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Electron cryo tomography (cryoET) is an ideal technique to

study virus–host interactions at molecular resolution. Imaging

of biological specimens in a frozen-hydrated state assures a

close to native environment. Various virus–host cell interactions

have been analysed in this way, with the herpesvirus ‘life’ cycle

being the most comprehensively studied. The data obtained

were further integrated with fluorescence and soft X-ray cryo

microscopy data applied on experimental systems covering a

wide range of biological complexity. This hybrid approach

combines dynamic with static imaging and spans a resolution

range from micrometres to angstroms. Along selected aspects

of the herpesvirus replication cycle, we describe dedicated

combinations of approaches and how subsequent data

integration enables insights towards a functional

understanding of the underlying processes.

Addresses

Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome

Trust Centre for Human Genetics, University of Oxford, Oxford OX3

7BN, UK

Corresponding author: Zeev-Ben-Mordehai, Tzviya

(tzviya@strubi.ox.ac.uk)

Current Opinion in Virology 2014, 5:42–49

This review comes from a themed issue on Virus structure and

function

Edited by Wah Chiu, Thibaut Crépin and Rob WH Ruigrok
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Introduction
Understanding virus ‘life’ cycles has a great impact on

basic cell biological research as well as on the develop-

ment of specific interventions and therapeutics. Accord-

ingly, virus-host interactions have been the subject of

many studies. Much of the structural data published

comes from classical electron microscopy (EM) and tom-

ography methods that involve fixation, dehydration, stain-

ing, and plastic embedding of the specimen [1–4].

However, interpretation of the results from these

methods is limited, as the harsh sample preparation

frequently leads to structural impairment of the biological
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specimens [2,5]. In the past decade, a variety of dedicated

techniques have been developed to study viral replication

cycles under more native conditions. Each technique has

its strengths and weaknesses, often reflected as a com-

promise between the biological complexity covered and

the achievable resolution (Figure 1). Thus, only the

integration of the data obtained from all the techniques

can provide the detail and context to understand the

complex biological processes in a viral replication cycle.

EM is still in the centre of this spectrum of techniques

(Figure 1), between higher resolution methods like X-ray

crystallography and lower resolution light/fluorescence

microscopy techniques that provide access to dynamic

information of the concerned processes. However, classi-

cal EM is increasingly being replaced with electron cryo

microscopy (cryoEM). The essence of cryoEM is visua-

lizing biological specimens embedded in a thin film of

vitreous ice (non-crystalline, amorphous, glass-like), the

thickness of which is only slightly greater than the

diameter of the specimen [6]. Imaging in the frozen-

hydrated state, that is, keeping the water, preserves the

genuine environment for the biological specimen. The

complexity of the environment can range from macro-

molecules in buffer solutions (for recent examples see

[7,8]) to intact cells [9,10] and tissues [11]. The limitation

of cryoEM lay in the amenable thickness of the speci-

mens to be imaged and in the achievable resolution. Soft

X-ray cryo microscopy, particularly when performed in

correlation with fluorescence microscopy, is an exciting

emerging technique allowing the visualization of thicker

and larger specimen areas and thus significantly comp-

lements cryoEM [12–14,15�]. On the higher resolution

end, constant developments in computational analysis of

cryoEM data hold promise for the future. In the most

favourable cases it already provided atomic resolution

information [8,16], and commonly produces molecular

resolution that allows fitting of high-resolution crystal

structures.

The ability of electron cryo tomography (cryoET) to

visualize unique biological events in 3D makes its appli-

cation to imaging macromolecules in their cellular and

subcellular context very attractive [17]. In cryoET, a tilt

series of projection images is collected and then combined

computationally to reconstruct a 3D density map. Follow-

ing the first studies of pleomorphic viruses by cryoET

(reviewed in [18]), studying virus–host interactions by

cellular cryoET has given unprecedented snapshots of

the molecular interactions in the course of virus infection

and replication in its host cell [19–24]. More recently,

fluorescent microscopy has been integrated into cryoEM
www.sciencedirect.com
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The spectrum of techniques applied to study the herpesvirus ‘life’ cycle. An integrated approach combining high-resolution structure determination

methods and correlative light, soft X-ray cryo and electron cryo microscopy allows looking at dynamic processes at different resolution and complexity

and ultimately leads to a better perception of those processes. LM, light microscopy; cryoTXM, transmission X-ray cryo microscopy; cryoET, electron

cryo tomography.
to help identify sites of interest, an approach referred to as

correlative microscopy [25].

Here we describe how this spectrum of techniques and

hybrid approaches have advanced our understanding of

the herpesvirus replication cycle, as it is one of the most

comprehensively studied examples of these techniques to

date.

The herpes simplex virus ‘life’ cycle
Herpes simplex virus type 1 (HSV1) is a highly ubiquitous

human pathogen. It is the major cause of cold sores and,

much more rarely, of fatal encephalitis. It is the prototypic

species of the subfamily Alphaherpesvirinae from the larger

Herpesviridae family of animal pathogens. Viruses in this

family are comprised of large enveloped DNA viruses of

complex structure [26]. A lipid bilayer envelopes an

icosahedral capsid that in turn encapsulates a linear,

double-stranded DNA genome. The lipid envelope is

separated from the capsid by a proteinaceous matrix

called the tegument [27]. The HSV1 virion 3D structure

was the first pleomorphic enveloped virus structure to be

determined by cryoET [28]. The 3D structure revealed

that the �220-nm-diameter virions are bipolar, with the

capsid being positioned eccentrically, thus forming a

proximal and a distal pole. The envelope membrane is

highly studded with viral glycoproteins with a non-ran-

dom distribution, viz., being more abundant around the

capsid distal pole, with implications for viral entry and

assembly (see below).

The complexity of the virions translates to a complex

infection cycle (Figure 2). HSV1 replicates in epithelial

cells that are the point of first entry, but gets transported

retrogradely to sensory neurons where it establishes latent

infection [29]. Virus replication takes place in two sep-

arated cellular compartments. Procapsid formation and
www.sciencedirect.com 
packaging of the viral genome takes place at the nucleus

[30], while tegumentation and envelopment proceeds in

the cytoplasm [31]. As such, the HSV1 replication cycle

spans the whole cell and often takes advantage of avail-

able cellular machineries for replication.

Herpesvirus entry into host cells
Herpesvirus entry requires fusion of the viral membrane

with that of the host. Depending on the cell type, entry

can take place at either the plasma membrane or out of

the endosome after endocytosis [32,33]. Entry of HSV1

into flat adherent cells was imaged by cryoET and pro-

vided 3D snapshots of native fusion intermediates at the

plasma membrane [24] (Figure 3a). Post-fusion, capsids

released into the cytosol were detected between actin

bundles very early after infection. Clusters of glyco-

protein spikes protruding from the plasma membrane

marked the entry sites. The majority of the tegument

formed a thick layer just underneath the plasma mem-

brane, clearly corresponding in shape and extent to the

patch of glycoprotein spikes on the outer face of the

plasma membrane. Specimen thickness is the main limit-

ing factor in cellular cryoET. The electron beam penetra-

tion limit is about 0.5–1 mm and the achievable resolution

depends inversely on the specimen thickness [34].

Though many organelles and subcellular structures can

be imaged directly in plunge-frozen adherent cells, in

practice it is restricted to the cell periphery. In the study

of HSV1 entry, it limited the number of captured entry

events. To overcome this sample-inherent limitation,

entry of HSV1 into synaptosome (physiologically active

endings of neurons) was analysed [24] (Figure 3a). Synap-

tosomes are substantially thinner and enabled data acqui-

sition with improved signal-to-noise ratio (SNR). Their

round shape also allowed observing viral entry events in

side views thus providing optimal orientation in respect to

the missing wedge [35]. Snapshots of different membrane
Current Opinion in Virology 2014, 5:42–49
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Figure 2
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Illustration of the herpesvirus ‘life’ cycle. Virus infection starts with cell entry that involves the fusion of the viral envelope with that of the host, either

directly at the plasma membrane or in an endosome leading to release of the capsid into the cytosol (i) [40]. The capsid is then transported retrogradely

to the nucleus along microtubules (ii) [58]. The viral genome is released into the nucleus through the nuclear pore (iii) [59]. Transcription of viral genes

and genome replication occur in the nucleus, as well as procapsid (pc) formation and DNA encapsidation (iv) [30]. Capsids exit the nucleus by a

primary envelopment and de-envelopment mechanism (v) [43]. Capsids are then transported anterogradely to the point of virion assembly (vi). Virion

assembly, including secondary envelopment and tegumentation, occurs close to the cell surface by budding into cellular vesicles originating from the

Golgi that contain the viral glycoproteins on the lumenal side and accrete tegument proteins on the cytosolic (vii). Virions are released from the cell by

fusion of the cellular vesicles with the plasma membrane (viii).
fusion steps including initial viral attachment, fusion pore

formation and membrane dilation post-fusion could be

captured [24]. Importantly, the experiments revealed that

the proximal and less glycoprotein-studded pole of the

virion is functionally the entry pole. Virus entry into

liposomes is the next level of investigation system

reduction. An example for this is shown in the sequence

in Figure 3a and was extensively used for other viruses,

e.g., influenza virus [36] and the retrovirus ASLV [37].

HSV1 entry, unlike many other viruses, involves the

interaction of four viral glycoproteins, namely glyco-

proteins D, B, H and L, and at least one cellular receptor

[38–40]. Individual glycoproteins were detected at the

membrane fusion intermediate sites described above but

the complexity of HSV1 and the limited resolution pre-

cluded confident assignment. In cases where hundreds or

even thousands of identical copies of a macromolecule

appear in a tomogram, sub-volumes containing the macro-

molecule can be extracted and averaged following an
Current Opinion in Virology 2014, 5:42–49 
iterative process of orientation and positional refinement.

This results in a 3D reconstruction of the macromolecule

with improved SNR and resolution (for review see [41]).

This so-called sub-volume averaging was recently applied

to gB, a key component of the complex herpesvirus fusion

machinery, and yielded a 3D reconstruction of gB bound

to its target membrane [42] (Figure 3b). The resolution of

this reconstruction allowed the fitting of the gB crystal

structure. The EM reconstruction, together with the

fitting, revealed that interaction of gB with target mem-

brane was mediated by the fusion loops, and limited to

the outer membrane leaflet. Applying a similar approach

to other components of the herpesvirus fusion machinery

will enhance our understanding of the complex mechan-

ism of HSV fusion.

HSV1 capsid assembly and nuclear egress
Herpesvirus capsids are assembled in the nuclei of

infected cells. This poses a challenge: the �125-nm-

diameter capsids are too large to pass the nuclear pore.
www.sciencedirect.com
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Figure 3
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Dedicated experimental systems used for the study of HSV1 entry. (a) Reducing biological complexity from the most native system, virus entry into

intact host cells [24], to gradually less complex subsystems, that is, virus entry into synaptosomes [24] or liposomes, and study of glycoproteins on the

viral surface. (b) HSV1 glycoprotein B (gB), a key component of the fusion machinery, bound to liposomes used as display platform for direct

visualization of fusion protein interaction with its target membrane. Sub-volume averaging was used to reconstruct the gB–lipid bilayer complex

(middle panel, light grey) [42]. The EM reconstruction together with fitting of the gB crystal structure revealed the mode of interaction to the membrane.

Lateral interaction of gB induced protein coat or belt formation on liposomes. Placing back the EM reconstruction in the experimentally determined

orientations (right panel) allowed analysing the lateral interactions [42].
The generally accepted model for crossing the nuclear

envelope (nuclear egress) is the primary envelopment/de-

envelopment model (recently reviewed in [43]). Accord-

ing to this model capsids bud at the inner nuclear mem-

brane into the perinuclear cleft thus acquiring an

envelope membrane. This primary envelope is then fused

with the outer nuclear membrane leading to capsid

release into the cytosol. Primary envelope formation is

driven by the nuclear egress complex (NEC), a hetero-

dimeric complex of two conserved HSV1 proteins,

pUL34 and pUL31.

Electron cryo microscopy of vitreous sections (CEMO-

VIS) is a method of making specimens that are too thick

for intact imaging (like the cell nucleus) amenable to

cryoEM [11]. The specimens are first vitrified by high-

pressure freezing, then sliced into thin sections that can

subsequently be analysed by cryoEM or cryoET. Apply-

ing this technique in combination with fluorescence
www.sciencedirect.com 
microscopy revealed capsid aggregates near the inner

nuclear membrane [44] (Figure 4, first row). Three

nucleocapsid types could be clearly distinguished,

namely, empty A-capsids, scaffold protein containing

B-capsids, and DNA-packed C-capsids. However, certain

limitations have prevented CEMOVIS from becoming a

more commonly used approach [45�]. A recently emer-

ging alternative technique for sample thinning is targeted

focused ion beam (FIB) milling (typically using gallium

ions) for targeted abrasion of cryo specimens [46��,47].

An other alternative approach for imaging native cryo

specimens that are too thick for cryoEM/ET is soft X-ray

cryo microscopy. In this technique, data are collected

within the ‘water window’ wavelength that provides

images with high SNR and 3D resolution of currently

�30 nm [15�]. Soft X-rays penetrate biological samples

with thicknesses in the micrometre range. Correlated

imaging using in-column cryo epi-fluorescence and soft
Current Opinion in Virology 2014, 5:42–49
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Figure 4
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Dedicated experimental systems used for the study of herpesvirus assembly and transport in vivo. Capsid assembly, electron cryo microscopy of

vitreous sections (CEMOVIS) of mammalian cells infected with HSV1 (labelled with GFP) revealed the three distinct types of nucleocapsids close to the

inner nuclear membrane (INM) [44]. Shown are a projection image (left) and a slice from a tomogram (right). Primary envelopment, CEMOVIS of

mammalian cell infected with murine cytomegalovirus provided snapshots of capsid primary envelopment at the INM (left panel), a layer of density

most likely of the nuclear egress complex (NEC) was observed between the capsid and the INM [30]. Correlated imaging with fluorescence and soft X-

ray microscopy of cells co-expressing both components of the NEC showed that the NEC is sufficient to drive formation of correctly sized primary

Current Opinion in Virology 2014, 5:42–49 www.sciencedirect.com
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X-ray microscopy of cells co-overexpressing the alpha-

herpesvirus NEC components showed that pUL31and

pUL34-GFP are sufficient to drive membrane modu-

lations that lead to virus-induced vesicular structures in

the nucleus, expanding the nucleoplasmic reticulum [14]

(Figure 4). The applied combination of cryoEM/ET with

fluorescence imaging and soft X-ray cryo microscopy/

tomography enabled a multiscale approach of unper-

turbed structures of interest.

HSV1 virion assembly in primary neurons
HSV1 establishes lifelong latent infections in the periph-

eral nervous system. It is assumed that the processes of viral

entry, transport to the cell body, capsid formation in the

nucleus and nuclear egress are overall similar for neuronal

and non-neuronal cells. The site of tegumentation and

details of the secondary envelopment, however, remained

debated. Using fluorescence live-cell imaging in correlation

with cryoET addressed this open question [48]. For corre-

lating live-cell fluorescence imaging with cryoEM, hippo-

campal neurons were grown directly on holey carbon EM

grids (Figure 4). Sixteen hours post-infection, fluorescently

labelled viral particles were observed undergoing mostly

anterograde transport. CryoET data collected along the

axon revealed that most transported particles were capsids

without envelope. Secondary envelopment events were

observed at axonal terminals [48,49] with capsids budding

into vesicles clearly containing viral glycoprotein spikes on

the vesicle lumen side of the membrane and tegument

proteins on the membrane side facing the capsid. Filamen-

tous actin surrounded the secondary envelopment sites in

the axon terminal forming an assembly compartment [48].

Outlook and prospects
Here we provided an overview of the application of the

recently developed extensive ‘cryo tool-kit’ that enables

studying even highly complex viral ‘life’ cycles as those of

the herpesviruses in close-to-native conditions (Figure 2).

This hybrid approach combines dynamic, live-cell ima-

ging with static imaging of cryo-immobilized samples,

and spans a resolution range from micrometres to ang-

stroms (Figure 1). CryoEM and cryoET have emerged as

prominent techniques to study virus–host interactions.

They can be used to image cellular processes in the native

state and can also provide in situ structures of macromol-

ecular complexes at nanometer resolution. The introduc-

tion of direct electron detectors [50��] is currently

revolutionizing the field and will likely allow atomic

resolution reconstruction, possibly competing with or,

ideally, matching X-ray crystallography [51�]. Routine
(Figure 4 Legend Continued) envelopes [14]. Anterograde transport, HSV1

were first analysed with live-cell fluorescence imaging that was then correla

observed undergoing transport along the axon. Virion assembly, secondary

budded into cellular vesicles that clearly were showing viral glycoproteins on

the capsid. Shown are a slice from a tomogram (left panel of the cryoEM pane

transported inside cellular vesicles (right panel) that then fuse at the plasma

www.sciencedirect.com 
application of phase plates in cryoET is another devel-

opment that will have an impact on cellular tomography,

and exciting first results imaging phages that assemble in

their cyanobacterial hosts have recently been reported

[52��]. The inherent limitation for the application of

cellular cryoET is the thickness of the sample. Recent

reported results with FIB milling under cryogenic con-

ditions suggest that it will become the method of choice

for sample thinning for cryoET [46��,53]. A proof of

principle experiment based on serial slicing of frozen-

hydrated cells and even tissues using a FIB combined

with SEM block-face imaging has recently been demon-

strated to produce images with a lateral resolution of a few

nanometers and slice thicknesses of 30 nm [54�]. Ongoing

effort is put on accurate correlation between advanced

light/fluorescence microscopy and cryoEM [55], and the

introduction of cryo-fluorescence microscopy now allows

for more precise correlations [56�,57]. Thus, an integrated

approach of high-resolution structure determination

methods and correlative light, soft X-ray and EM allows

us to look at dynamic biological processes at different

resolutions and complexity.

Applying this ‘cryo tool-kit’ in studying virus–host inter-

actions will undoubtedly lead to a better perception of the

complexity of the underlying processes and enable us to

unveil novel cellular mechanisms and pathways.
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