 (4)	C7—P1—Ni1—Cl1 ⁱ	164.99 (13)
C3—C1—P1—C7	69.4 (3)	C1—P1—Ni1—Cl1 ⁱ	-79.12 (14)
Symmetry codes: (i) $y+1/2$, $x-1/2$, $-z+1$			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C3—H3B···C11 ⁱⁱ	0.98	2.94	3.808 (4)	148
C5—H5A…Cl1 ⁱⁱⁱ	0.98	2.91	3.777 (4)	148

Symmetry codes: (ii) x-1/2, -y+1/2, z; (iii) -x+3/2, -y+1/2, z-1/2.

