
CO
M

PU
TE

R
SC

IE
N

CE
S

Physics successfully implements Lagrange
multiplier optimization
Sri Krishna Vadlamania,1 , Tianyao Patrick Xiaob, and Eli Yablonovitcha,1

aDepartment of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720; and bSandia National Laboratories,
Albuquerque, NM 87185-1084

Contributed by Eli Yablonovitch, August 25, 2020 (sent for review July 27, 2020; reviewed by Thomas Kailath and Stanley Osher)

Optimization is a major part of human effort. While being math-
ematical, optimization is also built into physics. For example,
physics has the Principle of Least Action; the Principle of Mini-
mum Power Dissipation, also called Minimum Entropy Generation;
and the Variational Principle. Physics also has Physical Annealing,
which, of course, preceded computational Simulated Annealing.
Physics has the Adiabatic Principle, which, in its quantum form,
is called Quantum Annealing. Thus, physical machines can solve
the mathematical problem of optimization, including constraints.
Binary constraints can be built into the physical optimization.
In that case, the machines are digital in the same sense that a
flip–flop is digital. A wide variety of machines have had recent
success at optimizing the Ising magnetic energy. We demonstrate
in this paper that almost all those machines perform optimiza-
tion according to the Principle of Minimum Power Dissipation as
put forth by Onsager. Further, we show that this optimization
is in fact equivalent to Lagrange multiplier optimization for con-
strained problems. We find that the physical gain coefficients that
drive those systems actually play the role of the corresponding
Lagrange multipliers.

hardware accelerators | physical optimization | Ising solvers

Optimization is ubiquitous in today’s world. Everyday appli-
cations of optimization range from aerodynamic design

of vehicles and physical stress optimization of bridges to
airline crew scheduling and delivery truck routing. Further-
more, optimization is also indispensable in machine learning,
reinforcement learning, computer vision, and speech process-
ing. Given the preponderance of massive datasets and com-
putations today, there has been a surge of activity in the
design of hardware accelerators for neural-network training and
inference (1).

We ask whether physics can address optimization? There are
a number of physical principles that drive dynamical systems
toward an extremum. These are the Principle of Least Action;
the Principle of Minimum Power Dissipation (also called Min-
imum Entropy Generation); the Variational Principle; Physical
Annealing, which preceded computational Simulated Annealing;
and the Adiabatic Principle (which, in its quantum form, is called
Quantum Annealing).

In due course, we may learn how to use each of these prin-
ciples to perform optimization. Let us consider the Principle
of Minimum Power Dissipation in dissipative physical systems,
such as resistive electrical circuits. It was shown by Onsager
(2) that the equations of linear systems, like resistor networks,
can be reexpressed as the minimization principle of a power
dissipation function f (i1, i2, . . . , in) for currents in in various
branches of the resistor network. By reexpressing a merit func-
tion in terms of power dissipation, the circuit itself will find
the minimum of the merit function, or minimum power dissi-
pation. Optimization is generally accompanied by constraints.
For example, perhaps the constraint is that the final answers
must be restricted to be ±1. Such a digitally constrained
optimization produces answers compatible with any digital
computer.

A series of physics-based Ising solvers have been created in
the physics and engineering community. The Ising challenge is
to find the minimum energy configuration of a large set of mag-
nets. This is very hard even when the magnets are restricted to
only two orientations, North Pole up or down (3). Our main
insights in this paper are that most of these Ising solvers use
hardware based on the Principle of Minimum Power Dissipation
and that almost all of them implement the well-known Lagrange
multipliers method for constrained optimization.

An early work was by Yamamoto and coworkers in ref. 4, and
this was followed by further work from their group (5–8) and
other groups (9–15). These entropy-generating machines range
from coupled optical parametric oscillators to resistor–inductor–
capacitor electrical circuits, coupled exciton–polaritons, and sil-
icon photonic-coupler arrays. These types of machines have the
advantage that they solve digital problems orders of magnitude
faster, and in a more energy-efficient manner, than conventional
digital chips that are limited by latency and the energy cost (8).

Within the framework of these dissipative machines, con-
straints can be readily included. In effect, these machines per-
form constrained optimization equivalent to the technique of
Lagrange multipliers. We illustrate this connection by survey-
ing seven published physically distinct machines and showing
that each minimizes power dissipation in its own way, sub-
ject to constraints; in fact, they perform Lagrange multiplier
optimization.

In effect, physical machines perform local steepest descent
in the power-dissipation rate. They can become stuck in local
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optima. At the very least, they perform a rapid search for local
optima, thus reducing the search space for the global optimum.
These machines are also adaptable toward advanced techniques
for approaching a global optimum.

At this point, we note that there are several other streams of
work on physical optimization in the literature that we shall not
be dealing with in this paper. These works include a variety of
Lagrange-like continuous-time solvers (16, 17), Memcomputing
methods (18), Reservoir Computing (19, 20), adiabatic solvers
using Kerr nonlinear oscillators (21), and probabilistic bit logic
(22). A brief discussion of adiabatic Kerr oscillator systems (21)
is presented in SI Appendix, section 4.

The paper is organized as follows. In Section 1, we recognize
that physics performs optimization through its various princi-
ples. Then, we concentrate on the Principle of Minimum Power
Dissipation. In Section 2, we give an overview of the minimum
power-dissipation optimization solvers in the literature and show
how they incorporate constraints. Section 3 has a quick tutorial
on the method of Lagrange multipliers. Section 4 studies five
published solvers in detail and shows that they all follow some
form of Lagrange multiplier dynamics. In Section 5, we look
at those published physics-based solvers that are less obviously
connected to Lagrange multipliers. Section 6 presents the appli-
cations of these solvers to perform linear regression in statistics.
Finally, in Section 7, we conclude and discuss the consequences
of this ability to implement physics-based Lagrange multiplier
optimization for areas such as machine learning.

1. Optimization in Physics
We survey the minimization principles of physics and the impor-
tant optimization algorithms derived from them. The aim is
to design physical optimization machines that converge to the
global optimum, or a good local optimum, irrespective of the
initial point for the search.

1.A. The Principle of Least Action. The Principle of Least
Action is the most fundamental principle in physics. Newton’s
Laws of Mechanics, Maxwell’s Equations of Electromagnetism,
Schrödinger’s Equation in Quantum Mechanics, and Quantum
Field Theory can all be interpreted as minimizing a quantity
called Action. For the special case of light propagation, this
reduces to the Principle of Least Time, as shown in Fig. 1.

A conservative system without friction or losses evolves
according to the Principle of Least Action. The fundamen-
tal equations of physics are reversible. A consequence of this
reversibility is the Liouville Theorem, which states that volumes
in phase space are left unchanged as the system evolves.

Contrary-wise, in both a computer and an optimization solver,
the goal is to have a specific solution that occupies a smaller zone
in the search space than the initial state, incurring an entropy
cost first specified by Landauer and Bennett. Thus, some degree
of irreversibility, or energy cost, is needed, specified by the num-
ber of digits in the answer in the Landauer–Bennett analysis. An
algorithm has to be designed and programmed into the reversible
system to effect the reduction in entropy needed to solve the
optimization problem.

The reduction in entropy implies an energy cost but not neces-
sarily a requirement for continuous power dissipation. We look
forward to computer science breakthroughs that would allow
the Principle of Least Action to address unsolved problems. An
alternative approach to computing would involve physical sys-
tems that continuously dissipate power, aiding in the contraction
of phase space toward a final solution. This brings us to the
Principle of Least Power Dissipation.

1.B. The Principle of Least Power Dissipation. If we consider sys-
tems that continuously dissipate power, we are led to a second
optimization principle in physics, the Principle of Least Entropy
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Slow medium
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B

Fig. 1. The Principle of Least Time, a subset of the Principle of Least Action.
The actual path that light takes to travel from point A to point B is the one
that takes the least time to traverse. Recording the correct path entails a
small energy cost consistent with the Landauer Limit.

Generation or Least Power Dissipation. This principle states
that any physical system will evolve into a steady-state config-
uration that minimizes the rate of power dissipation given the
constraints (such as fixed thermodynamic forces, voltage sources,
or input power) that are imposed on the system. An early ver-
sion of this statement is provided by Onsager in his celebrated
papers on the reciprocal relations (2). This was followed by fur-
ther foundational work on this principle by Prigogine (23) and
de Groot (24). This principle is readily seen in action in elec-
trical circuits and is illustrated in Fig. 2. We shall frequently
use this principle, as formulated by Onsager, in the rest of
the paper.

1.C. Physical Annealing; Energy Minimization. This technique is
widely used in materials science and metallurgy and involves
the slow cooling of a system starting from a high tempera-
ture. As the cooling proceeds, the system tries to maintain
thermodynamic equilibrium by reorganizing itself into the low-
est energy minimum in its phase space. Energy fluctuations
due to finite temperatures help the system escape from local
optima as shown in Fig. 3. This procedure leads to global
optima when the temperature reaches zero in theory, but the
temperature has to be lowered prohibitively slowly for this
to happen.

1.D. Adiabatic Method. The Adiabatic Method, illustrated in
Fig. 4, involves the slow transformation of a system from ini-
tial conditions that are easily constructed to final conditions that
capture the difficult problem at hand.

More specifically, to solve the Ising problem, one initializes
the system of spins in the ground state of a simple Hamil-
tonian and then transforms this Hamiltonian into the Ising
problem by slowly varying some system parameters. If the
parameters are varied slowly enough, the system stays in the
instantaneous ground state throughout and the problem gets
solved. In a quantum mechanical system, this is sometimes called
“quantum annealing.” Several proposals and demonstrations,
including the well-known D-Wave machine (25), utilize this
algorithm.

The slow rate of variation of the Hamiltonian parameters
is determined by the minimum energy spacing between the
instantaneous ground state and first excited state that occurs
as we move from the initial Hamiltonian to the final one. The
smaller the gap is, the slower the rate at which we need to
perform the variation to successfully solve the problem. It has
been shown that the gap can become exponentially small in the
worst case, implying that this algorithm takes exponential time in
the worst case for nondeterministic polynomial time (NP)-hard
problems.
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Fig. 2. The Principle of Least Power Dissipation. In a parallel connec-
tion, the current distributes itself in a manner that minimizes the power
dissipation, subject to the constraint of fixed input current I.

1.E. Minimum Power Dissipation in Multioscillator Arrays. Mul-
tioscillator Arrays subject to Parametric Gain were introduced in
refs. 4 and 5 for solving Ising problems. This can be regarded as
a subset of the Principle of Minimum Power Dissipation, which
always requires an input power constraint to avoid the null solu-
tion. In this case, gain acts as a constraint for minimum power
dissipation, and the oscillator array must arrange itself to dissi-
pate the least power subject to that constraint. If the oscillator
array is bistable, this problem becomes analogous to the mag-
netic Ising problem. This mechanism will be the main point of
Section 2.

2. Coupled Multioscillator Array Ising Solvers
The motivation for “Coupled Multioscillator Array Ising
Solvers” is best explained using concepts from laser physics. As
a laser is slowly turned on, spontaneous emission from the laser-
gain medium couples into the various cavity modes and begins
to become amplified. The different cavity modes have different
loss coefficients due to their differing spatial profiles. As the laser
pump/gain increases, the least-loss cavity mode grows faster than
the others, and the gain is clamped by saturation. This picture
can be incomplete since further nonlinear evolution among all of
the modes can occur.

Coupled Multioscillator Array Ising machines try to map the
power losses of the optimization machine to the magnetic ener-
gies of the Ising problem. If the mapping is correct, the lowest
power configuration will match the energetic ground state of
the Ising problem. This is illustrated in Fig. 5. The system
evolves toward a state of minimum power dissipation, or mini-
mum entropy generation, subject to the constraint of gain being
present.

The archetypal solver in this class consists of a network
of interconnected oscillators driven by phase-dependent para-
metric gain. Parametric gain amplifies only the cosine quadra-
ture and causes the electric field to lie along the ±Real
Axis in the complex plane. The phase of the electric field
(0 or π) can be used to represent ±spin in the Ising prob-
lem. The resistive interconnections between the oscillators are
designed to favor ferromagnetic or antiferromagnetic “spin–
spin” interactions by the Principle of Minimum Power Dissi-
pation, subject to parametric (phase-dependent) gain as the
power input.

The gain input is very important to the Principle of Minimum
Power Dissipation. If there were no power input, all of the cur-
rents and voltages would be zero, and the minimum power dissi-
pated would be zero. In the case of the Coupled Multioscillator

circuit, the power input is produced through a gain mechanism,
or a gain module. The constraint could be the voltage input to the
gain module. However, if the gain were to be too small, it might
not exceed the corresponding circuit losses, and the current and
voltage would remain near zero. If the pump gain is then gradu-
ally ramped up, the oscillatory mode requiring the least threshold
gain begins oscillating. Upon reaching the threshold gain, a non-
trivial current distribution of the Couple Multioscillator circuit
will emerge. As the gain exceeds the required threshold, there
will be further nonlinear evolution among the modes so as to
minimize power dissipation. The final-state “spin” configura-
tion, dissipating the lowest power, is reported as the desired
optimum.

With Minimum Power Dissipation, as with most optimization
schemes, it is difficult to guarantee a global optimum.

In optimization, each constraint contributes a Lagrange mul-
tiplier. We will show that the gains of the oscillators are the
Lagrange multipliers of the constrained system. In Section 3, we
provide a brief tutorial on Lagrange multiplier optimization.

3. Lagrange Multiplier Optimization Tutorial
The method of Lagrange multipliers is a very well-known pro-
cedure for solving constrained optimization problems in which
the optimal point x∗≡ (x , y) in multidimensional space locally
optimizes the merit function f (x) subject to the constraint
g(x) = 0. The optimal point has the property that the slope
of the merit function is zero as infinitesimal steps are taken
away from x∗, as taught in calculus. However, these deviations
are restricted to the constraint curve, as shown in Fig. 6. The
isocontours of the function f (x) increase until they are lim-
ited by, and just touch, the constraint curve g(x) = 0 at the
point x∗.

At the point of touching, x∗, the gradients of f and g are
parallel to each other:

∇f (x∗) =λ∗∇g(x∗). [1]

The proportionality constant λ∗ is called the Lagrange multiplier
corresponding to the constraint g(x) = 0.

When we have multiple constraints g1, . . . , gp , we expand Eq.
1 as follows:

∇f (x∗) =

p∑
i=1

λ∗i ∇gi(x∗), [2]

where the gradient vector ∇ represents n equations, accompa-
nied by the p constraint equations gi(x) = 0, resulting in n + p
equations. These equations solve for the n components in the
vector x∗ and the p unknown Lagrange multipliers λ∗i . That
would be n + p equations for n + p unknowns.

possible solutions
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Fig. 3. Physical Annealing involves the slow cooling down of a system. The
system performs gradient descent in configuration space with occasional
jumps activated by finite temperature. If the cooling is done slowly enough,
the system ends up in the ground state of configuration space.
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Fig. 4. A system initialized in the ground state of a simple Hamiltonian
continues to stay in the ground state as long as the Hamiltonian is changed
slowly enough.

Motivated by Eq. 2, we introduce a Lagrange function L(x,λ)
defined as follows:

L(x,λ) = f (x) +

p∑
i=1

λigi(x), [3]

which can be optimized by gradient descent or other methods
to solve for x∗ and λ∗. The theory of Lagrange multipliers, and
the popular “Augmented Lagrange Method of Multipliers” algo-
rithm used to solve for locally optimal (x∗,λ∗), are discussed
in great detail in refs. 26 and 27. A gist of the main points is
presented in SI Appendix, sections 1–3.

For the case of the Ising problem, the objective function
is given by f (µ) =

∑
i,j Jijµi ·µj , where f (µ) is the magnetic

Ising Energy and µi is the i th magnetic moment vector. For
the optimization method represented in this paper, we need
a circuit or other physical system whose power dissipation is
also f (x) =

∑
i,j Jij xixj , but now f (x) is power dissipation, not

energy; xi is a variable that represents voltage, or current or
electric field; and the Jij are not magnetic energy but rather dissi-
pative coupling elements. The correspondence is between mag-
netic spins quantized along the z axis, µzi =±1 and the circuit
variable xi =±1.

While “energy” and “power dissipation” are represented by
different units, we nonetheless need to establish a correspon-
dence between them. For every optimization problem, there is
a challenge of finding a physical system whose power-dissipation
function represents the desired equivalent optimization function.

If the Ising problem has n spins, there are also p =n con-
straints, one for each of the spins. A sufficient constraint is
gi(x) = 1− x2

i = 0. More complicated nonlinear constraints can
be envisioned, but (1− x2

i ) could represent the first two terms in
a more complicated constraint Taylor expansion.

Therefore, a sufficient Lagrange function for the Ising prob-
lem, with digital constraints, is given by

L(x,λ) =

n∑
i=1

n∑
j=1,j 6=i

Jij xixj +

n∑
i=1

λi(1− x2
i )

where λi is the Lagrange multiplier associated with the corre-
sponding constraint. We shall see in Section 4 that most analog
algorithms that have been proposed for the Ising problem in the
literature actually tend to optimize some version of the above
Lagrange function.

4. The Physical Ising Solvers
We now discuss some physical methods proposed in the liter-
ature and show how each scheme implements the method of
Lagrange multipliers. They all obtain good performance on the
Gset benchmark problem set (28), and many of them demon-
strate better performance than the heuristic algorithm, Breakout
Local Search (29). The main result of our work is the realiza-
tion that the gains used in all these physical methods are in fact
Lagrange multipliers.

The available physical solvers in the literature, we entitle as
follows: Optical Parametric Oscillators [4.A], Coupled Radio
Oscillators on the Real Axis [4.B], Coupled Laser Cavities Using
Multicore Fibers [4.C], Coupled Radio Oscillators on the Unit
Circle [4.D], and Coupled Polariton Condensates [4.E]. In Sec-
tion 5, we discuss schemes that might be variants of minimum
power dissipation: Iterative Analog Matrix Multipliers [5.A] and
Leleu Mathematical Ising Solver [5.B]. In SI Appendix, section
4, we discuss “Adiabatic Coupled Radio Oscillators” (21), which
seems unconnected with minimum power dissipation.

Optical Parametric Oscillators, Coupled Radio Oscillators on
the Real Axis, and Coupled Radio Oscillators on the Unit Circle
use only one gain for all of the oscillators, which is equiv-
alent to imposing only one constraint, while Coupled Laser
Cavities Using Multicore Fibers, Coupled Polariton Conden-
sates, and Iterative Analog Matrix Multipliers use different gains
for each spin and correctly capture the n constraints of the
Ising problem.

4.A. Optical Parametric Oscillators.
4.A.1. Overview. An early optical machine for solving the Ising
problem was presented by Yamamoto and coworkers (4, 30).
Their system consists of several pulses of light circulating in an
optical-fiber loop, with the phase of each light pulse represent-
ing an Ising spin. In parametric oscillators, gain occurs at half
the pump frequency. If the gain overcomes the intrinsic losses
of the fiber, the optical pulse builds up. Parametric amplifica-
tion provides phase-dependent gain. It restricts the oscillatory
phase to the Real Axis of the complex plane. This leads to bista-
bility along the positive or negative real axis, allowing the optical
pulses to mimic the bistability of magnets.

power gain

power loss

possible solutions = physical modes

ygrene
gnisI

H

power gain ground state

possible solutions = physical modes

power loss

ygrene
gnisI

H

Fig. 5. A lossy multioscillator system is provided with gain. The x axis is a
list of all of the available modes in the system, whereas the y axis plots the
loss coefficient of each mode. Gain is provided to the system and is gradually
increased. As in single-mode lasers, the lowest loss mode, illustrated by the
blue dot, grows exponentially, saturating the gain. Above the threshold, we
can expect further nonlinear evolution among the modes so as to minimize
power dissipation.
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Fig. 6. Maximization of function f(x, y) subject to the constraint g(x, y) = 0.
At the constrained local optimum, the gradients of f and g, namely ∇f(x, y)
and ∇g(x, y), are parallel.

In the Ising problem, there is magnetic coupling between
spins. The corresponding coupling between optical pulses is
achieved by specified interactions between the optical pulses. In
Yamamoto and coworkers’ approach (30), one pulse i is first
plucked out by an optical gate, amplitude modulated by the
proper connection weight specified in the Jij Ising Hamilto-
nian, and then reinjected and superposed onto the other opti-
cal pulse j , producing constructive or destructive interference,
representing ferromagnetic or antiferromagnetic coupling.

By providing saturation to the pulse amplitudes, the opti-
cal pulses will finally settle down, each to one of the two
bistable states. We will find that the pulse-amplitude configu-
ration evolves exactly according to the Principle of Minimum
Power Dissipation. If the magnetic dipole solutions in the Ising
problem are constrained to ±1, then each constraint is associ-
ated with a Lagrange multiplier. Surprisingly, we find that each
Lagrange multiplier turns out to be equal to the gain or loss
associated with the corresponding oscillator.
4.A.2. Lagrange multipliers as gain coefficients. Yamamoto and
coworkers (5) analyze their parametric oscillator system using
slowly varying coupled wave equations for the circulating optical
modes. We now show that the coupled wave equation approach
reduces to an extremum of their system “power dissipation.” The
coupled-wave equation for the slowly varying amplitude ci of the
in-phase electric field cosine component of the i th optical pulse
(representing magnetic spin in an Ising system) is as follows:

dci
dt

= (−αi + γi)ci −
n∑

j=1,j 6=i

Jij cj [4]

where the weights, Jij , are the dissipative coupling rate constants.
(The Jij arise from constructive and destructive interference and
can be positive or negative. Jij ≡ |Jij | × where =± 1 is
the corresponding weight in the binary Ising problem.) γi repre-
sents the parametric gain (1/sec) supplied to the i th pulse, and
αi is the corresponding loss (1/sec). We shall henceforth use
normalized, dimensionless ci in the rest of the paper. The nor-
malization electric field is that which produces an energy of 1/2
joule in the normalization volume, while for voltages, the nor-
malization voltage is that which produces an energy of 1/2 joule
in the linear capacitor. For clarity of discussion, we dropped the
cubic terms in Eq. 4 that Yamamoto and coworkers (5) origi-
nally had. A discussion of these terms in given in SI Appendix,
section 3.

Owing to the nature of parametric amplification, the quadra-
ture sine components si of the electric fields die out rapidly. The
normalized power dissipation, h (in watts divided by one joule),
including the negative dissipation associated with gain can be
written:

h(c,γ) =

n∑
i=1

αic
2
i −

n∑
i=1

γic
2
i +

n∑
i=1

n∑
j=1,j 6=i

Jij cicj [5]

where the electric field cosine amplitudes ci are rendered dimen-
sionless. If we minimize the power dissipation h(c) without
invoking any constraints, that is, with γi = 0, the amplitudes ci
simply go to zero.

If the gain γi is large enough, some of the amplitudes might go
to infinity. To avoid this, we employ the n constraint functions
gi(ci) =

(
1− c2i

)
= 0, which enforce a digital ci =±1 outcome.

Adding the constraint function to the power dissipation yields
the Lagrange function, L (in units of watts divided by one joule),
(which includes the constraint functions times the respective
Lagrange multipliers):

L(c,γ) =
n∑

i=1

αic
2
i −

n∑
i=1

γi(c
2
i − 1) +

n∑
i=1

n∑
j=1,j 6=i

Jij cicj [6]

The unconstrained Eq. 5 and the constrained Eq. 6 differ only in
the (−1) added to the γi term, which effectively constrains the
amplitudes and prevents them from diverging to∞. Eq. 6 is the
Lagrange function given at the end of Section 3. Surprisingly, the
gains γi emerge to play the role of Lagrange multipliers. This
means that each mode, represented by the subscripts in ci , must
adjust to a particular gain γi such that power dissipation is min-
imized. Minimization of the Lagrange function (Eq. 6) provides
the final steady state of the system dynamics. In fact, the right-
hand side of Eq. 4 is the gradient of Eq. 6, demonstrating that
the dynamical system performs gradient descent on the Lagrange
function. If the circuit or optical system is designed to dissipate
power in a mathematical form that matches the Ising magnetic
energy, then the system will seek out a local optimum of the
Ising energy.

Such a physical system, constrained to ci =±1, is digital in the
same sense as a flip–flop circuit, but unlike the von Neumann
computer, the inputs are resistor weights for power dissipa-
tion. Nonetheless, a physical system can evolve directly, without
the need for shuttling information back and forth as in a von
Neumann computer, providing faster answers. Without the com-
munications overhead but with the higher operation speed, the
energy dissipated to arrive at the final answer will be less,
despite the circuit being required to generate entropy during its
evolution toward the final state.

To achieve minimum power dissipation, the amplitudes ci and
the Lagrange multipliers γi must all be simultaneously opti-
mized using the Lagrange function as discussed in Section 4.E.
While a circuit will evolve toward optimal amplitudes ci , the
gains γi must arise from a separate active circuit. Ideally, the
active circuit that controls the Lagrange multiplier gains γi would
have its power dissipation included with the main circuit. A
more common method is to provide gain that follows a heuris-
tic rule. For example, Yamamoto and coworkers (5) follow the
heuristic rule γi = a + bt . It is not yet clear whether the heuristic-
based approach toward gain evolution will be equally effective
as using the complete Lagrange method in Section 4.E and
lumping together all main circuit and feedback components and
minimizing the total power dissipation.

We conclude this subsection by noting that the Lagrange func-
tion, Eq. 6, corresponds to the following merit function, the
normalized power dissipation, f (in watts divided by one joule),
and constraints:
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f (c) =

n∑
i=1

n∑
j=1,j 6=i

Jij cicj +

n∑
i=1

αic
2
i

gi(ci) =
(
1− c2i

)
= 0, for i = 1, 2, . . . ,n.

4.B. Coupled Radio Oscillators on the Real Axis.
4.B.1. Overview. A coupled inductor–capacitor (LC) oscillator
system with parametric amplification was analyzed in the circuit
simulator, SPICE, by Xiao (9). This is analogous to the opti-
cal Yamamoto system, but this system consists of a network of
radio frequency LC oscillators coupled to one another through
resistive connections. The LC oscillators contain linear induc-
tors but nonlinear capacitors, which provide the parametric gain.
The parallel or cross-connect resistive connections between the
oscillators are designed to implement the ferromagnetic or anti-
ferromagnetic couplings Jij between magnetic dipole moments
µi as shown in Fig. 7. The corresponding phase of the voltage
amplitude Vi , 0 or π, determines the sign of magnetic dipole
moment µi .

The nonlinear capacitors are pumped by voltage V (2ω0) at
frequency 2ω0, where the LC oscillator natural frequency is ω0.
Second harmonic pumping leads to parametric amplification in
the oscillators. As in the optical case, parametric amplification
induces gain γi in the Real Axis quadrature and imposes phase
bistability on the oscillators.

Ideally, an active circuit would control the Lagrange multiplier
gains γi , and the gain control circuit would have its power dissi-
pation included with the main circuit. A more common approach
is to provide gain that follows a heuristic rule. Xiao (9) linearly
ramps up the gain as in Optical Parametric Oscillators. Again,
as in the previous case, a mechanism is needed to prevent the
parametric gain from producing infinite amplitude signals. Zener
diodes are used to restrict the amplitudes to finite saturation val-
ues. With the diodes in place, the circuit settles into a voltage
phase configuration, 0 or π, that minimizes net power dissipation
for a given pump gain.
4.B.2. Lagrange function and Lagrange multipliers. The evolution
of the oscillator capacitor voltages was derived from Kirchhoff’s
laws by Xiao (9). The slowly varying amplitude approximation
on the cosine component of these voltages, ci , produces the
following equation for the ith oscillator:

dci
dt

=

 n∑
j=1,j 6=i

Jij cj

−αci + γci [7]

where the ci are the peak voltage amplitudes; Rc is the resistance
of the coupling resistors; the cross-couplings Jij are assigned val-

V1(t) V2(t)spin 1 spin 2

ferromagnetic, J12= +1, the circuit optimizes J µ µ

anti-ferromagnetic, J12= –1, the circuit optimizes J µ µ

V1(t) V2(t)
spin 1

spin 2
noise

Rc

Rc

Rc

Rc

Fig. 7. Coupled LC oscillator circuit for two coupled magnets. The oscil-
lation of the LC oscillators represents the magnetic moments, while the
parallel or antiparallel cross-connections represent ferromagnetic or anti-
ferromagnetic coupling, respectively. The nonlinear capacitors are pumped
by V(2ω0) at frequency 2ω0, providing parametric gain at ω0.

ues ; C0 is the linear part of the capacitance in
each oscillator; n is the number of oscillators; ω0 is the natu-
ral frequency of the oscillators; the parametric gain constant γ=
ω0|∆C |/4C0, where |∆C | is the capacitance modulation at the
second harmonic; and the decay constant α= (n − 1)/(4RcC0).
In this simplified model, all decay constants α are taken as
equal, and, moreover, each oscillator experiences exactly the
same parametric gain γ, conditions that can be relaxed if needed.

We note that Eq. 7 performs gradient descent on the net
power-dissipation function:

h(c, γ) =−
n∑

i=1

n∑
j=1,j 6=i

Jij cicj +

n∑
i=1

αc2i −
n∑

i=1

γc2i [8]

where h, L, f are the power-dissipation functions in watts divided
by one joule. This is very similar to Section 4.A. The first two
terms on the right-hand side together represent the dissipa-
tive losses in the coupling resistors, while the third term is the
negative of the gain provided to the system of oscillators.

Next, we obtain the following Lagrange function through the
same replacement of

(
−c2i

)
with

(
1− c2i

)
that we performed in

Section 4.A:

L(c, γ) =−
n∑

i=1

n∑
j=1,j 6=i

Jij cicj +
n∑

i=1

αc2i −
n∑

i=1

γ(c2i − 1) [9]

where the ci are normalized to the voltage that produces an
energy of 1/2 joule on the capacitor C0. The above Lagrange
function corresponds to Lagrange multiplier optimization using
the following merit function and constraints:

f (c) =−
n∑

i=1

n∑
j=1,j 6=i

Jij cicj +

n∑
i=1

αc2i , g(c) =

n∑
i=1

(1− c2i ) = 0

Again, we see that the gain coefficient γ is the Lagrange
multiplier of the constraint g = 0.
4.B.3. Time dynamics and iterative optimization of the Lagrange
function. Although the extremum of Eq. 9 represents the final
evolved state of the physical system and represents an opti-
mization outcome, it would be interesting to examine the time
evolution toward the optimal state. We shall show in this subsec-
tion that iterative optimization of the Lagrange function in time
reproduces the slowly varying time dynamics of the circuit. Each
iteration is assumed to take time ∆t . In each iteration, the volt-
age amplitude ci takes a step antiparallel to the gradient of the
Lagrange function:

ci(t + ∆t) = ci(t)−κ∆t
∂

∂ci
L(c, γ), [10]

where the minus sign on the right-hand side drives the sys-
tem toward minimum power dissipation. The proportionality
constant κ controls the size of each iterative step; it also cal-
ibrates the dimensional units between power dissipation and
voltage amplitude. (Since ci is voltage amplitude, κ has units of
reciprocal capacitance.) Converting Eq. 10 to continuous time,

dci
dt

=−κ ∂

∂ci
L(c, γ), [11]

where the γj play the role of Lagrange multipliers, and the gj = 0
are the constraints. Substituting L(c, γ) from Eq. 9 into Eq. 11,
we get

dci
dt

= 2κ

 n∑
j=1,j 6=i

Jij cj

−αci + γci

 [12]
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The constant κ can be absorbed into the units of time to repro-
duce Eq. 7, the slowly varying amplitude approximation for
the coupled radio oscillators. Thus, in this case and many of the
others (except Section 4.E), the slowly varying time dynamics can
be reproduced from iterative optimization steps on the Lagrange
function.

4.C. Coupled Laser Cavities Using Multicore Fibers.
4.C.1. Overview. The Ising solver designed by Babaeian et al.
(10) makes use of coupled laser modes in a multicore optical
fiber. Polarized light in each core of the optical fiber corresponds
to each magnetic moment in the Ising problem. The number
of cores is equal to the number of magnets in the given Ising
instance. The right-hand and left-hand circular polarization of
the laser light in each core represent the two polarities (up and
down) of the corresponding magnet. The mutual coherence of
the various cores is maintained by injecting seed light from a
master laser.

The coupling between the fiber cores is achieved through
amplitude mixing of the laser modes by Spatial Light Modula-
tors at one end of the multicore fiber (10). These Spatial Light
Modulators couple light amplitude from the i th core to the j th
core according to the prescribed connection weight Jij .
4.C.2. Equations and comparison with Lagrange multipliers. As in
prior physical examples, the dynamics can be expressed using
slowly varying equations for the polarization modes of the
i th core, EiL and EiR, where the two electric-field amplitudes
are in-phase temporally, are positive real, but have different
polarization. They are

d

dt
EiL =−αiEiL + γiEiL +

1

2

n∑
j=1,j 6=i

Jij (EjR −EjL),

d

dt
EiR =−αiEiR + γiEiR −

1

2

n∑
j=1,j 6=i

Jij (EjR −EjL),

where αi is the decay rate in the i th core, and γi is the gain in
the i th core. The third term on the right-hand side represents the
coupling between the j th and i th cores that is provided by the
Spatial Light Modulators. They next define the degree of polar-
ization as µi ≡EiL−EiR. Subtracting the two equations above,
we obtain the following evolution equation for µi :

d

dt
µi =−αiµi + γiµi +

n∑
j=1,j 6=i

Jijµj [13]

where the electric fields are properly dimensionless and nor-
malized as in Section 4.A. The power dissipation is propor-
tional to |EiL|2 + |EiR|2. However, this can also be written
|EiL−EiR|2 + |EiL +EiR|2 = |µi |2 + |EiL +EiR|2. |EiL +EiR|2
can be regarded as relatively constant as energy switches back
and forth between right and left circular polarization. Then,
power dissipation h(µ) would be most influenced by quadratic
terms in µ:

h(µ,γ) =

n∑
i=1

αiµ
2
i +

n∑
i=1

n∑
j=1,j 6=i

Jijµiµj −
n∑

i=1

γiµ
2
i .

As before, we add the n digital constraints gi(µi) = 1−µ2
i = 0,

where µi =±1 represents fully left or right circular polarization,
and obtain the Lagrange function:

L(µ,γ) =

n∑
i=1

αiµ
2
i +

n∑
i=1

n∑
j=1,j 6=i

Jijµiµj −
n∑

i=1

γi
(
µ2
i − 1

)
.

[14]

Once again, the gains γi play the role of Lagrange multipliers.
Thus, a minimization of the power dissipation, subject to the
optical gain γi , solves the Ising problem defined by the same
Jij couplings. In fact, the right-hand side of Eq. 13 is the gradi-
ent of Eq. 14, demonstrating that the dynamical system performs
gradient descent on the Lagrange function.

The merit and constraint functions in the Lagrange function
above are

f (µ) =

n∑
i=1

αiµ
2
i +

n∑
i=1

n∑
j=1,j 6=i

Jijµiµj

gi(µi) =
(
1−µ2

i

)
= 0, for i = 1, 2, . . . ,n.

4.D. Coupled Electrical Oscillators on the Unit Circle.
4.D.1. Overview. We now consider a network of nonlinear,
amplitude-stable electrical oscillators designed by Wang and
Roychowdhury (11) to represent an Ising system for which we
seek a digital solution with each dipole µiz =±1 along the z axis
in the magnetic dipole space. Wang and Roychowdhury provide
a dissipative system of LC oscillators with oscillation amplitude
clamped and oscillation phase φi = 0 or π revealing the pre-
ferred magnetic dipole orientation µiz =±1. It is noteworthy
that Roychowdhury goes beyond Ising machines and constructs
general digital logic gates using these amplitude-stable oscillators
in ref. 31.

In their construction, Wang and Roychowdhury (11) use non-
linear elements that behave like negative resistors at low-voltage
amplitudes but as saturating resistance at high-voltage ampli-
tudes. This produces amplitude-stable oscillators. In addition,
Wang and Roychowdhury (11) provide a second harmonic pump
and use a form of parametric amplification (referred to as sub-
harmonic injection locking in ref. 11) to obtain bistability with
respect to phase.

With the amplitudes being essentially clamped, it is the read-
out of these phase shifts, 0 or π, that provides the magnetic dipole
orientation µiz =±1. One key difference between this system
and Yamamoto’s system is that the latter had fast phase dynam-
ics and slow amplitude dynamics, while Roychowdhury’s system
has the reverse.
4.D.2. Equations and comparison with Lagrange multipliers.
Wang and Roychowdhury (11) derived the dynamics of their
amplitude-stable oscillator network using perturbation concepts
developed in ref. 32. While a circuit diagram is not shown, ref. 11
invokes the following dynamical equation for the phases of their
electrical oscillators:

dφi

dt
=−

 n∑
j=1,j 6=i

Jij sin (φi(t)−φj (t))

−λi sin (2φi(t)),

[15]
where Rc is a coupling resistance in their system, φi is the phase
of the i th oscillator, and the λi are decay parameters that dictate
how fast the phase angles settle toward their steady-state values.

We now show that Eq. 15 can be reproduced by iteratively
minimizing the power dissipation in their system. Power dissi-
pation across a resistor Rc is (V1−V2)2/Rc , where (V1−V2)
is the voltage difference. Since V1 and V2 are sinusoidal, the
power dissipation consists of constant terms and a cross-term of
the form

f (φ1,φ2) =
|V |2 cos (φ1−φ2)

Rc
,

where f (φ1,φ2) is the power dissipated in the resistors. Mag-
netic dipole orientation parallel or antiparallel is represented by
whether φ1−φ2 = 0 or π, respectively. We may choose an origin
for angle space at φ= 0, which implies φi = 0 or π. This can be
implemented as
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gi(φi) = (cos (2φi)− 1) = 0.

Combining the power dissipated in the resistors with the
constraint function gi(φi) = 0, we obtain a Lagrange function:

L(φ,λ) =

n∑
i=1

n∑
j=1,j 6=i

Jij cos (φi −φj )+

n∑
i=1

λi (cos (2φi)− 1)

[16]

where λi is the Lagrange multiplier corresponding to the phase-
angle constraint, and Jij are resistive coupling rate constants.
The right-hand side of Eq. 15 is the gradient of Eq. 16, demon-
strating that the dynamical system performs gradient descent on
the Lagrange function.

The Lagrange function above is isomorphic with the general
form in Section 3. The effective merit function f and constraints
gi in this correspondence are

f (φ) =

n∑
i=1

n∑
j=1,j 6=i

Jij cos (φi −φj )

gi(φi) = (cos (2φi)− 1)= 0, for i = 1, 2, . . . ,n.

4.E. Coupled Polariton Condensates.
4.E.1. Overview. Kalinin and Berloff (12) proposed a system con-
sisting of coupled polariton condensates to minimize the XY
Hamiltonian. The XY Hamiltonian is a two-dimensional version
of the Ising Hamiltonian and is given by

H (µ) =

n∑
i=1

n∑
j=1,j 6=i

Jijµi ·µj

where the µi represents the magnetic moment vector of the i th
spin restricted to the spin-space XY plane.

Kalinin and Berloff (12) pump a grid of coupled semiconduc-
tor microcavities with laser beams and observe the formation
of strongly coupled exciton–photon states called polaritons. For
our purposes, the polaritonic nomenclature is irrelevant. For us,
these are simply coupled electromagnetic cavities that operate
by the Principle of Minimum Power Dissipation similar to the
previous cases. The complex electromagnetic amplitude in the
i th microcavity can be written Ei = ci + jsi , where ci and si rep-
resent the cosine and sine quadrature components of Ei , and j
is the unit imaginary. ci is mapped to the X-component of the
magnetic dipole vector, and si to the Y-component. The elec-
tromagnetic microcavity system settles into a state of minimum
power dissipation as the laser pump and optical gain are ramped
up to compensate for the intrinsic cavity losses. The phase angles
in the complex plane of the final electromagnetic modes are then
reported as the corresponding µ-magnetic moment angles in the
XY plane.

Since the electromagnetic cavities experience phase-inde-
pendent gain, this system does not seek phase bistability. We are
actually searching for the magnetic dipole vector angles in the
XY plane that minimize the corresponding XY magnetic energy.
4.E.2. Lagrange function and Lagrange multipliers. Ref. 12 uses
“Ginzburg–Landau” equations to analyze their system, result-
ing in equations for the complex amplitudes Ψi of the polari-
ton wavefunctions. However, the Ψi are actually the complex
electric-field amplitudes Ei (properly dimensionless and nor-
malized as in Section 4.A) of the i th cavity. The electric-field
amplitudes satisfy the slowly varying amplitude equation:

dEi

dt
=
(
γi −αi −β|Ei |2

)
Ei − iU |Ei |2Ei −

n∑
j=1,j 6=i

JijEj [17]

where γi is optical gain, αi is linear optical loss, β is nonlinear
attenuation, U is nonlinear phase shift, and Jij are dissipa-
tive coupling rate constants. We note that both the amplitudes
and phases of the electromagnetic modes are coupled to each
other and evolve on comparable timescales. This is in contrast
to ref. 11, where the main dynamics were embedded in phase—
amplitude was fast and almost fixed—or, conversely (9), where
the dynamics were embedded in amplitude—phase was fast and
almost fixed.

We show next that the method of ref. 12 is essentially the
method of Lagrange multipliers with an added “rotation.” The
power-dissipation rate is

h(E) =− d

dt

n∑
i=1

(
E∗i
2

+
Ei

2

)2
=

1

2

n∑
i=1

n∑
j=1,j 6=i

Jij
(
E∗i Ej +EiE

∗
j

)
+

n∑
i=1

β|Ei |4

+

n∑
i=1

αi |Ei |2−
n∑

i=1

γi |Ei |2.

If we add a saturation constraint, gi(Ei) =
(
1− |Ei |2

)
= 0, then

by analogy to the previous sections, γi is reinterpreted as a
Lagrange multiplier:

L(E,γ) =
1

2

n∑
i=1

n∑
j=1,j 6=i

Jij
(
E∗i Ej +EiE

∗
j

)
+

n∑
i=1

β|Ei |4

+

n∑
i=1

αi |Ei |2−
n∑

i=1

γi
(
|Ei |2− 1

) [18]

where L is the Lagrange function and h, L, f are the normalized
power-dissipation functions (in watts divided by one joule). Thus,
the scheme of coupled polaritonic resonators operates to find the
state of minimum power dissipation in steady state, similar to the
previous cases.

Dynamical Eq. 17 performs gradient descent on the Lagrange
function Eq. 18 in conjunction with a rotation about the ori-
gin, iU . This rotation term, iU , is not captured by the Lagrange
multiplier interpretation. It could, however, be useful in develop-
ing more sophisticated algorithms than the method of Lagrange
multipliers, and we discuss this prospect in Section 5.B, where a
system with a more general “rotation” term is discussed.
4.E.3. Iterative evolution of Lagrange multipliers. In the method
of Lagrange multipliers, the merit-function Eq. 18 is used to
optimize not only the electric-field amplitudes Ei but also the
Lagrange multipliers γi . The papers of the previous sections used
simple heuristics to adjust their gains/decay constants, which we
have shown to be Lagrange multipliers. Kalinin and Berloff (12)
employ the Lagrange function itself to adjust the gains, as in the
complete Lagrange method discussed next.

We introduce the full method of Lagrange multipliers by
briefly shifting back to the notation of Section 3. The full
Lagrange method finds the optimal x∗ and λ∗ by performing gra-
dient descent of L in x and gradient ascent of L in λ. The reason
for ascent in λ rather than descent is to more strictly penalize
deviations from the constraint. This leads to the iterations

xi(t + ∆t) = xi(t)−κ∆t
∂

∂xi
L(x,λ), [19]

λi(t + ∆t) =λi(t) +κ′∆t
∂

∂λi
L(x,λ), [20]

where κ and κ′ are suitably chosen step sizes.
With our identification that the Lagrange multipliers λ are

the same as the gains γ, we plug the Lagrange function Eq. 18
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into the second iterative equation and take the limit ∆t→ 0. We
obtain the following dynamical equation for the gains γi :

dγi
dt

=κ′
(
1− |Ei |2

)
. [21]

This iterative evolution of the Lagrange multipliers is indeed
what Kalinin and Berloff (12) employ in their coupled polariton
system.

To Eq. 21, we must add the iterative evolution of the field
variables xi :

dxi
dt

=−κ ∂

∂xi
L(x,λ). [22]

Eqs. 21 and 22 represent the full iterative evolution, but in some
of the earlier subsections, γi(t) was assigned a heuristic time
dependence.

We conclude this subsection by splitting the Lagrange function
into the effective merit function f and the constraint func-
tion gi . The extra “phase rotation” U is not captured by this
interpretation.

f (E1, . . . ,En) =
1

2

n∑
i=1

n∑
j=1,j 6=i

Jij
(
E∗i Ej +EiE

∗
j

)
+

n∑
i=1

β|Ei |4

+

n∑
i=1

αi |Ei |2

gi(Ei) =
(
1− |Ei |2

)
= 0, for i = 1, 2, . . . ,n.

4.F. General Conclusions from Coupled Multioscillator Array Ising
Solvers. 1) Physical systems minimize the power-dissipation rate
subject to input constraints of voltage, amplitude, gain, etc. 2)
These systems actually perform Lagrange multiplier optimiza-
tion with the gain γi playing the role of multiplier for the i th
digital constraint. 3) Under the digital constraint, amplitudes
ci =±1 or phases φi = 0 or π, power-dissipation minimization
schemes are actually binary, similar to a flip–flop. 4) In many
of the studied cases, the system time dependence follows gra-
dient descent on the power-dissipation function as the system
approaches a power-dissipation minimum. In one of the cases
(Section 4.E), there was a rotation superimposed on this gradient
descent.

5. Other Methods in the Literature
We now look at other methods in the literature that do not
explicitly implement the method of Lagrange multipliers but
nevertheless end up with dynamics that resemble it to varying
extents. All of these methods offer operation regimes where the
dynamics is not analogous to Lagrange multiplier optimization,
and we believe it is an interesting avenue of future work to study
the capabilities of these regimes.

5.A. Iterative Analog Matrix Multipliers. Soljacic and coworkers
(13) developed an iterative procedure consisting of repeated
matrix multiplication to solve the Ising problem. Their algorithm
was implemented on a photonic circuit that utilized on-chip
optical matrix multiplication units composed of Mach–Zehnder
interferometers that were first introduced for matrix algebra
by Zeilinger and coworkers in ref. 33. Soljacic and coworkers
(13) showed that their algorithm performed optimization on an
effective merit function that is demonstrated to be a Lagrange
function in SI Appendix, section 5.

We use our insights from the previous sections to implement
a simplified iterative optimization using an optical matrix multi-
plier. A block diagram of such a scheme is shown in Fig. 8. Let
the multiple magnetic moment configuration of the Ising prob-
lem be represented as a vector of electric-field amplitudes, Ei ,

Matrix multiplier composed of 2X2 optical splitters and gain

Output of current iteration 
fed back as input for the next iteration

Fig. 8. An optical circuit performing iterative multiplications converges on
a solution of the Ising problem. Optical pulses are fed as input from the
left-hand side at the beginning of each iteration, pass through the matrix
multiplication unit, and are passed back from the outputs to the inputs for
the next iteration. Distributed optical gain sustains the iterations.

of the spatially separated optical modes. Each mode-field ampli-
tude represents the value of each magnetic moment. In each
iteration, the optical modes are fed into the optical circuit, which
performs matrix multiplication, and the resulting output optical
modes are then fed back to the optical circuit input for the next
iteration. Optical gain or some other type of gain sustains the
successive iterations.

We wish to design the matrix multiplication unit such that it
has the following power-dissipation function:

h(E) =

n∑
i=1

αi |Ei |2−
n∑

i=1

γi |Ei |2 +
1

2

n∑
i=1

n∑
j=1,j 6=i

Jij (E∗i Ej

+EiE
∗
j

)
The Lagrange function, including a binary constraint, |Ei |2 = 1,
is given by

L(E,γ) =

n∑
i=1

αi |Ei |2−
n∑

i=1

γi
(
|Ei |2− 1

)
+

1

2

n∑
i=1

n∑
j=1,j 6=i

Jij

×
(
E∗i Ej +EiE

∗
j

)
[23]

where the Jij is the dissipative loss rate constant associated with
electric-field interference between optical modes in the Mach–
Zehnder interferometers, and γi is the optical gain.

The iterative multiplicative procedure that evolves the electric
fields toward the minimum of the Lagrange function Eq. 23 is
given by

Ei(t + 1)−Ei(t) =−κ∆t
∂

∂Ei

(
n∑

i=1

αi |Ei(t)|2

+
n∑

i=1

γi
(
1− |Ei(t)|2

)
+

1

2

n∑
i=1

n∑
j=1,j 6=i

Jij (E∗i (t)Ej (t)

+Ei(t)E
∗
j (t)

))
,

where κ is a constant step size with the appropriate units, and
each iteration involves taking steps in Ei proportional to the
gradient ∂/∂Ei of the Lagrange function. (∂/∂Ei represents dif-
ferentiation with respect to the two quadratures.) Simplifying

Vadlamani et al. PNAS | October 27, 2020 | vol. 117 | no. 43 | 26647

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015192117/-/DCSupplemental


and sending all of the terms involving time step t to one side,
we get

Ei(t + 1) =

n∑
j=1

((1 + 2κ∆tγi − 2κ∆tαi)δij

−2κ∆tJij (1− δij ))Ej (t) [24]

where δij is the Kronecker delta (1 only if i = j ). The
Mach–Zehnder interferometers should be tuned to the matrix
[(1 + 2κ∆tγi − 2κ∆tαi)δij − 2κ∆tJij (1− δij )]. Thus, we have
an iterative matrix multiplier scheme that minimizes the
Lagrange function of the Ising problem. In effect, a lump of dis-
sipative optical circuitry, compensated by optical gain, will, in a
series of iterations, settle into a solution of the Ising problem.

The simple system above differs from that of Soljacic and
coworkers (13) in that their method has added noise and
nonlinear thresholding in each iteration. A detailed description
of their approach is presented in SI Appendix, section 5.

5.B. Leleu Mathematical Ising Solver. Leleu et al. (8) proposed
a modified version of the Yamamoto’s Ising machine (5) that
significantly resembles the Lagrange method while incorporat-
ing important new features. To understand the similarities and
differences between Leleu’s method and that of Lagrange multi-
pliers, we recall the Lagrange function for the Ising problem that
we encountered in Section 4:

L(x,γ) =

n∑
i=1

n∑
j=1,j 6=i

Jij xixj +

n∑
i=1

αix
2
i +

n∑
i=1

γi
(
1− x2

i

)
[25]

In the above, xi are the optimization variables, Jij is the inter-
action matrix, γi is the gain provided to the i th variable, and
αi is the loss experienced by the i th variable. To find a local
optimum (x∗,γ∗) that satisfies the constraints, one performs gra-
dient descent on the Lagrange function in the x variables and
gradient ascent in the γ variables, as discussed in Section 4.E,
Eqs. 19 and 20. Substituting Eq. 25 into them and taking the limit
of ∆t→ 0, we get

dxi
dt

= 2κ

(−αi + γi)xi −
n∑

j=1,j 6=i

Jij xj

 [26]

dγi
dt

=κ′
(
1− x2

i

)
. [27]

On the other hand, Leleu et al. (8) propose the following system:

dxi
dt

= (−α+ γ)xi + ei

n∑
j=1,j 6=i

Jij xj [28]

dei
dt

=β(1− x2
i )ei , [29]

where the xi are the optimization variables, α is the loss expe-
rienced by each variable, γ is a common gain supplied to each
variable, β is a positive parameter, and the ei are error coeffi-
cients that capture how far away each xi is from its saturation
amplitude. Leleu et al. also had cubic terms in xi in ref. 8, and a
discussion of these terms is given in SI Appendix, section 3.

It is clear that there are significant similarities between Leleu’s
system and the Lagrange multiplier system. The optimization
variables in both systems experience linear losses and gains and
have interaction terms that capture the Ising interaction. Both
systems have auxiliary variables that are varied according to how
far away each degree of freedom is from its preferred saturation
amplitude. However, the similarities end here.

A major differentiation in Leleu’s system is that ei mul-
tiplies the Ising interaction felt by the i th variable, result-
ing in eiJij . The complementary coefficient is ejJij . Conse-
quently, Leleu’s equations implement asymmetric interactions
eiJij 6= ejJij between vector components xi and xj . The inclu-
sion of asymmetry seems to be important because Leleu’s system
achieves excellent performance on the Gset problem set, as
demonstrated in ref. 8.

We obtain some intuition about this system by splitting the
asymmetric term eiJij into a symmetric and antisymmetric part.
This follows from the fact that any matrix A can be written as
the sum of a symmetric matrix, (A+AT )/2, and an antisymmet-
ric matrix, (A−AT )/2. The symmetric part leads to gradient
descent dynamics similar to all of the systems in The Physical
Ising Solvers. The antisymmetric part causes a energy-conserving
“rotary” motion in the vector space of xi .

The secret of Leleu et al.’s (8) improved performance seems
to lie in this antisymmetric part. The dynamical freedom asso-
ciated with asymmetry might provide a fruitful future research
direction in optimization and deserves further study to ascertain
its power.

6. Applications in Linear Algebra and Statistics
We have seen that minimum power-dissipation solvers can
address the Ising problem and similar problems like the travel-
ing salesman problem. In this section, we provide yet another
application of minimum power-dissipation solvers to an opti-
mization problem that appears frequently in statistics, namely
curve fitting. In particular, we note that the problem of lin-
ear least-squares regression, linear curve fitting with a quadratic
merit function, resembles the Ising problem. In fact, the electri-
cal circuit example we presented in Section 4.B can be applied to
linear regression. We present such a circuit in this section. Our
circuit provides a digital answer but requires a series of binary
resistance values, that is, . . . , 2R0,R0, 0.5R0, . . . , to represent
arbitrary binary statistical input observations.

The objective of linear least-squares regression is to fit a lin-
ear function to a given set of data {(x1, y1), (x2, y2), (x3, y3), . . . ,
(xn, yn)}. The xi are input vectors of dimension d , while the yi are
the observed outputs that we want our regression to capture. The
linear function that is being fit is of the form y(a) =

∑d
i=1 wiai ,

where a is a feature vector of length d , and w is a vector of
unknown weights. The vector w is calculated by minimizing the

Fig. 9. A 2-bit, linear regression circuit to find the best two curve-fitting
weights wd , using the Principle of Minimum Power Dissipation.
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sum of the squared errors it causes when used on an actual
dataset:

w∗= arg min
w

n∑
i=1

[(
d∑

j=1

wj xij

)
− yi

]2
,

where xij is the j th component of the vector xi. This functional
form is identical to the Ising Hamiltonian, and we may construct
an Ising circuit with Jij =

∑n
k=1 xkixkj , with the weights w acting

like the unknown magnetic moments. There is an effective mag-
netic field in the problem hi =−2

∑n
j=1 xjiyj . A simple circuit

that solves this problem for d = 2 (each instance has two fea-
tures) is provided in Fig. 9. This circuit provides weights to 2-bit
precision.

The oscillators on the left-hand side of Fig. 9 represent the 20

and 21 bits of the first weight, while the oscillators on the other
side represent the second weight.

The cross-resistance R that one would need to represent the
Jij that connects the i th and j th oscillators is calculated as

1

R
=

b1
R−1

+
b0
R0

+
b−1

R1
,

where Rm = 2mR0 is a binary hierarchy of resistances based on
a reference resistor R0, and bm are the bits of Jij : Jij = b1×
21 + b0× 20 + b−1× 2−1. This represents Jij to 3-bit precision
using resistors that span a dynamic range 22 = 4. Further, the
sign of the coupling is allotted according to whether the resis-
tors R are parallel-connected or cross-connected. In operation,
the resistors R would be externally programmed to the correct
binary values, with many more bits than 3-bit precision, as given
by the matrix product Jij =

∑n
k=1 xkixkj .

We have just solved the regression problem of the form Xw = y,
where matrix X and vector y were known measurements and the
corresponding best weight vector w for fitting was the unknown.
We conclude by noting that this same procedure can be adopted
to solve linear systems of equations of the form Xw = y.

7. Discussion and Conclusion
Physics obeys a number of optimization principles such as the
Principle of Least Action, the Principle of Minimum Power Dis-
sipation (also called Minimum Entropy Generation), the Varia-
tional Principle, Physical Annealing, and the Adiabatic Principle
(which, in its quantum form, is called Quantum Annealing).

Optimization is important in diverse fields, ranging from
scheduling and routing in operations research to protein folding
in biology, portfolio optimization in finance, and energy min-
imization in physics. In this article, we made the observation
that physics has optimization principles at its heart and that they
can be exploited to design fast, low-power digital solvers that
avoid the limits of standard computational paradigms. Nature
thus provides us with a means to solve optimization problems
in all of these areas, including engineering, artificial intelli-
gence, machine learning (backpropagation), Control Theory,
and reinforcement learning.

We reviewed seven physical machines that purported to solve
the Ising problem and found that six of the seven were perform-
ing Lagrange multiplier optimization; further, they also obey
the Principle of Minimized Power Dissipation (always subject
to a power-input constraint). This means that by appropriate
choice of parameter values, these physical solvers can be used
to perform Lagrange multiplier optimization orders of mag-
nitude faster and with lower power than conventional digital
computers. This performance advantage can be utilized for opti-
mization in machine-learning applications where energy and
time considerations are critical.

The following questions arise: What are the action items?
What is the most promising near term application? All of the
hardware approaches seem to work comparably well. The easiest
to implement would be the electrical oscillator circuits, although
the optical oscillator arrays can be compact and very fast. Electri-
cally, there would two integrated circuits, the oscillator array, and
the connecting resistors that would need to be reprogrammed
for different problems. The action item could be to design the
first chip consisting of about 1,000 oscillators and a second chip
that would consist of the appropriate coupling resistor array for
a specific optimization problem. The resistors should be in an
addressable binary hierarchy so that any desired resistance value
can be programmed in by switches, within the number of bits
accuracy. It is possible to imagine solving a new Ising problem
every millisecond by reprogramming the resistor chip.

On the software side, a compiler would need to be developed
to go from an unsolved optimization problem to the resistor array
that matches that desired goal. If the merit function were mildly
nonlinear, we believe that the Principle of Minimum Power Dis-
sipation would still hold, but there has been less background
science justifying that claim.

With regard to the most promising near-term application, it
might be in Control Theory or in reinforcement learning in self-
driving vehicles, where rapid answers are required, at modest
power dissipation.

The act of computation can be regarded as a search among
many possible answers. Finally, the circuit converges to a final
correct configuration. Thus the initial conditions may include
a huge phase-space volume of 2n possible solutions, ultimately
transitioning into a final configuration representing a small- or
modest-sized binary number. This type of computing implies a
substantial entropy reduction. This led to Landauer’s admoni-
tion that computation costs kn log 2 of entropy decrease and
kTn log 2 of energy, for a final answer with n binary digits.

By the Second Law of Thermodynamics, such an entropy reduc-
tion must be accompanied by an entropy increase elsewhere. In
Landauer’s viewpoint, the energy and entropy limit of computing
was associated with the final acting of writing out the answer in n
bits, assuming the rest of the computer was reversible. In practice,
technology consumes ∼104 times more than the Landauer limit,
owing to the insensitivity of the transistors operating at ∼1 V,
when they could be operating at ∼10 mV.

In the continuously dissipative circuits we have described here,
the energy consumed would be infinite if we waited long enough
for the system to reach the final optimal state. If we terminate the
powering of our optimizer systems after they reach the desired
final-state answer, the energy consumed becomes finite. By oper-
ating at voltage <1 V and by powering off after the desired
answer is achieved, our continuously dissipating Lagrange opti-
mizers could actually be closer to the Landauer limit than a
conventional computer.

A controversial point relates to the quality of solutions that
are obtained for NP-hard problems. The physical systems we are
proposing evolve by steepest descent toward a local optimum,
not a global optimum. Nonetheless, many of the authors of the
seven physical systems presented here have claimed to find better
local optima than their competitors, due to special adjustments in
their methods. Undoubtedly, some improvements are possible,
but none of the seven papers reviewed here claims to always find
the one global optimum, which would be NP-hard (34).

We have shown that a number of physical systems that per-
form optimization are acting through the Principle of Minimum
Power Dissipation, although other physics principles could also
fulfill this goal. As the systems evolve toward an extremum, they
perform Lagrange function optimization where the Lagrange
multipliers are given by the gain or loss coefficients that keep
the machine running. Thus, nature provides us with a series of
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physical optimization machines that are much faster and possibly
more energy-efficient than conventional computers.

Data Availability. All study data are included in the article and SI Appendix.
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