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Abstract

Probabilistic inference of a phylogenetic tree from molecular sequence data is predicated on a substitution model describing the
relative rates of change between character states along the tree for each site in the multiple sequence alignment. Commonly, one
assumes that the substitution model is homogeneous across sites within large partitions of the alignment, assigns these partitions
a priori, and then fixes their underlying substitution model to the best-fitting model from a hierarchy of named models. Here, we
introduce an automatic model selection and model averaging approach within a Bayesian framework that simultaneously
estimates the number of partitions, the assignment of sites to partitions, the substitution model for each partition, and the
uncertainty in these selections. This new approach is implemented as an add-on to the BEAST 2 software platform. We find that
this approach dramatically improves the fit of the nucleotide substitution model compared with existing approaches, and we
show, using a number of example data sets, that as many as nine partitions are required to explain the heterogeneity in
nucleotide substitution process across sites in a single gene analysis. In some instances, this improved modeling of the substi-
tution process can have a measurable effect on downstream inference, including the estimated phylogeny, relative divergence
times, and effective population size histories.
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Introduction
Phylogenetic analysis in a probabilistic framework requires the
adoption of a substitution model. However, much uncer-
tainty lingers about modeling this process. For example,
which substitution model is most suitable for the analysis
given the data set and how does the substitution process
vary across sites? It is well established that substitution rates
exhibit variation across sites (Yang 1996) and omitting
across-site rate variation can result in inaccurate estimation
of the phylogeny (Huelsenbeck and Hillis 1993) and under-
estimation of branch lengths if substitutions occur repeatedly
at sites undergoing rapid evolution (Sullivan and Joyce 2005).
Incorporating across-site variation in the underlying substitu-
tion model parameters themselves may improve the accuracy
of phylogenetic parameter estimates (Huelsenbeck and
Nielsen 1999). These parameters include the relative exchange
rates between nucleotide character states and their stationary
distribution. We use the term “substitution pattern” to refer
to a particular set of restrictions among the values of these
parameters. Differing restrictions lead to different named sub-
stitution models. How to select an appropriate substitution
pattern and rate for all sites in an alignment remains a daunt-
ing task (Suchard et al. 2001).

One approach to relax the assumption of rate constancy
across sites treats the overall rate multiplier at each site as a
random variable distributed according to an underlying dis-
tribution shared across sites (Golding 1983; Jin and Nei 1990;
Yang 1993). The most popular distribution is a discretized
version of the Gamma distribution with a single shape par-
ameter � (Yang 1994), but other distributions have also been
explored (Olsen 1987; Waddell and Steel 1997). Another
common modeling assumption is that some proportion of
the sites are invariant (Hasegawa et al. 1985; Churchill et al.
1992; Waddell and Penny 1996). It has become common to
use both a mixing distribution and a zero-inflation via this
proportion of invariant sites to model the rate variation
across sites (Gu et al. 1995; Waddell and Steel 1997). An
alternative approach places the sites into categories and in-
dependently estimates the rate multiplier of each category.
The most extreme partition scheme estimates a multiplier
independently for each site (Swofford et al. 1996; Nielsen
1997), but this tends to vastly overfit the data, leading to
undesirable statistical properties (Felsenstein 2004). The
most common a priori partition scheme for protein coding
genes is by codon position, with the estimated multiplier at
the third codon position usually higher than those in the first
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and second codon positions due to redundancy in the genetic
code. Other biologically reasonable partition schemes may
also be appropriate (e.g., loop versus stem in RNA coding
genes, or exposed versus buried region for amino acid se-
quences where 3D structure is known), but they are not
easy to determine. A Bayesian nonparametric method,
which employs a Dirichlet process mixture (DPM) model,
enables the joint estimation of the number of rate categories
and the site-to-category assignment (Huelsenbeck and
Suchard 2007).

The across-site variation of relative exchange rates and
the stationary distribution are, however, less often accounted
for in most phylogenetic analyses. For nucleotides,
Huelsenbeck and Nielsen (1999) have modeled variation in
the transition/transversion rate ratio through a discretized
gamma distribution (Huelsenbeck and Nielsen 1999). For
amino acids, several partition schemes have been explored
for amino acid substitution patterns across sites. The partition
scheme by Bruno (1996) allows each site to have its own
amino acid substitution pattern. Similar to the site independ-
ence in overall rate multiplier counterpart, such a scheme is
likely to be subject to overfitting. Others have proposed par-
titions which first predefine 8–10 categories (Goldman et al.
1998; Koshi et al. 1999; Li and Goldman 1999; Dimmic et al.
2000; Soyer et al. 2002), where the categorization of some is
based on protein features such as the secondary structure and
solvent accessibility of the protein (Goldman et al. 1998; Li
and Goldman 1999). Quang et al. (2008) have developed a
method that estimates a mixture of a predetermined number
of amino acid patterns from alignment databases via an ex-
pectation–maximization algorithm. As with partitioning sites
for rate multipliers, it is often not obvious how many cate-
gories of amino acid patterns are required a priori. The CAT
model (Lartillot and Philippe 2004) avoids this problem by
using a DPM model. The DPM model has also been applied to
model the variation in rate of nonsynonymous substitution
across sites to detect positive selection (Huelsenbeck et al.
2006).

To judge the uncertainty of nucleotide substitution model
selection, it has become almost standard procedure in recent
years to first assign a named model to each predefined
partition by ModelTest (Posada and Crandall 1998) before
performing a more complex analysis in a different framework.
In a Bayesian framework, an alternative to this two-step
scheme is to use techniques that perform model selection
and phylogenetic parameter estimation simultaneously. As
single partition examples, Suchard et al. (2001) and
Huelsenbeck et al. (2004, implemented in Ronquist et al.
2012, MrBayes 3.2), exploit reversible jump Markov chain
Monte Carlo (Green 1995) to simultaneously select substitu-
tion models. Wu and Drummond (2011) have used a product
space formulation of transdimensional MCMC (Godsill 2001)
for selection of microsatellite mutation models. Lemey et al.
(2009) have modeled the migration history of RNA viruses
using continuous time Markov chains (CTMC) and applied
“spike-and-slab” priors that provide nonzero probability mass
on parameter restrictions for selection (Kuo and Mallick
1998) to infer the transmission route. Huelsenbeck et al.

(2008) considered a general-time reversible parameterization
of amino acid substitutions and all its submodels (i.e., some
relative rate entries share the same value) as partitionings
under a DPM model for selection.

In this article, we present a spike-and-slab-based mixture
model for nucleotide alignment data that accounts for
across-site heterogeneity of substitution pattern and rate
multiplier simultaneously. It enables Bayesian selection over
a set of standard nucleotide substitution models for each
substitution model category. The assignment of sites to cate-
gories has a prior probability defined by the Dirichlet process
(Ferguson 1973; Antoniak 1974). Under the Dirichlet process,
both the category assignment and the number of categories
are random variables. This nonparametric process is therefore
a popular approach for problems where the data are thought
to come from a mixture of an unknown number of probabil-
ity distributions. We present two variants: the substitution
Dirichlet mixture model 1 (SDPM1) specifies that the substi-
tution pattern and rate multiplier share a common partition-
ing scheme and the substitution Dirichlet mixture model 2
(SDPM2) provides independent Dirichlet process priors for
the pattern and rate multipliers. A recently proposed method
by Lanfear et al. (2012, PartitionFinder) uses a greedy heuristic
algorithm to find the partition that maximizes the likelihood
for a given alignment. One main difference to our approach is
that this method does not quantify the uncertainty asso-
ciated with alignment partitioning. Also, our method pro-
duces phylogenies and population histories integrated over
the space of alignment partitions and substitution model
assignments.

Materials and Methods

The Model

To develop our SDPM1 and SDPM2 models, we start with a
nucleotide sequence alignment D that consists of n taxa and s
sites. The nucleotide pattern at site i is denoted as Di. For two
sites i and j where i 6¼ j, they refer to different columns of the
alignment and are treated as distinct entities whether or not
their patterns are identical. D is assumed to be generated by
an underlying CTMC, along a rooted bifurcating tree s, rep-
resenting an unknown phylogeny. The substitution process is
determined by the rate multipliers r ¼ r1, . . . , rsf g and the
substitution model parameters ( ¼ /1, . . . , /s

� �
across

sites. Each /i includes all the parameters that make up the
infinitesimal rate matrix of CTMC at site i. In a Bayesian
phylogenetic analysis, we seek the joint posterior distribution

f ðs,(, rjDÞ / f ðDjs,(, rÞf ðsÞf ð(, rÞ, ð1Þ

where the term f ðsÞ is the prior density on the tree and
f ð(, rÞ is the joint prior density over the evolutionary
model parameters. Here, we assume prior independence
between the tree and evolutionary model parameters. If we
apply a coalescent prior to the tree, then f ðsÞ is replaced by
f ðsj?Þf ð?Þ, where ? contains the demographic parameters
of the coalescent and has hyperprior density f ð?Þ. The term
f ðDjs,(, rÞ is the likelihood given all model parameters.
The likelihood at site i, f ðDijs, /i, riÞ, is calculated by
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Felsenstein’s pruning algorithm (Felsenstein 1981), and the
full likelihood is the product of the likelihood over all sites:

f ðDjs,(, rÞ ¼
Ys

i¼1

f ðDijs, /i, riÞ: ð2Þ

Heterogeneity of Evolutionary Parameters across Sites

If the evolutionary process is homogeneous across sites then
r1 ¼ r2 ¼ . . . ¼ rs and /1 ¼ /2 ¼ . . . ¼ /s. To relax this
assumption, we estimate an unknown partitioning of the
evolutionary model parameters across sites using DPM
models.

Consider the SDPM1 model wherein the substitution
model parameters and rates share the same partitioning.
Let K be an unknown parameter denoting the number of
categories of evolutionary model parameters. The substitu-
tion model parameters and rate at each site are assigned to
one of the K categories. Each category has its own unique set
of values of evolutionary model parameters. Let (� be the
union of unique substitution model parameters over all cate-
gories, whereas r� is the union of unique rate multipliers
values across all categories. The term �i denotes the category
to which site i has been assigned, where �i 2 1, . . . , Kf g,
therefore /i ¼ (

�
ri

and ri ¼ r��i
. We can rewrite equation

(1) in terms of (�, r�, and r ¼ ð�1, . . . , �sÞ, such that

f ðs,(, rjDÞ ¼ f ðs,(�, r�, rjDÞ

/ f ðDjs,(�, r�, rÞf ðsÞf ð(�, r�, rÞ:
ð3Þ

Under the Dirichlet process,

f ð(�, r�, rÞ ¼

�K
QK
k¼1

ð k � 1Þ!

Qs
i¼1

ð�+ i� 1Þ

YK

k¼1

G�
0 ð(

�
kÞG

r
0ðr
�
k Þ, ð4Þ

where  k is the number of sites assigned to category k, dis-
tributions G�

0 and Gr
0 are the base distributions of substitu-

tion model parameters and rate multipliers, respectively, and
� 2 ð0,1Þ is the “concentration parameter” of the Dirichlet
process. Notice that permutation of the assignment vector r

does not affect the distribution in equation (4). Parameter �
controls the marginal distribution on the number of cate-
gories a priori:

f ðKj�, sÞ ¼
S1ðs, KÞ�K

Qs
i¼1

ð�+ i� 1Þ

, ð5Þ

where S1ðs, KÞ is the absolute value of the Stirling number of
the first kind given parameter values s (number of sites) and
K. According to equation (5), the Dirichlet process tends to
produce more categories with increasing �.

If the substitution model parameters and rates across sites
are modeled by independent Dirichlet processes as in the
SDPM2 model, then the full posterior can be written as
follows:

f ðs,(�, r�, r(, rrjDÞ /

f ðDjs,(�, r�, r(, rrÞf ðsÞf ð(�, r(Þf ðr�, rrÞ,
ð6Þ

where r( and rr are the respective assignment vectors for
the substitution model parameters and rates. The prior dis-
tribution of substitution model parameters across sites is as
follows:

f ð(Þ ¼ f ð(�, r(Þ

¼

�ð�ÞK
� QK�

k¼1

ð �k � 1Þ!

Qs
i¼1

ð�ð�Þ+ i� 1Þ

YK�

k¼1

f�0 ð(
�
kÞ,

ð7Þ

where �k is the number of sites assigned to category k of the
K� substitution model categories, and �ð�Þ is the concen-
tration parameter of the Dirichlet process prior on substitu-
tion model partition. The prior distribution of rates across
sites follows similarly. We let r

k denote the number of sites in
category k of the Kr rate categories and �ðrÞ denote the
concentration parameter of the Dirichlet process prior on
rate partition.

Posterior Inference of Partitioning

We employ a Gibbs sampling procedure (Neal 2000, algo-
rithm 8) for updating the assignment vector r in the
SDPM1 model. Site i, which is in category k (�i ¼ k), is
picked randomly and removed from the rest of the sites. If
there are currently K classes, let K�i denote the number of
categories after the removal of site i. If site i is an singleton, we
create � auxiliary sets of substitution model parameters and
rates by setting K�i + 1 to k and draw new parameter values
from the base distribution for each of the categories in

K�i + 2, . . . , K�i + �
� �

. If site i is not a singleton, a new
set of evolutionary model parameters are drawn for each of
the � auxiliary categories. The Gibbs sampler proposes a new
category, �0i with probability

f ð�0i ¼ k0Þ ¼
h �i

k0 ‘ðDiÞ if 1 � k0 � K�i

h �� ‘ðDiÞ if K�i < k0 � K�i + �,

�
ð8Þ

where ‘ðDiÞ ¼ f ðDijs, /k0 , rÞ and h is the normalizing con-
stant. Categories are discarded if they are not associated with
any site after the update. For the analyses in this study, we use
� ¼ 5. The same procedure is used to update r( and rr in
SDPM2.

The Gibbs sampling procedure described above updates
the assignment vector site-by-site and therefore lacks effi-
ciency when the number of sites is large because site assign-
ments are highly correlated. To overcome this issue, we also
employ a Metropolis–Hastings (Metropolis et al. 1953;
Hastings 1970) sampling algorithm that makes updates of
assignment at multiple sites in one step by splitting and
merging existing categories (Dahl 2005). Using r as an ex-
ample, a sequentially allocated-split-merge sampling has the
following steps. We randomly choose a pair of sites i and j,
where i 6¼ j. If i and j are in the same category k, then k will be
split. After removing sites i and j from k, we let Sðk� i, jf gÞ

denote the set of sites associated with k without i and j.
We can then construct two new categories, kðiÞ containing
site i and kðjÞ containing site j. We draw one site, u, at a time
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without replacement from Sðk� i, jf gÞ and assign it to kðiÞ with
the probability

Prð�0u ¼ kðiÞÞ ¼
 kðiÞ f ðDujs,�kðiÞ , rÞ

 kðiÞ f ðDujs,�kðiÞ Þ+ kðjÞ f ðDujs,�kðjÞ Þ
: ð9Þ

The model parameters �kðiÞ and rkðiÞ are updated by draw-
ing values from their respective base distributions. After each
allocation of u, either  kðiÞ or  kðjÞ increments by 1. The pro-
posal density of splitting a category is the product of equation
(9) after each draw from Sðk� i, jf gÞ multiplied by
G�

0 ð�kðiÞ ÞG
r
0ðrkðiÞ Þ. The proposal probability of the reversal

step is 1.0, as there is only one assignment option to merge
two categories.

If sites i and j are in different categories, ki and kj, respect-
ively, then they are merged into one category, say km. The
parameter values associated with this category are set to /

j
k.

The proposal probability of a merge step is 1.0. The reverse
proposal probability is G0ð�kðiÞ Þ multiplied by the product of
the probabilities in equation (9) for an assignment choice
required to obtain the split allocation to ki and kj from the
merged category km.

Bayesian Model Selection

We use a spike-and-slab prior specification (Kuo and Mallick
1998) to facilitate Bayesian selection among named nucleo-
tide substitution models for each category. Under this ap-
proach, we augment �r to include a set of binary indicator
variables, whose realized 0, 1 values allow us to move between
substitution model parameter restrictions that correspond to
common nucleotide models. Specifically, the infinitesimal
rate matrix of category k is Qk ¼ �k�k, where �k is a sym-
metric matrix with upper-triangular entries

�k ¼

� �k, AC �k, AG �k, AT

� �k, CG �k, CT

� �k, GT

�

0
BB@

1
CCA ð10Þ

and matrix �k is diagonal with entries ð�k, A,�k, C,�k, G,
�k, TÞ. Using the binary indicators dk ¼ ð�k, TN, �k, �, �k, TV,
�k, fkÞ, we further parameterize

log�k, AG ¼ 0

log�k, CT ¼ �k, TN	k, TN

log�k, AC ¼ ��k, �	k, � + �k, TV	k, AC

log�k, AT ¼ ��k, �	k, � + �k, TV	k, AT

log�k, GC ¼ ��k, �	k, � + �k, TV	k, GC

log�k, GT ¼ ��k, �	k, �, and

log�k, b ¼ ð1� �k, FQÞ logð1=4Þ+ �k, FQ log fk, b,

ð11Þ

for b 2 fA, C, G, Tg. Each element of qk ¼ ð	k, TN, 	k, �,
	k,AC, 	k,AT, 	k,GCÞ takes a value in the range ð�1,1Þ.
The base frequencies fk ¼ ðfk,A, fk,C, fk,G, fk,TÞ satisfy
0 � fk, b �

P
b fk, b ¼ 1. When certain indicators in dk

achieve the value 0, specific effects fall out of the model.
Using this approach, we are able to conveniently

parameterize the Kimura (1980, K80), Felsenstein (1981,
F81), Hasegawa et al. (1985, HKY85), Tamura and Nei (1993,
TN93), and Tavaré (1986, general time reversible [GTR]) in-
finitesimal rate matrices. Table 1 presents the relationship
between dk and these named models. Also presented in
the table 1 is an alternative parameterization of dk into a
single categorical variable 
k achieving five partially ordered
values. 
k takes values K80, F81, HKY85, TN93, and GTR.
Sampling 
k provides an opportunity to traverse through
substitution model space without changing the total model
dimension. Finally, the infinitesimal matrix Qk is normalized,
so that the total mutational outflow is 1.0; in other words we
multiply Qk by c ¼ �1=

P
b �bqbb.

Single-Locus Data

We applied our method to four single-locus data sets of gene
coding sequences, three of which are collected from RNA
viruses and one from mammalian species.

Ebola Virus
The Ebola virus (EBOV) data set was compiled by Wertheim
and Kosakovsky Pond (2011). It consists of 32 glycoprotein
sequences of 1,389 base pairs. The sampling times range from
1976 to 2005.

Hepatitis C Subtype 4
The hepatitis C subtype 4 (HCV-4) data set was data set B in a
study on the population genetics and epidemiology history of
HCV in Egypt (Pybus et al. 2003). It was originally from a
comprehensive study on the diversity of HCV in Egypt (Ray
et al. 2000). This data set contains 63 contemporaneous se-
quences of 411 base pairs from the E1 region.

Mammal
The mammal data set was obtained from the OrthoMam
database (Ranwez et al. 2007). The data set contains se-
quences from 12 mammalian species: Canis familiaris, Felis
catus, Homo sapiens, Pan troglodytes, Pongo pygmaeus abelii,
Macaca mulatta, Microcebus murinus, Otolemur garnettii,
Mus musculus, Rattus norvegicus, Ochotona princeps, and
Oryctolagus cuniculus. The sequences have length of 468
base pairs and are from FGF1 gene, which codes for
heparin-binding growth factor 1.

Respiratory Syncytial Virus Subgroup A
This data set has 35 sequences and 629 sites from the G gene
of the human respiratory syncytial virus subgroup A (RSVA)
sampled from 1956 to 2002 (Zlateva et al. 2005).

Table 1. Indicator Values of a Given Substitution Model.

Indicator Substitution Model ð
Þ

K80 F81 HKY85 TN93 GTR

dFQ 0 1 1 1 1

dj 1 0 1 1 1

dTN 0 0 0 1 1

dTV 0 0 0 0 1
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Hepatitis C Virus Subtype 1b Full-Genome Data

We also analyzed a data set of HCV subtype 1-b genomes
used in the study by Gray et al. (2011). It consists of 31
within-host sequences of 9,030 sites sampled between the
years 1977 and 2000 inclusive. The main purpose of analyzing
this data set is to give a larger multigene example and to
compare across-site rate heterogeneity inferred here with
the previous study. Therefore, we do not report results for
simpler models as we do for the single-locus data sets.

Dirichlet Process Priors

To complete our SDPM1 and SDPM2 construction, we need
to specify base distributions for the Dirchlet process(es).
When specified hierarchically (Suchard et al. 2003), these dis-
tributions allow for the sharing of information across random
partitions and the borrowing of strength in parameter esti-
mation. We construct the base distribution for substitution
model parameters as G�0 ð/kÞ ¼ G	0 ðqkÞG

f
0ðf kÞG



0ð
Þ. We use

a multivariate normal distribution as the base for
qk, G	0 ðqkÞ ¼ MVNðl,'Þ. To induce a hierarchy, mean l

and variance ' are treated as random parameters, where l

is assumed to have a multivariate normal prior with fixed
mean l0 and variance '0. The precision '�1 carries a
Wishart prior, with scale matrix V and degrees of freedom d.

We constructed informative priors on l and ' for the
analyses on the RNA virus data sets according to the following
procedure. We analyzed 26 RNA virus data sets (listed in
supplementary table S1, Supplementary Material online)
from Jenkins et al. (2002) with GTR + �4 using (Guindon
et al. 2010, Phyml). �4 models the rate across site with dis-
cretized gamma distribution with four categories. The max-
imum likelihood estimates (MLEs) of the relative rates in the
GTR model were transformed to the space of qk. Using the
mclust package in R (Fraley and Raftery 2002, 2006), we fitted
a multivariate normal distribution to these estimates across
the data sets, yielding l0 and'0. There is little information on
how the variance ' should vary across sites, so we set
V ¼ '�1

0 and d = 7, so that the prior mean of ' matches
'0. Informative priors on l and ' for analyses on the
mammal data set were also constructed according to the
procedure above with 25 mammal data sets (listed in supple-
mentary table S2, Supplementary Material online) randomly
selected from Ranwez et al. (2007).

The base distribution of nucleotide base frequencies Gf
0 is

formulated as follows:

Gf
0ð�Þ ¼ Dirichletð�� qÞ,

q � Dirichletð1, 1, 1, 1Þ,

� � Gammað0:001, 0:001Þ,

ð12Þ

where � is the dispersion parameter and q ¼ ðqA, qC, qG, qTÞ

is the across-partition mean frequencies. The base distribu-
tion of the substitution model indicator G
0 is given by

G
0ð�Þ ¼ MultinomialðpÞ,

p � Dirichletð1, . . . , 1Þ,
ð13Þ

where p ¼ ðpK80, . . . , pGTRÞ are the across-partition model
probabilities. Having these hierarchical prior parameters q, �
and p will improve mixing for the partition allocation vari-
ables. The parameterization of our Q matrix can also accom-
modate Jukes et al. (1969, JC69). However, this set up of
mixture model treats categories with 
 ¼ JC69 having differ-
ent 	 and/or f values as different categories. This is not pref-
erable as these categories have effectively the same model.
Therefore, we exclude JC69 from our model to avoid this
problem.

The base distribution of rate G0ðrÞ is assumed to be a
lognormal distribution and takes the form

G0ðlog rkÞ ¼ Normalð�, �2Þ,

� � Normalð
�, �
2
� Þ,

��2 � Gammað��2 , ��2Þ,

ð14Þ

where � is mean and �2 is the variance.
For the analyses on the serially sampled RNA virus data sets

(EBOV and RSVA), informative prior on � is constructed by
fitting a lognormal distribution (Venables and Ripley 2002) to
the MLEs of substitution rate across 50 data sets presented in
Jenkins et al. (2002). The log-space mean and standard devi-
ation of the fitted lognormal distribution are assigned to 
�
and �2

� , respectively.
In analyses of contemporaneous sequences (like the

mammal and HCV-4 data sets), rate and time cannot be
separated without node calibrations. Usually, one would fix
the rate to 1.0 and estimate the tree height in substitution
units. As our DPM models estimate the rate multipliers, ide-
ally we would like to fix the tree height to 1.0. However, doing
so forbids some proposal moves that are important for effi-
cient traversal of tree space. Therefore, we use a narrow
normal prior, Normal(1.0, 0.1), on the tree height. This re-
duces the problem of nonidentifiability and permits useful
tree proposals. We assume the log-space mean of the rate
base distribution, �, is from Normal(–2.3, 2.35). Thus, the
median of the base distribution, e� , is assumed to
come from Lognormal(–2.3, 2.35). This lognormal distribution
has 2.5%, 50.0% (median), and 97.5% quantiles of 0.001,
0.1, and 10.0, respectively. It is a broad prior that covers the
range of relevant tree heights (measured in substitutions
per site).

The gamma prior applied to ��2 has shape ��2 ¼ 1 and
rate ��2 ¼ 0:1, which is a fairly broad exponential distribu-
tion with variance of 100.

Following the analyses presented in model selection
method articles of Lemey et al. (2009) and Heled and
Drummond (2010), we also place 50% prior probability on
the most parsimonious model by setting the � of SDPM1
and � �ð Þ and � rð Þ of SDPM2 to values, such that the prior
probability is 0.5 for K = 1 for SDPM1 and K� and Kr for
SDPM2.

Analysis

The data sets were analyzed with
HKY + �4 + I, GTR + �4 + I, SRD2006 (GTR + �4 + I for
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each codon position), GY94 + �4 + I, SDPM1, and SDPM2. In
addition, the data sets were also analyzed using SDPM2 with
K� fixed to 1. This special case of the SDPM2 is labeled RDPM
(rate Dirichlet mixture model), which is very similar to the
model presented by Huelsenbeck and Suchard (2007). The
rates across sites are not normalized when using RDPM,
SDPM1, or SDPM2.

For each data set and substitution model, we analyze them
with a strict clock model and an uncorrelated lognormal
relaxed molecular clock (Drummond et al. 2006, LNRC). To
extract the absolute site rates (or site tree heights if calibration
is absent), the branch rates are normalized to 1.0.

Analyses of all virus data sets used a Bayesian skyline plot
coalescent prior (Drummond et al. 2005), whereas the
Mammal data set had a Yule process prior.

The first 10% steps of the MCMC are discarded as burn-in.
The convergence and quality of mixing was examined by
using Tracer v1.5 (Rambaut and Drummond 2009).
Supplementary table S3, Supplementary Material online, pre-
sents the MCMC chain lengths for each analysis. The marginal
likelihood of each analysis was approximated using the
method proposed by Newton and Raftery (1994) with the
stabilization made by Redelings and Suchard (2005).

All input XML files for the analyses performed and the
source code for the BEAST 2 add-on that implements the
described methodology are available from http://code.google.
com/p/subst-bma/(last accessed December 6, 2012). This
add-on consists of 1) priors for model parameters, 2) a suite
of proposal moves for sampling the partition via Gibbs and
Metropolis–Hastings sampling, 3) extensions to likelihood
calculations, and 4) components that enable BEAST 2 to
handle a variable number of models during the MCMC.

To infer the posterior distribution of the tree topology, we
use a series of proposal moves, including narrow exchange,
wide exchange (Drummond et al. 2002), Wilson–Balding
(Wilson and Balding 1998), and subtree-slide. Subtree-slide
is similar to moves proposed by the LOCAL operator (Mau
and Newton 1997; Mau et al. 1999; Larget and Simon 1999).
Details of these moves are described in Höhna et al. (2008)
and have been implemented in both the BEAST 1 and BEAST
2 software packages.

Simulation Study

Simulated data sets are generated under two procedures. In
the first procedure, we randomly drew parameters of a GTR
model and the shape parameter � of a Gamma-distributed
site rate model from empirically derived distributions fit to
the 25 virus data sets as described in the Dirichlet process
prior section. We then drew four site-specific rate values from
a Gamma distribution with shape set to �. Each site in the
alignment was assigned to one of the four rates with equal
probability. Using the randomly drawn GTR model and site
rates, sequences were simulated on a tree with 30 taxa ran-
domly drawn from a Yule model with a birth rate of 20. Here,
the true value of K� ¼ 1 and Kr ¼ 4. One hundred data sets
were simulated under this procedure, and each of them is
analyzed with RDPM, SDPM1, and SDPM2.

In the second procedure, we randomly drew 100 sets of
model partitions and tree from posterior of the HCV-4 data
set analyzed with SDPM2 and strict clock model. Sequences
were simulated with 411 sites. These data sets are analyzed
with SDPM2.

The priors on the hyperparameters of Dirichlet process
base measure are the same as those used for analyzing
HCV-4 data set. In all simulation analyses, we fixed the con-
centration parameter to the value that gave rise to prior
probability of 0.5 for K/K�/Kr = 1. We then repeated all the
simulation analyses but allowed the concentration parameter
to be estimated. We assumed

� � Exponentialð�Þ, ð15Þ

where the rate, � , was set to a value, such that the prior
probability is 0.5 for K/K�/Kr = 1. � therefore was set to
0.135 for the simulated sequences with 1,000 sites and
0.154 for those with 411 sites.

Results

Heterogeneity in Substitution Patterns

The posterior distributions of the number of category param-
eters K, K�, and Kr provide some indication of the level of
heterogeneity in the substitution process across sites. Figure 1
presents the posterior distributions of K, K�, and Kr, as well as
their prior distribution in each mixture model analysis.
Although each of K, K�, and Kr takes the value 1 with prior
probability of 0.5, most analyses exclude K = 1 when analyzed
with SDPM1 and exclude K� ¼ 1 and Kr ¼ 1 when analyzed
with SDPM2 from their respective 95% highest posterior
density (HPD) intervals, providing strong evidence for hetero-
geneity of substitution pattern and rates across sites. The only
exceptions are the K� estimates for the RSVA data set. The
Bayes factor for across-site homogeneity versus heterogeneity
of substitution patterns is given by

Posterior P K� ¼ 1
� �

Posterior P K� > 1ð Þ
�

Prior P K� > 1
� �

Prior P K� ¼ 1ð Þ
: ð16Þ

For RSVA, the Bayes factor is 0.140 for the strict clock
analysis and 0.175 for the relaxed clock analysis. While far
from definitive, these Bayes factors provide substantial evi-
dence against across-site homogeneity in substitution pattern
according to the interpretation scale provided by Jeffreys
(1998). A more conclusive outcome may be obtained by
adding more sequences. Conditioned on the data set and
clock model, the estimated posterior means of K� and Kr

are smaller than that of K, which suggests that less categories
of substitution pattern are required if the site rate heterogen-
eity is modeled separately. However, there is one exception—
for EBOV, the posterior mean of K� is not smaller than that of
K (supplementary table S4, Supplementary Material online).

One question of interest is “Should every site in an align-
ment be modeled by the same type of nucleotide substitution
model?” If not, it is important to infer which substitution
model should be used at each site. We present the answer
obtained from the DPM model analyses in figure 2, which
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consists of 16 grid plots. In each grid plot, each row represents
one of the five nucleotide substitution models and each
column represents a site in an alignment. A grid located in
row M and column i is colored according to the posterior
probability of site i being generated by model M. The color
darkens as the probability increases. The posterior average

number of sites that have selected an M model is on the
right side of the plot. Given a data set and an SDPM model,
little difference is seen in the across-site substitution pattern
between strict clock and LNRC analyses. However, there ap-
pears to be some differences between SDPM1 and SDPM2
analyses. In the SDPM1 analyses on EBOV, there seems to be

FIG. 1. Posterior distributions of the number of categories for substitution pattern and rates from analyses with mixture models. The prior distribution
of the number of categories is in brown. The posterior distribution of K estimated using SDPM1 is in orange. The posterior distributions of K� and Kr

estimated using SDPM2 are colored in green and purple, respectively.
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some support for F81; however, this is not evident after
switching to SDPM2 as illustrated by the white band in the
F81 row. An even larger contrast is displayed by the analyses
on HCV-4. The results from the SDPM1 analyses on HCV-4
suggest that the most favored model is K80; however, the
SDPM2 analyses show almost no support for K80 and clear
preference for TN93 and GTR. All SDPM analyses on Mammal
prefer K80, but this seems stronger in the SDPM1 analyses. In
contrast, the reverse pattern is observed in the analyses on
RSVA, where all analyses prefer GTR, but the preference is
stronger in the SDPM2 analyses.

Figure 2 does not provide information on whether two
sites i and j, which both prefer a specific type of model, are
modeled by the same parameter values. That is, if site i prefers
a GTR model it does not follow that site, j also prefers the
same GTR parameter values. To illustrate the cluster struc-
ture, we performed cluster analyses on the estimates of
substitution model parameters using k-means algorithm im-
plemented in the R package MASS (Venables and Ripley 2002;
R Development Core Team 2011). Let Kmax, K�

max, and Kr
max

represent estimated posterior mode of K, K�, and Kr, respect-
ively. The number of clusters is predefined in the k-means
algorithm. Cluster analyses on SDPM1 parameter estimates
have Kmax clusters, whereas those on SDPM2 parameter esti-
mates have K�

max. As examples, we present the results from
the cluster analyses for the mammal (fig. 3) and RSVA (fig. 4).
Figure 3 shows that sites are indeed clustered according to the
model most preferred. Those that have chosen K80 tend to
be in one cluster, and those prefer F81 is in another cluster.
This segregation does not appear in the results for RSVA (fig.
4). Although most sites prefer the GTR model, there is still
grouping structure, in other words, they are not modeled by
the same GTR.

Because all data sets used in this study code for proteins,
we would like to see whether the across-site heterogeneity in
rate uncovered by our mixture models corresponds to codon
positions. For each MCMC step that has Kmax categories, we
first order the categories in increasing order of the rate, so
that category 1 has the slowest rate, whereas category Kmax

has the fastest rate. The proportion of sites in each category is
computed for each codon position. The same procedure
is repeated for the results from SDPM2 analyses, except
Kmax is replaced by Kr

max, the number of rate categories
with the highest posterior probability. Figure 5 illustrates
the posterior mean proportions of sites in category 1 to cat-
egory Kmax for every SDPM1 analysis and the posterior mean
proportions in category 1 to Kr

max for every SDPM2 analysis.
The bars are colored according to the proportion of sites in
each category, and the category with a faster rate is closer to
the top of the bar. All analyses show that in general the third
codon position has a higher substitution rate, although there
is much variation within the codon positions. This increase in
the third codon rate is concordant with previous findings
(Huelsenbeck and Suchard 2007).

We examine whether the preference for the type of sub-
stitution model also differs by codon position. For each state,
we compute the proportion of sites at each codon position
selecting each one of the five types of substitution model.

The posterior mean proportions for each codon position are
presented in the plots shown in supplementary figure S1,
Supplementary Material online. SDPM1 analyses show that
the preference for the type of substitution model seems to
differ by codon positions. For EBOV, HCV-4, and Mammal,
sites in the third codon position appear to prefer more com-
plex substitution models, but the difference is not so apparent
in the RSVA data set. In contrast, the SDPM2 analyses do not
show any significant difference in preference for substitution
models across codon positions.

We compute the relative standard deviation (RSD) for the
substitution model parameter values across the categories.
RSD is the standard deviation divided by the absolute value
of the mean. The values of posterior mean and 95% credible
interval boundaries of RSD are presented in figure 6. Analyses
with SDPM1 on EBOV produce relative rate parameters with
mean RSD values around 1, except for the rate between C and
T. Analyses on HCV-4 and mammal produce mean RSD
values around 1 for relative rates, other than that between
C and T. These RSD values suggest reasonably clear signal of
heterogeneity in substitution pattern, which is likely to have
contributed to the difference in model choice across sites as
shown in figure 2. All posterior mean RSD values estimated
from RSVA are between 0.15 and 0.7, which are generally
lower than those produced by other data sets. It suggests
that the signal for heterogeneity in substitution patterns is
not strong. Moreover, it is consistent with a higher posterior
probability for homogeneity in this data set than others.

Model Comparison

The Bayes factor is often used for model comparison in
Bayesian analysis, expressing the ratio of the marginal likeli-
hoods of two competing models. The marginal likelihood is
the likelihood of the data given the model and is integrated
across the entire parameter space of the model. It therefore
accounts for the complexity of the model and penalizes
greater model complexity. The natural logarithm of the mar-
ginal likelihoods of all single-locus analyses are presented in
table 2, and their differences are log Bayes factors.

The substitution models are of increasing complexity from
left to right. Conditioned on a data-clock model combination,
the worst fit to the data is found in nucleotide substitution
models that do not account for across-site heterogeneity in
substitution patterns and do not estimate rate partitioning.
Allowing restricted heterogeneity by performing codon
partition substantially improves the marginal likelihood for
all data sets except for RSVA. Increasingly flexible partition
schemes of the substitution pattern improve the fit of the
model substantially. This outcome indicates that codon
partitioning does not fully characterize the complexities of
across site variation in protein coding sequence alignments.

The fit of GY94 + �4 + I relative to other models varies
considerably across different data sets. For the Mammal data
set, GY94 + �4 + I fits the data just, as well as the SDPM
models. Similarly, the SDPM models do not fit EBOV substan-
tially better than the codon model. The detected heterogen-
eity of these two data sets may therefore be just as easily
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explained by a simple codon-based model. However, the
codon model does not fit the RSVA and HCV-4 data sets,
as well as the SDPM models. For those two data sets, the
SDPM models have substantially better marginal likelihoods
than all the other substitution models. This suggests that the
heterogeneity in these two protein coding sequences cannot
be fully explained by the genetic code or at least the properties
of the genetic code incorporated in codon model tested here.

For the data sets HCV-4, Mammal, and RSVA, the differ-
ence in the marginal likelihood between SDPM1 and SDPM2
is< 50 natural log units. However, for EBOV, the difference is

> 150 natural log units and the log marginal likelihood dif-
ference between SDPM1 and SDPM2 is 16–19 times the dif-
ference between HKY and GTR. Therefore, the improvement
in model fit of SDPM2 over SDPM1 can sometimes be very
substantial.

Estimation of Phylogenetic Parameters and Their
Hyperparameters

The tree height estimates are shown in figure 7. Given a clock
model, the mixture models tend to produce older trees than

FIG. 3. Support for substitution models at each site of the Mammal data set, with each site colored according to the cluster to which it is assigned by the
cluster analysis performed on the estimates of substitution model parameters. For the SDPM1 analyses, the sites are grouped into four clusters as the
marginal posterior probability of K is the largest when K = 4 and the colors used to distinguish them are blue, green, purple, and orange. For the SDPM2
analyses, K� ¼ 2 has the largest marginal posterior probability, so the sites are grouped into two clusters colored with blue and orange. The posterior
probability is indicated by the darkness of the color in part (a). Darker coloring corresponds to higher probability. Only the model with the highest
posterior probability (best model) at each site is colored in part (b), and the number of sites that selects a model as the best model is reported on the
axis on the right hand side.
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other simpler substitution model partitions for EBOV. The
estimated posterior means of the EBOV tree height under
SDPM models are between 51% and 61% older than that of
other nucleotide models for strict clock analyses and are
between 40% and 62% older for relaxed clock analyses.
The codon model analyses and SDPM analyses have similar
tree height estimates. The results from the strict clock ana-
lyses on HCV-4 show that the tree height estimates of SDPM
models are, in contrast, 34–52% shorter than that of other
models. Moreover, the SDPM models produced even shorter
trees (68–78% shorter) in LNRC analyses than in strict clock
analysis. However, the difference in tree length estimates is
much smaller between DPM models and others. The

posterior mean tree length is between 3.53 and 3.97 for
SDPM models and 4.41 and 4.83 for non-SDPM models.
This suggests that the SDPM models only reduced the lengths
of a few branches in the trees near the root. The analysis with
the GY94 + �4 + I model produced a much taller Mammal
tree than all nucleotide substitution models, among which
the tree height estimates do not display substantial differ-
ences. For the RSVA data set, the tree height estimates do
not vary significantly across all substitution models given a
strict clock model.

To ease tree-space visualization, we have subsampled 100
trees from each posterior tree distribution. For the 700 trees
obtained from the same clock model and data set, we

FIG. 4. Support for substitution models at each site of the RSVA data set, with each site colored according to the cluster to which it is assigned by
the cluster analysis performed on the estimates of substitution model parameters. The posterior mode values of K and K� are equal to two; therefore,
for both SDPM1 and SDPM2 analyses, sites are grouped into two clusters colored blue and red. The posterior probability is indicated by the darkness of
the color in part (a). Darker coloring corresponds to higher probability. Only the model with the highest posterior probability (best model) at each site is
colored in part (b), and the number of sites that selects a model as the best model is reported on the axis on the right hand side.
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compute the Robinson-Foulds distance between each tree.
We apply principle coordinate analysis (PCO) on the
700� 700 distance matrices. Supplementary figure S2,
Supplementary Material online, presents the reduced-space
plots with the scores on the first two major principle axes.

Each point represents a tree from the subsample. Of the four
data sets, only the posterior distributions of HCV-4 produced
reduced-space plots that displayed clustering by site model
(each model was distinguished by a different color) (fig. 8).
There appears to be three major groupings by model:

FIG. 5. Proportion of sites in each codon position as a function of rate. The number of category shown has the maximum posterior probability. Each bar
represents a codon position, and it is colored according to the posterior mean proportion of sites in each rate category. The colors are picked from the
“rainbow” scheme, and clusters with faster mean rate are in colors closer to the violet end.
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GY94 + � + I (green) stands out as a single model; the
SDPM1 (blue) and SDPM2 (purple) seem clearly separated
from the common nucleotide substitution models,
HKY + � + I (red), GTR + � + I (orange), and SRD2006
(yellow). RDPM (turquoise) scatters between SDPMs and
the common nucleotide substitution models. It is natural

that RDPM bridges the two groupings as it does not partition
the alignment for substitution models, but it does estimate
the substitution model and across-site rate variation with a
DPP.

To further investigate the differences in tree topology of
HCV-4, we record all the unique clades and their posterior

FIG. 6. Posterior RSD of substitution model parameter values across categories. Analyzed with SDPM1 are in red, SDPM2 in blue, strict clock model in
solid lines, and lognormal relaxed clock model in dotted lines.

Table 2. The Natural Log Marginal Likelihoods of Analyses with Strict Clock Model.

Data Set Clock Model HKY+�4+l GTR+�4+l SRD2006 GY94+�4+I RDPM SDPM1 SDPM2

EBOV SC �7,495 �7,487 �7,114 �6,734 �6,914 �6,682 �6,531

EBOV LNRC �7,479 �7,468 �7,093 �6,714 �6,892 �6,648 �6,475

HCV-4 SC �6,172 �6,167 �6,041 �6,208 �5,860 �5,638 �5,601

HCV-4 LNRC �6,153 �6,147 �6,017 �6,190 �5,814 �5,596 �5,550

Mammal SC �1,695 �1,689 �1,582 �1,522 �1,570 �1,534 �1,517

Mammal LNRC �1,690 �1,681 �1,578 �1,518 �1,565 �1,523 �1,511

RSVA SC �3,112 �3,093 �3,072 �3,132 �2,995 �2,988 �2,979

RSVA LNRC �3,108 �3,091 �3,068 �3,130 �2,987 �2,987 �2,976
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FIG. 7. Tree height estimates. Each bar spans the 95% HPD of the tree height, and the posterior mean is marked on the bar. Solid bars are estimates from
strick clock analyses, whereas the dashed bars are estimated from the lognormal relaxed clock analyses.

FIG. 8. Reduced space of substitution models based on clade posterior probability estimated from HCV-4. Each point represents a tree from the
subsample. The trees are colored according substitution model used in the analysis. HKY+�+I is colored red, GTR+�+I orange, SRD2006 yellow,
GY94+�+I green, RDPM turquoise, SDPM1 blue, and SDPM2 purple.
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probability in each of the two posterior tree distributions.
Conditioned on a clock model, each substitution model has
a vector of posterior probabilities for each clade. We use clade
posterior probabilities to find the Manhattan distance be-
tween each pair of substitution model parameters. A 7� 7
distance matrix is constructed for the substitution models. A
PCO analysis is performed on this distance matrix, and the
reduced-space plots with the first two major PAs are pre-
sented in figure 9.

The same groupings appear again in these plots. For each
clade, we find the range (max–min) of posterior probabilities
across the seven substitution models. The top 50 clades with
the highest range of posterior probability have range values
between 0.278 and 0.882 for strict clock analysis and between
0.258 and 0.793 for relaxed clock analysis. Difference in clade
support indicates that different substitution models support
different topologies. We select GTR + � + I, GY94 + � + I,
and SDPM2 as representatives of each cluster. The top 50
clades with the highest range of posterior probability are
mapped to the maximum clade credibility trees of HCV-4
produced by those substitution models (supplementary figs.
S3–S8, Supplementary Material online).

To provide some indication on how the posterior distri-
bution on tree topology differs across the different substitu-
tion models, supplementary table S5, Supplementary Material
online, presents the 95% credible tree sets and the 50% and
5% credible clade sets.

The Bayesian skyline plots for the virus data sets are pre-
sented in figure 10. The discrepancies in the tree height esti-
mates of a given data set are reflected in the time frame of the
BSPs. For EBOV, the population size estimates produced by
the DPM models are much larger at a given time than those
produced by other across-site substitution-rate models in
both strict clock analyses and relaxed clock analyses.
However, all the across-site substitution-rate models shares
the same pattern in how population changes over time—
they all show that the population of the EBOV is constant up

to approximately 100 years ago followed by a bottleneck. The
population size estimates and time frame have been rescaled
for the results on HCV-4 by using a previously estimated
substitution rate 7:9� 10�4 (Pybus et al. 2001). The BSPs
from the strict clock analyses shows that population sizes
are quite similar across all substitution models. This suggests
that the population size of HCV-4 in Egypt was constant until
a rapid expansion occurred approximately 60 years before
sample collection. However, the LNRC analyses with the mix-
ture models on HCV-4 suggest a slightly earlier expansion
date than other relaxed clock analyses. Given a strict clock
model, BSPs estimated for RSVA are very similar across all
across-site substitution-rate models.

The 95% HPD intervals and the estimated posterior
mean of the birth rate of the Yule process prior are very
similar across all analyses with nucletode substitution
models on Mammal. The lower bound the 95% HPD interval
is between 9.22 and 11.48, whereas the upper bound is be-
tween 33.34 and 38.29. The posterior mean ranges from 20.56
to 22.38. This indicates that the inference on birth rate is not
affected by the choice of nucleotide substitution model in
this case. Birth rate estimates inferred from GY94 + �4 + I
are much lower. The strict clock analysis estimates a poster-
ior mean (95% HPD interval) of 14.6 (5.87–23.5), which is
similar to that inferred from the LNRC analysis 15.0
(6.07–25.7).

Hepatitis C Virus Subtype 1b Full-Genome Data

Figure 11 displays the 95% HPD intervals of site-specific rates
from the RDPM + LNRC analysis on HCV-1b genome se-
quences. The rest of the results from RDPM and SDPM1
analyses are presented in supplementary figure S9,
Supplementary Material online. Comparing with Figure 1(a)
from Gray et al. (2011), our results also show a hot spot
around 1,250th site, whereas the rate is fairly uniform across
the rest of the genome. This is probably why the entire
genome (HCV-1b) does not require many more rate

FIG. 9. Reduced space of substitution models based on clade posterior probability.
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categories (supplementary table S4, Supplementary Material
online) than the E1 gene sequences (HCV-4). The region with
the unusually fast rates is near the border of genes E1 and E2.
The plots also suggest that sites at the third codon position
have higher rates (long blue upper tails) than others. In

addition, supplementary figure S9, Supplementary Material
online, shows less variation in rate estimates inferred from
SDPM1 model. This could be due to decreased sensitivity
because the SDPM1 model does not allow separation of
rate and pattern heterogeneity.

FIG. 10. Bayesian skyline plots for the analyses on EBOV, HCV-4, and RSVA. Each plot presents BSPs estimated under HKY+�+I (red), GTR+�+I
(orange), SRD2006 (yellow), GY94+�+I (green), RDPM (turquoise), SDPM1 (blue) and SDPM2 (purple) for a given data set and clock model.
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Simulations

Averaged values of statistics used to indicate accuracy and
precision of our method are presented in table 3. As meas-
ures of accuracy, we use relative bias and the frequency of the
true value inside the 95% HPD interval. Relative error and
relative size of the 95% HPD interval are used to indicate the
level of precision. If a data set is generated with K categories,
the relative bias is given by ðK̂ � KÞ=K where K̂ is the pos-
terior mean of K estimated from a simulated data set. The
relative error is the absolute value of the relative bias. If the
95% HPD interval of K has upper (IU) and lower bounds (IL),
the relative size of 95% HPD interval is defined as ðIU � ILÞ=K.

For all data sets simulated, we generally underestimated
the number of rate categories, which is not surprising as the
prior strongly favors homogeneity. However, the negative bias
is reduced substantially if we estimate the concentration par-

ameter. This may be attributed to the longer tails of the prior
distribution on the number of categories when � is estimated
(supplementary fig. S10, Supplementary Material online).
RDPM does not estimate the number of substitution
model categories. As for SDPM1, the substitution model
and rate share the same category structure. The K� estimates
from the first set of simulations are naturally positive biased as
the true K� value is the lower bound (1). The K� estimates
from the second set of simulations tend to be negatively
biased if the concentration parameter value is fixed. If we
estimate the concentrating parameter value, then estimates
of K� seem positively biased with smaller magnitude.

Analyses on data sets simulated from the first procedure
yielded high 95% HPD coverage of the true number of cate-
gories (0.98–1.00). For data sets simulated from the second
procedure, HPD coverage is also high for the true number of
categories except for K� when the concentration parameter
is fixed. This is attributed to the strong negative bias of the
estimate, when the true number of categories is large.

For both the number of rate and substitution pattern
categories, it appears that the size of relative 95% credible
interval is smaller when the value of concentration parameter
is fixed than when it is estimated. This outcome is expected as
estimating the concentration parameter creates greater un-
certainty in the prior on the number of categories.

Discussion
We have presented DPM models that accommodate
across-site heterogeneity in both nucleotide substitution pat-
tern and rate. Using Dirichlet process priors enables the esti-
mation of the number of categories required to explain the
heterogeneity of nucleotide substitution, as well as the
site-to-category assignment. This obviates a priori specifica-
tion of the partitioning scheme before the analysis. Because
the partitioning is carried out at the nucleotide level, our
method is more flexible and is not limited to protein
coding alignments. More importantly, sites are grouped to-
gether based on the similarity of their substitution properties
(substitution model or rate parameters) as informed by the
data itself.

Table 3. Statistics of Accuracy and Precision of the Estimate of the Number of Categories.

Data Simulation Procedure Model Parameter Estimate � Relative Bias Relative Error % Inside 95%
HPD Interval

Relative 95%
HPD Interval Size

One RDPM Kr N �0.310 0.310 1.00 0.790
Y �0.0409 0.122 1.00 1.49

SDPM1 K N �0.306 0.306 1.00 0.810
Y �0.0178 0.147 1.00 1.52

SDPM2 K( N 0.693 0.693 0.98 3.09
Y 0.885 0.885 1.00 4.23

Kr N �0.307 0.307 0.99 0.795
Y �0.0612 0.138 1.00 1.45

Two SDPM2 K( N �0.237 0.243 0.61 0.531
Y 0.140 0.179 1.00 1.15

Kr N �0.138 0.221 0.92 1.14

Y �0.105 0.266 1.00 1.81

FIG. 11. The 95% HPD intervals of site-specific rates for the HCV-1b
genome sequences. Codon positions 1, 2 and 3 are coded in red, green,
and blue, respectively.
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Similar to previously proposed models that also attempt to
accommodate across-site heterogeneity in nucleotide substi-
tution pattern (Huelsenbeck and Nielsen 1999; Pagel and
Meade 2004; Shapiro et al. 2006; Whelan 2008), analyses
with our DPM models provide evidence supporting the pres-
ence of substitution pattern heterogeneity. The SDPM
models also reveal that not all sites favor the same type of
nucleotide substitution model in our alignment data. These
models seem to be able to capture the codon structure in
protein coding sequences as evidenced by the tendency to
favor faster rate categories in the third codon position.
However, it is also clear that there is rate variation among
the sites in the same codon position, therefore the pattern
of rate variation is more complex than simple codon
partitioning.

In some cases, the phylogenetic and hyperparameter esti-
mates produced by the SDPM models are different to those
produced by simpler substitution models. For example, the
tree height estimates for EBOV produced by the DPM models
are substantially older than when using simpler models but
similar to that produced by a codon substitution model
(Wertheim and Kosakovsky Pond 2011). Perhaps, the hetero-
geneity found in the data set is the result of selection pressure;
however, uncovering the cause of across-site substitution het-
erogeneity is beyond the scope of this study. The data sets
that exhibit significant differences in phylogenetic estimates
between DPM model analyses and others also displayed
higher levels of across-site heterogeneity in substitution pat-
terns. However, to confirm this trend, a more comprehensive
study is required.

The SDPM models fit our four single-locus data sets far
better than all standard nucleotide substitution models
tested. This is compatible with the presence of across-site
heterogeneity of the substitution pattern in the data sets
explored. In addition, the large improvement in model fit
obtained by SDPM models suggest that simple codon
models are not always adequate for protein coding sequences.
Our results show that the SDPM models can substantially
outperform codon models. As a large prior weight (probabil-
ity of 0.5) is placed on across-site substitution homogeneity,
the variation detected is likely to represent strong evidence of
a real signal of site heterogeneity. Because SDPM models can
have a large number of parameters (eight free parameters per
substitution model category), if the data set is small then
overfitting may occur. Overfitting can be prevented by setting
the concentration parameter of the Dirichlet process to a
smaller value, favoring fewer categories. The substitution
model is parameterized, so that the substitution model of
each category can be “estimated,” achieving site to model
assignment. The set of substitution models for selection in-
clude models that aim to capture the biological properties
observed in nucleotide substitution.

It is quite possible that the most suitable model for a par-
ticular (set of) site(s) is not in the set of substitution models
we have specified. Fine tuning the set of substitution models
may improve the quality of fit. In the model selection study by
Huelsenbeck et al. (2004), they have exploited the entire space
of 203 possible nucleotide substitution models. Although the

most favored models were unnamed ones, in their study they
found that the predominant pattern is the difference in the
rate between transition and transversion. Moreover, this ap-
pears to be the decisive factor for whether or not a model has
the highest posterior probability. The models with the highest
posterior probability appeared to only have minor difference
to named models such as Kimura (1980); Hasegawa et al.
(1985). Although most of the favored/best models are un-
named, they still conform to the biological behavior that the
standard named models aim to capture/parameterize.
Because the differences between the unnamed best model
and standard named models are likely to be minor, there
should not be drastic differences in the quality of the fit.
The relatively small differences in marginal likelihood between
HKY and GTR models, when compared with the large differ-
ences between them and the SDPM models suggest that
modeling improvements that capture rate and pattern het-
erogeneity across sites will dwarf any gains that might be
achieved by providing for intermediate substitution models.

A future improvement of our method is to relax the def-
inition of units of category assignments. Currently, alignment
sites are the units of category assignments. If we allow the
units to be genes, it may be useful for phylogenomic analyses.
In this study, we have not explored the entire substitution
model space and have not allowed variation in the topology
across partitions. Incorporating either of these properties sub-
stantially expands the parameter space, and carefully devised
proposal moves would be required to traverse this expanded
space. Hence, these extensions are outside the scope of this
study but are both potential research directions worth
exploring.

The phylogenetic and hyperparameter estimates produced
by SDPM analyses are averaged over the alignment partition
space of rates and substitution pattern. These estimates
therefore take into account the uncertainty associated with
alignment partitioning. The user can therefore bypass the
process of model and partition selection. Conversely, if one
is interested in the across-site heterogeneity in the substitu-
tion process, our method can provide relevant information.
Furthermore, it is clear from the large improvements in model
fit that our approach goes some way to solving the problem
of site to model assignment. We think that the methods
described here provide a superior approach that can replace
existing widely used methodologies for substitution model
comparison and selection.

Supplementary Material
Supplementary figures S1–S10 and tables S1–S5 are available
at Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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