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Abstract
Histone deacetylases (HDACs) play a pivotal role in eukaryotic gene expression by modu-

lating the levels of acetylation of chromatin and related transcription factors. In contrast to

class I HDACs (HDAC1, -2, -3 and -8), the class IIa HDACs (HDAC4, -5, -7 and -9) harbor

cryptic deacetylases activity and recruit the SMRT-HDAC3 complex to repress target genes

in vivo. In this regard, the specific interaction between the HDAC domain of class IIa HDACs

and the C-terminal region of SMRT repression domain 3 (SRD3c) is known to be critical, but

the molecular basis of this interaction has not yet been addressed. Here, we used an exten-

sive mutant screening system, named the “partitioned one- plus two-hybrid system”, to iso-

late SRD3c interaction-defective (SRID) mutants over the entire catalytic domains of

HDAC4 (HDAC4c) and -5. The surface presentation of the SRID mutations on the HDAC4c

structure revealed that most of the mutations were mapped to the rim surface of the catalytic

entry site, strongly suggesting this mutational hot-spot region as the major binding surface

of SRD3c. Notably, among the HDAC4c surface residues required for SRD3c binding,

some residues (C667, C669, C751, D759, T760 and F871) are present only in class IIa

HDACs, providing the molecular basis for the specific interactions between SRD3c and

class IIa enzymes. To investigate the functional consequence of SRID mutation, the in vitro
HDAC activities of HDAC4 mutants immuno-purified from HEK293 cells were measured.

The levels of HDAC activity of the HDAC4c mutants were substantially decreased com-

pared to wild-type. Consistent with this, SRID mutations of HDAC4c prevented the associa-

tion of HDAC4c with the SMRT-HDAC3 complex in vivo. Our findings may provide structural

insight into the binding interface of HDAC4 and -5 with SRD3c, as a novel target to design

modulators specific to these enzymes.
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Introduction
Chromatin is the basic structure of the eukaryotic chromosomes, formed as an array of nucleo-
somes composed of histone octamers wrapped with 146 bp of DNA [1]. The tight binding of
DNA with histones in condensed chromatin acts as an obstacle for DNA binding of various
proteins involved in DNAmetabolism, including transcription. In this regard, chromatin
remodeling and histone tail modifications are major mechanisms to convert chromatin status
from closed conformation (inactive) to open conformation (active), or vice versa [2]. Epige-
netic control of gene expression is achieved via the complicated interplay among DNAmethyl-
ation, histone tail modifications, and chromatin remodeling. The consequential chromatin
status is thought to play a major role in X-inactivation, heterochromatin formation and main-
tenance, and homeotic gene expression during early development in animals [3]. Currently,
epigenetic control is also regarded as a general mechanism for the gene-specific regulation of
eukaryotic transcription, as most epigenetic modifications were proven to be reversible and to
arise in a promoter-specific manner [4,5]. Among these dynamic epigenetic markers, acetyla-
tion and deacetylation occur at specific lysine residues within the N-terminal tail of nucleoso-
mal histones through the opposite actions of two respective families of enzymes, the histone
acetyltransferases (HATs) and histone deacetylases (HDACs) [2]. In general, histone acetyla-
tion by HATs acts as an active mark for gene transcription, whereas histone deacetylation by
HDACs correlates with transcriptional repression. Therefore, the transcriptional activity of a
specific gene, or the compaction level of a local chromatic region is established through the bal-
anced actions of HAT and HDAC enzymes [6]. HDACs play a central role in the regulation of
many biological processes, such as the cell-cycle, cell differentiation and survival [6,7]. Genetic
mouse models revealed HDACs to be essential in embryonic development, cardiovascular
health and energy metabolism [8,9]. In this respect, the selective blocking of specific HDAC
function has a great therapeutic impact on many diseases, including cancer, cardiovascular,
neurodegenerative, and metabolic disorders [10–13]. At present, a variety of HDAC inhibitors
are under clinical investigation, while two HDAC inhibitors, SAHA (vorinostat) and FK228
(romidepsin), were already approved for the treatment of cutaneous T-cell lymphomas [14].

To date, 18 kinds of mammalian HDACs have been identified and classified into four classes
based on their sequence similarities and domain structure [15]. The class I HDACs (HDAC1,
-2, -3, and -8) are mammalian homologues of the yeast Rpd3 corepressor, and contain only the
HDAC domain with a size of about 350 amino acids [16]. They are nuclear proteins with ubiq-
uitous expression in most cell types. The class II HDACs (HDAC4, -5, -6, -7, -9, and -10) share
homology with yeast Hda1p, and display cell type-specific expression [17]. For example,
HDAC4, -5 and -9 are known to be enriched in the heart, skeletal muscle and brain tissues.
Class II enzymes can be further subdivided into class IIa (HDAC4, -5, -7, and -9) and IIb
(HDAC6 and -10) according to their modular structure. In addition to the C-terminal HDAC
domain, class IIa HDACs have a long-extending N-terminal adaptor domain, which is targeted
by various transcription factors and regulatory signals [17]. Class IIa enzymes can shuttle
between the cytoplasm and nucleus based on the presence or absence of modifications to spe-
cific residues in the adaptor domain, induced by external stimuli. Class IIb enzymes (HDAC6
and -10) have a characteristic long extension of the C-terminal tail domain, and are typically
found in the cytoplasm. In particular, HDAC6 is a microtubule-associated deacetylase with
dual HDAC domains, compared with the single domain of HDAC10 [18]. Class IV includes
only HDAC11, which shows strong sequence similarity to the class I HDACs and is predomi-
nantly located in the nucleus [19]. The class I, II and IV HDACs are zinc-dependent enzymes,
harboring a common enzymatic mechanism focused on zinc-catalyzed hydrolysis of the acetyl-
lysine amide bond [20]. In contrast, the class III HDACs (sirtuin family) require NAD+ as a
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cofactor for catalytic function, and are not sensitive to the HDAC inhibitors effective on class I
and II enzymes [8].

HDACs are unable to bind to DNA by themselves. They exist as components in a variety of
multiprotein complexes that are recruited to target promoters via interactions with many
DNA-binding factors, such as unliganded nuclear receptors, the E-box binding factors, and the
methylcytosine binding protein [21,22]. For example, HDAC1 and HDAC2 are found in three
distinct corepressor complexes, called SIN3A, NURD/Mi2 and CoREST [23,24]. NCoR
(nuclear receptor-corepressor) and SMRT (silencing mediator for retinoid and thyroid recep-
tor) are ubiquitously expressed corepressor proteins containing three autonomous repression
domains (RD1 to RD3) in their N-terminal regions [25,26]. Each of the repression domains
plays a non-redundant role in the platform for recruitment of various DNA-binding repressors
or corepressors, including HDACs [27]. HDAC3 is exclusively found in SMRT/NCoR com-
plexes, with which association is achieved through the conserved deacetylase activating domain
of NCoR/SMRT [28,29]. The activation of HDAC3 through this association was proven to be
essential for transcriptional repression by certain nuclear receptors, including thyroid hormone
receptor and Rev-erbs [30,31]. A recent study from the Lazar group indicated that a deacety-
lase-independent but NCoR-dependent function of HDAC3 is essential for the transcriptional
regulation of hepatic genes, highlighting the non-enzymatic roles of HDAC3 in liver metabo-
lism [32]. As mentioned previously, class IIa HDACs have a modular structure composed of
N-terminal adaptor and C-terminal HDAC domains. The adaptor domain recruits many core-
pressors including BCoR, CtBP and HP1 as effector molecules, as well as various repressors
such as MEF2, FOXP3 and RUNX2 as target transcription factors [17]. Consistent with this,
knockout mice models demonstrated that the loss of class IIa HDACs can lead to abnormalities
during skeletogenesis and heart development [11,33–35]. Notably, the C-terminal region of
SMRT RD3 (SRD3c) specifically interacts with the HDAC domain of class IIa HDACs, but not
with class I enzymes [27]. This observation strongly suggested that class IIa HDACs function
as a bridge between target repressor proteins and the SMRT/NCoR-HDAC3 complex via inde-
pendent interactions occurring through the two domains [36].

Structural and functional analyses of inhibitor or substrate-bound HDACs have been
attempted. The crystal structure of HDAC8 bound with acetylated peptide substrate revealed
that the residues (His142, His143, Asp176, Asp183 and Tyr306) around the catalytic cavity
interact with one water molecule and zinc ion [37]. These interactions are conserved among
the catalytic zinc-binding pockets of class I enzymes, and are important for substrate recogni-
tion and zinc-catalyzed hydrolysis of the acetyl-lysine amide bond of the peptide substrate
[37,38]. The crystal structures of the catalytic domain of HDAC7, as well as inhibitor bound
forms of HDAC4 and -7 were also investigated [39,40]. These studies revealed that HDAC4
and -7 harbor a second zinc-binding domain, adjacent to the zinc-containing catalytic domain.
This class IIa HDAC-specific region is well conserved in other class IIa HDACs, and has been
implicated to have regulatory and structural roles [39–41]. Another structural feature of class
IIa HDACs is the unique topology of the active site in an enlarged active site pocket [39]. In the
class IIa enzymes, the catalytic active site contains a histidine residue (His976 of HDAC4,
His1006 of HDAC5 and His843 of HDAC7) instead of the tyrosine residue conserved in class I
enzymes (Tyr298 of HDAC3 and Tyr306 of HDAC8), which functions as a transition-state sta-
bilizer of the catalytic reaction. Interestingly, a His-976-Tyr mutation in HDAC4 dramatically
increases its enzymatic activity to the level of class I enzymes [42], explaining the reason why
class IIa HDACs purified from bacteria harbor very low deacetylase activity toward acetylated
lysine as compared with class I enzymes. Recently, proteomic analysis revealed that the absence
of HDAC4 had no effect on the acetylation profile of the murine neonate brain, providing in
vivo evidence that HDAC4 may not function as a lysine deacetylase in this tissue [43].
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Considering the cryptic activity of class IIa enzymes, the HDAC activity shown by the endoge-
nous class IIa HDAC complex purified from mammalian cells is supplied by the SMRT/
NCoR-HDAC3 complex via its association with the HDAC domain [36]. In this regard, the
catalytic domain of class IIa HDACs is a pseudo-HDAC domain that functions as a SMRT-
recruiting module, independent of the deacetylase activity.

The structural differences between class I and IIa enzymes strongly suggest that the struc-
tural zinc-binding domain, which is specific to class IIa HDACs, may participate in their spe-
cific interactions with the SRD3c region. To test this possibility, we employed a ‘one- plus two-
hybrid system’ (OPTHiS) to obtain SRD3c interaction-defective (SRID) mutants over the
entire catalytic domains of HDAC4 (HDAC4c) and HDAC5 (HDAC5c). Surprisingly, the sur-
face presentation of the SRID mutations on the HDAC4c structure revealed that most of the
mutations were mapped to the rim surface of the catalytic entry site, rather than the structural
zinc-binding domain, as the mutational hot-spot. Furthermore, some mutant residues (C667,
C669, C751, D759, T760 and F871) were found to be present only in class IIa HDACs, provid-
ing the molecular basis by which SRD3c specifically interacts with class IIa HDACs, but not
with class I enzymes.

Materials and Methods

Plasmids
To construct the bait plasmid pRS325LexA-RD3c used in OPTHiS, the human SRD3c region
(amino acids 1281 to 1504) was amplified by PCR and inserted into the BglII/NcoI sites of the
pRS325LexA vector. The catalytic domains of human HDAC4 (amino acids 650 to 1055) and
-5 (amino acids 680 to 1087) were obtained from pBJ5.1-Flag clones by PCR and cloned into
the EcoRI/BamHI sites of pRS324UBG to make pRS324UBG-HDAC4c and -5c, respectively.
To isolate SRID alleles of HDAC4c and HDAC5c, G4N, G4T, G5N, and G5M plasmids were
constructed and used as gapped plasmids for OPTHiS screening (Fig 1A). The G4N and G4T
plasmids were made by inserting PCR fragments of HDAC4cT (amino acids 862 to 1055) and
HDAC4cN (amino acids 651 to 862) into the EcoRI/BamHI sites of pRS324UBG, respectively.
In the case of the G5N plasmid, the PCR fragment of HDAC5cT (amino acids 801 to 1087)
was digested by EcoRI/BamHI and inserted into the corresponding sites of pRS324UBG. To
construct the G5M plasmid, the HDAC5A (amino acids 680 to 829) and -5B (amino acids
1001 to 1087) fragments of HDAC5c were obtained by PCR amplification and cloned into the
EcoRI/BamHI sites of pRS324UBG by three-piece ligation. pcDNA3-HA-HDAC4c and
-HDAC5c were made by inserting the respective PCR fragments of HDAC4c and HDAC5c
into the EcoRI/XbaI sites of the pcDNA3-HA vector. For bimolecular fluorescence comple-
mentation (BiFC) assay, KGN-MC-SRD3c (amino acid 1281 to 1504) was constructed by sub-
cloning the KpnI/XhoI fragment from pcDNA3-HA-SRD3c into the KGC-MC vector (MLB
International Corporation). As the first step to making KGC-MC-HDAC4c, pBS-HDAC4c
was prepared by inserting the EcoRI/XbaI fragment of pcDNA3-HA-HDAC4c into the pBlue-
Script vector (Stratagene). The KpnI/NotI fragment of pBS-HDAC4c and the KpnI fragment
of pcDNA3-HA-HDAC4c were then sequentially were inserted into the KpnI/NotI sites of
KGC-MC (MLB international corporation), resulting in KGC-MC-HDAC4c. To construct
KGC-MC-HDAC5c, the KpnI/XhoI fragment was obtained from pcDNA3-HA-HDAC5c and
subcloned into the corresponding sites of KGC-MC. For GST-pull down assay, pGEX4T-SRD3c
was constructed by subcloning the EcoRI/XhoI fragment from pcDNA3-HA-SRD3c into
pGEX4T-1 (Amersham Biosciences). The SRID mutants of HDAC4c and -5c isolated by
OPTHiS were subcloned into pcDNA3-HA (for in vitro translation) or KGC-MC (for BiFC

Interaction Surface of HDAC4 and -5 with SMRT

PLOSONE | DOI:10.1371/journal.pone.0132680 July 10, 2015 4 / 25



Fig 1. SRIDmutants of HDAC4c and -5c obtained by Partitioned OPTHiS. (A) Schematic depiction of gap plasmids and targeted regions of HDAC4c and
-5c for the SRID mutant screening by Partitioned OPTHiS. The gap plasmids G4N and G4T were used for the screening of SRID mutants targeted for the
HDAC4cN (amino acids 651 to 865) and HDAC4cT (amino acids 865 to 1055) regions of HDAC4c, respectively. For HDAC5c, the gap plasmids G5N and
G5M were used to isolate SRID alleles present in the HDAC5cN (amino acids 680 to 831) and HDAC5cM (amino acids 829 to 1010) regions of HDAC5c,
respectively. The linearized gap plasmids and mutagenic PCR products were prepared with the use of the indicated restriction enzymes (top) and the
denoted primer sets (arrow), respectively. (B) The list of SRID alleles of HDAC4c (upper) or HDAC5c (lower). The residues in gray boxes were commonly

Interaction Surface of HDAC4 and -5 with SMRT

PLOSONE | DOI:10.1371/journal.pone.0132680 July 10, 2015 5 / 25



assay) using the appropriate enzyme sites from the pRS324UBG version, respectively. All con-
structs were confirmed by DNA sequencing.

Mutagenic PCR and Partitioned OPTHiS Screening
Random mutagenesis of HDAC fragments and OPTHiS screening were conducted as previ-
ously described in Kim et al. [44,45]. Briefly, mutagenic PCR fragment containing the
HDAC4cN or HDAC4cT regions were amplified in the presence of 0.1 mMMnCl2 using
pRS324UBG-HDAC4c as templates with oligomer pairs B42F/4cNR2 for HDAC4cN and
4cT2F/GBDIR for HDAC4cT, respectively. In the case of random mutagenesis of the
HDAC5cN and HDAC5cM fragments, PCR was conducted in the presence of 0.05 mMMnCl2
using pRS324UBG-HDAC5c as templates with oligomer pairs B42F/5c3R for HDAC5cN and
5c4F/5c4R for HDAC5cM, respectively. For OPTHiS screening to obtain SRID mutants, the
yeast cell libraries containing HDAC mutants were constructed by a single step method via in
vivo gap repair [45]. The four kinds of mutagenic PCR products (1 μg) were co-transformed
with the corresponding linearized gap plasmids (250 ng) into yeast strain YOK400 (MATa,
leu2, trp3, ura3, lexAop-LEU2, UASGAL-HIS3) carrying the pSH18-34 reporter as well as the bait
plasmid pRS325LexA-SRD3c. The transformants were grown for 3 days at 30°C in synthetic
glucose medium lacking histidine for the positive selection of intact HDAC fusions using the
endogenous UASGAL-HIS3 reporter gene [44]. Among the surviving transformants, SRID
mutants were selected by isolating white colonies on X-gal plates using the episomal two-
hybrid reporter (lexAop-LacZ). For the actual screening experiment, a large number of transfor-
mants was obtained from several batches of standard-scale transformation. Subsequent verifi-
cation of the HDAC mutants defective in SRD3c binding was carried out as described
previously [45].

Cell Culture and Transient Transfection Assay
HEK293 cells were maintained in DMEM (Welgene) supplemented with 10% fetal bovine
serum (Welgene) and antibiotics-antimycotic (Gibco). Cells were seeded in 24-well plates with
4–8 X 104 cells/well on the day prior to transfection. Transient transfections were performed
using the SuperFect (QIAGEN) or TurboFect (Fermentas) systems, as described in the manu-
facturer’s instructions. After 24 h of transfection, cell lysates were prepared with RIPA buffer
[50 mM Tris-HCl (pH 8.0), 5 mM EDTA, 150 mMNaCl, 1% NP-40, 1 mM PMSF] and used
for luciferase and β-galactosidase assays. Luciferase activity was normalized to β-galactosidase
activity for each sample.

BiFC Assay
To examine the protein interactions of SRD3c with HDAC4c or HDAC5c mutants in living
cells, bimolecular fluorescence complementation (BiFC) assays were carried out using a Fluo-
Chase kit (Amalgaam), according to the manufacturer’s manual. Briefly, SRD3c and HDAC
proteins were fused to the N- or C-terminal portions of Kusabira Green protein, resulting in
KGN-SRD3c and KGC-HDAC4c or -5c constructs, respectively. The KGN-SRD3c was coex-
pressed with KGC-HDAC4c or -5c in HEK293 cells using the SuperFect system in a 96-well
black plate (SPL life science). After 48 h of transfection, the fluorescent signals (excitation
wavelength: 494 nm, emission wavelength: 538 nm) from the cell lysates were measured using

found between SRID mutants of HDAC4c and -5c based on sequence alignment. The residues existing on the surface of HDAC4c are presented in bold, and
the class IIa HDAC-specific residues are shown in red.

doi:10.1371/journal.pone.0132680.g001
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a fluorescence spectrophotometer (Molecular Devices, Spectra max GEMINIXPS). The quanti-
tation experiments were repeated two times for the triplicated samples.

Confocal Laser Scanning Microscopy
HEK293 cells were grown on 8-well slide plates (SPL Life science) and cotransfected with
KGN-SRD3c and KGC-HDACmutants using the SuperFect system. After 48 h of transfection,
cells were incubated in 4% paraformaldehyde for 10 m at room temperature for fixation. The
cells were then washed with 1X PBS, mounted onto micro cover-slides, and observed for green
fluorescence using a laser-scanning confocal microscope (Leica TCS SPE).

Immunoprecipitation, In Vitro HDAC Assay and Immunoblot Analysis
Human HDAC3 was coexpressed with HA-tagged versions of the wild-type or HDAC4c
mutants in HEK293 cells using the SuperFect system. After 48 h of transfection, the whole cell
lysates (400–600 μg) were prepared with RIPA buffer and mixed with 30 μl (50% slurry) of aga-
rose beads coupled with anti-HA-monoclonal antibody (eBioscience). After overnight incuba-
tion at 4°C, the beads were washed three times with RIPA buffer. For in vitroHDAC assay,
immuoprecipitates (beads) were mixed with fluorescent-coupled Lys acetamide substrate (Bio-
Vision. Cat. No. K330-100) and transferred into a 96- well black plate. HDAC activity assay was
carried out according to the manufacturer’s instructions, and the fluorescence signal (excitation
wavelength: 380 nm, emission wavelength: 460 nm) was measured using a fluorescence plate
reader. For co-immunoprecipitation assay, the bound proteins were eluted from the immuno-
precipitates using 0.1M glycine-acetate (pH 3.0), after which the eluents were precipitated using
tricholoroacetic acid. The precipitated proteins were resolved on SDS-PAGE gels and analyzed
for the presence of HA-HDAC4c and HDAC3 by immunoblot using anti-HAmouse (Cell Sig-
naling, #2367; 1:3,000 dilution) and anti-HDAC3 rabbit (Abcam, Ab16047; 1:1,000 dilution)
antibodies, respectively. Immunoblots were developed using the Optiblot ECL ultra detection
kit (Abcam, Ab133409), and images were captured using an HP imaging system.

Yeast Two-Hybrid and GST Pull-Down Assay
Yeast strain EGY48 containing pSH18-34 (8X LexAop-LacZ reporter plasmid) was co-trans-
formed with the expression plasmids for LexA-SRD3c (pEG202-SRD3c as bait) and for wild-
type or mutants of HDACs fused between B42AD and GBD (pRS324UBG-HDAC4c or -5c as
a prey) by the lithium acetate method. Liquid assays for β-galactosidase activity were con-
ducted at least three times, as described previously [44]. Detailed information for the expres-
sion and purification of GST alone and GST-fused proteins were described in our previous
report [45]. The radiolabeled HDAC proteins were added to similar amounts of GST or
GST-SRD3c proteins (2–3 μg) bound to glutathione-agarose beads pre-equilibrated with buffer
A [150 mM Tris-HCl (pH 7.9), 5% glycerol, 1 mM EDTA, 1 mM dithiothreitol, 1x protease
inhibitor, 0.01% NP-40, 150 mM KCl] in a final volume of 250 μl. The beads were washed
three times in the same buffer and the bound radiolabeled proteins were analyzed by
SDS-PAGE followed by autoradiography.

Statistical Analysis
All quantitation experiments were repeated two or three times for the triplicated samples. The
student’s t-test was used to measure statistically significant differences between wild-type and
mutant groups in the corresponding graphs and their p-values were summarized in S3 Table.
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Results

Partitioned OPTHiS for the Isolation of SRID Alleles over the Entire
Catalytic Domain of HDAC4 and -5
As mentioned, the SRD3c region specifically interacts with class IIa HDACs, but not with class
I enzymes, strongly suggesting that a class IIa HDAC-specific region, such as the structural
zinc-binding domain, may be involved in this interaction. To gain an understanding of the
molecular basis of the specific interactions between SRD3c and class IIa HDACs, we employed
the one- plus two-hybrid system (OPTHiS) to map the interaction surface of class IIa HDACs
with SRD3c [44]. OPTHiS is a novel yeast genetic system designed to efficiently select for mis-
sense mutant alleles which specifically disrupt a known protein-protein interaction. To operate
OPTHiS, we first tried to define the minimal region of the catalytic domain of HDAC4
(HDAC4c) essential for SRD3c binding. To accomplish this, serial truncation mutants of
HDAC4c were made and tested for SRD3c binding in the yeast two-hybrid system. We found
that the entire region of HDAC4c (amino acids 651 to 1055) was necessary and sufficient for
optimal interaction with SRD3c (data not shown), indicating that the intactness of the SRD3c-
binding surface of HDAC4 requires the three-dimensional structure, rather than a short motif
of HDAC4c. We considered that the whole region of HDAC4c (about 400 amino acids) is too
long to maintain the optimal mutation rate by OPTHiS [44]. Therefore, the HDAC4c domain
was further divided into two regions (HDAC4cN, HDAC4cT) with a size of about 200 amino
acids, and each region was independently screened for SRID mutants by OPTHiS. As the first
step to isolate the full-length alleles of missense mutants, each mutagenic PCR fragment corre-
sponding to the HDAC4cN or HDAC4cT region was co-transformed into yeast strain
YOK400 with the linearized gap plasmids G4N and G4T, respectively. In this case, the gap plas-
mids G4N and G4T were designed to contain HDAC4cT or HDAC4cN fragments, respec-
tively, between the B42AD and GBD regions of the pRS324UBG plasmid (Fig 1A). After co-
transformation into yeast, in vivo gap repair by the homologous recombination between PCR
fragment and the linearized gap plasmid produced a full-length HDAC4c domain, inserted
between B42AD and GBD, which harbored missense mutation(s) in the targeted region. We
named this strategy “Partitioned OPTHiS”, which enables the screening of interaction-defec-
tive alleles targeted for the entire length of a relatively long protein (more than 300 amino
acids). We also employed the “Partitioned OPTHiS”method for the isolation of SRID mutant
alleles over the whole region of HDAC5c (amino acids 680 to 1087). HDAC5c was partitioned
into HDAC5cN (amino acids 680 to 831) and HDAC5cM (amino acids 829 to 1010), and then
screened for SRID mutants through independent operation of OPTHiS (Fig 1A). In this case,
each gap plasmid, G5N and G5M, harbored the HDAC5c region(s) that combined with the
mutagenic PCR fragments (HDAC5cN and HDAC5cM) to generate the full-length HDAC5c
domain in prey fusion proteins (Fig 1A).

Isolation of SRID Mutants of HDAC4c and -5c Using “Partitioned
OPTHiS”
As described in the materials and methods, we adopted a PCR-mediated random mutagenesis
and gap-repair recombination method to generate mutant cell libraries for the HDAC4cN and
HDAC4cT regions [45]. As candidates of non-interactor, a total of 29 and 23 white colonies
were isolated on X-gal plates from the 2,700 and 2,200 transformants obtained, which con-
tained missense mutations in the HDAC4cN and HDAC4cT regions, respectively (S1 Table).
Through subsequent verification and sequencing analysis [45], a total of 36 SRID alleles for 29
residues of HDAC4c were finally isolated. Fig 1B shows the mutational sites and the amino
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acids changes in the isolated SRID mutants of HDAC4c (upper panel), from which it can be
known that the mutation residues were distributed over the 300 amino-acid region of the N-
terminal HDAC4c domain (spanning from Y658 to G944 position). Some mutants were iso-
lated multiple times, and more than one amino acid change was observed at some residues,
such as G846 (to Glu, Pro, Arg or Val). Next, the SRID phenotype of the HDAC4c mutants
was confirmed in a quantitative yeast two-hybrid assay and in vitro GST-pull down analysis.
After the pRS324UBG-HDAC4c mutants were transformed into the EGY48 strain bearing
pRS325LexA-SRD3c, the binding strength between HDAC4c mutants and SRD3c was mea-
sured in a liquid β-galactosidase assay. A total of 33 mutants showed severe defects in SRD3c
binding, whereas three mutants (C669Y, G755V, and G868A) displayed only a partial defect
(S1A Fig). To confirm the SRID phenotype in vitro, [35S]-labeled HDAC4c mutant proteins
were prepared using a TNT in vitro translation kit and then subjected to binding reaction with
GST-fused SRD3c protein. Consistent with the yeast two-hybrid data, almost all of the mutants
lost the ability to interact with SRD3c with the exception of C669Y and G755V mutants show-
ing partial defects (Fig 2A).

HDAC5 is the closest homologue of HDAC4 among the class IIa HDACs, based on
sequence similarity. To determine the general feature of the SRID alleles of class IIa HDACs,
we next tried to isolate SRID mutants of HDAC5c. Based on the SRID allele information of
HDAC4c, the 330 amino-acid region of the N-terminal of HDAC5c (amino acid 680 to 1084)
was divided into two parts (HDAC5cN and HDAC5cM) and intensively screened for SRID
mutants using “Partitioned OPTHiS,” as in the screening of HDAC4c mutants (Fig 1A). We

Fig 2. Defective interactions of SRD3c with the isolated HDAC4c and -5c mutants in GST pull-down assays.GST-SRD3c protein was purified and
tested for interactions with the wild-type (WT) and mutant versions of 35S-labeled HDAC4c (A) or -5c (B) proteins. GST protein was used as the negative
control. Input indicates 10% of the in vitro translated HDAC proteins used in the pull-down analysis.

doi:10.1371/journal.pone.0132680.g002
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independently isolated 27 and 42 white colonies as SRID mutants of HDAC5c from the 2,510
and 3,000 transformants harboring missense mutations in the HDAC5cN and HDAC5cM
regions, respectively (S1 Table). After verification and sequencing of the mutant candidates, a
total of 57 kinds of SRID alleles for 46 residues of HDAC5c were obtained (Fig 1B, lower
panel). The mutational sites were distributed over the 320 amino-acids of the N-terminal
region of the HDAC5c domain (spanning from G684 to G1005 position), similar to the results
observed for the HDAC4c mutants. Among the 57 mutants, 20 representative mutants were
selected, for which the SRID phenotypes were confirmed in the quantitative yeast two-hybrid
and GST-pull down assays, as described (S1B Fig and Fig 2B). As expected, none of the
mutants showed SRD3c-binding activity comparable to that of wild-type HDAC5c.

Defective Interactions between SRD3c and SRID Mutants in HEK293
Cells
To confirm the SRID phenotype of the isolated HDAC mutants in mammalian cells, the bimo-
lecular fluorescence complementation (BiFC) assay was performed, which is a novel protein/
protein interaction assay system that is independent of transcription mechanism. Expression
plasmids for the N-terminal portion of the Kusabira Green protein (KGN) fused with SRD3c,
as well as the C-terminal portion of the Kusabira Green protein (KGC) fused with HDAC
mutants were constructed, followed by transient transfection of the plasmids into HEK293
cells. In this case, if the SRD3c and HDAC proteins associated with each other, green fluores-
cent signals would be generated from the reconstituted Kusabira Green protein. When
KGN-SRD3c and the wild-type version of KGC-HDACs were expressed as the positive control
of the BiFC assay, green fluorescent signals could be observed predominantly in the nucleus,
with the shape of speckles via laser-scanning confocal microscopy (Fig 3A). This result is con-
sistent with the previous observations that class IIa HDACs are colocalized with SMRT and
HDAC3 in the nuclear matrix with a dot-like structure [36,46], confirming the physiological
relevance of the in vivo interaction of SRD3c with HDAC4c or -5c (Fig 3A). Next, we measured
the levels of fluorescence signals generated by interactions between SRD3c and the isolated
SRID mutants via the BiFC assay using a fluorescence spectrophotometer (Fig 3B and 3C). The
association of SRD3c with HDAC4c or -5c increased the fluorescent signal by about two-fold
compared to the background signal generated by KGC empty vector (negative control). In con-
trast, with the exception of HDAC4c G846R mutant, which showed partial defect, none of the
SRID mutants of HDAC4c and -5c were able to interact with SRD3c in the quantitative BiFC
assay (Fig 3B and 3C), consistent with the yeast two-hybrid and GST pull-down data. Statistical
analysis for all compared groups between wild-type and mutant HDACs revealed the signifi-
cant differences among them (see p-values in S3 Table). Finally, the SRID phenotypes of some
selected HDAC4c and -5c mutants were examined in a BiFC assay with confocal microscopy
(S2 Fig). As expected, the signals from the nuclei of HEK293 cells transfected with the mutant
versions of KGC-HDACs were significantly weakened or disappeared compared with those of
the positive control. Overall, we successfully isolated SRID mutants of HDAC4c and -5c via
partitioned operation of OPTHiS screening, targeted over the entire catalytic domains of these
proteins.

Positions and Features of SRID Mutations of HDAC4c and -5c
The positions of the SRID alleles of HDAC4c and -5c over the structure-based multiple-
sequence alignment (MSA) of HDAC domains from class I, -IIa, -IIb and -IV HDACs are pre-
sented in Fig 4. On the basis of MSA data, the positions of 20 SRID alleles were overlapped
between 29 residues of HDAC4c mutations and 46 residues of HDAC5c mutations (gray boxes
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Fig 3. Defective interactions of SRD3c with SRIDmutants of HDAC4c and -5c in HEK293 cells. (A)
Confocal laser scanning microscope images illustrating the interactions between SRD3c and HDAC4c or -5c
via BiFC assay. Fluorescent signals were mainly localized in the nucleus, and observed in the shape of
speckles.Magnification: 180 X. (B),(C)Quantitative measurement of fluorescence signals in the BiFC assay,
generated by the association of SRD3c with the indicated SRID mutants of HDAC4c (B) or -5c (C). The
expression constructs for KGN-SRD3c (1 μg) and the indicated KGC-HDAC4c or -5c mutants (1 μg) were
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transiently cotransfected into HEK293 cells. After 48 hours of transfection, the fluorescent signals from whole
cell lysates were measured with the use of a fluorescence spectrophotometer. E.V (empty vector) and N.T
(no transfection) samples were used as negative controls. The p-values for all compared groups between
wild-type and mutants are less than 0.01. RFU: relative fluorescence units.

doi:10.1371/journal.pone.0132680.g003

Fig 4. Positions of SRIDmutations over the MSA of HDAC domains. Structure-based MSA of the catalytic domains from HDAC1 to HDAC11 was built
using the ESPript 3.0 program, and secondary structural elements are shown for the inhibitor-bound HDAC4c structure (PDB code 2VQJ). The residues in
pink and blue shades represent the SRID alleles specifically found in HDAC4c and -5c mutants, respectively. The residues with yellow shade indicate the
SRID alleles commonly found at the same positions between HDAC4c and -5c sequences on the basis of MSA. Red triangles: the residues of HDAC4c
mutants located on the surface region of the HDAC4c structure. Blue Boxes indicate hot-spot regions for SRID mutations which are commonly found in all
classes of the HDAC family. Red boxes indicate hot-spot regions for SRID mutations which correspond to class IIa HDAC-specific regions.

doi:10.1371/journal.pone.0132680.g004
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in Fig 1B and marked with yellow shade in Fig 4). These residues act as the general requirement
for the interaction of class IIa HDACs with SRD3c, suggesting that the molecular determinants
of HDAC4c interaction with SRD3c are similar to those of HDAC5c. Notably, some mutant
residues were found exclusively in HDAC4c or -5c (purple shade for HDAC4c and blue shade
for HDAC5c in Fig 4), suggesting these residues may act as the specific determinants required
for the isotype-dependent interaction of class IIa HDACs with SRD3c. This interesting issue is
left to be addressed in future work, and is currently under investigation.

As shown in Fig 4, most of the SRID mutants of HDAC4c and -5c were commonly found in
the six regions of HDAC domains, labeled as the mutational hot-spots. Among them, two
regions, corresponding to β5-α9 and β6-α10 loops, are conserved in all zinc-dependent HDAC
enzymes (blue boxes), which accounted for nearly half of the SRID mutations. The rest of the
SRID mutations were found as the mutational hot-spots in four regions of the HDAC domains
(α1-α2 loop, β3-β4, α11-α12 loop and β9-α15 loop) which are specific to class IIa HDACs (red
boxes), according to the structure-based MSA. These results indicate that the interaction of
SRD3c with HDAC4c and -5c is largely mediated by the residues specific to class IIa HDACs,
providing important clues to address the issue of how SRD3c specifically interacts with class
IIa HDACs, but not with class I HDACs.

The Rim Surface of the Catalytic Entry Site Is the Major SRD3c-Binding
Surface of—HDAC4c and -5c
Next, we presented the SRID mutations on the surface of the HDAC4c structure because we
reasoned that SRD3c associates with the surface region of the HDAC domains of class IIa
enzymes. According to the crystal structure of inhibitor-bound HDAC4c (PDB code 2VQJ)
[40], 21 residues (C667, C669, C751, D759, T760, S767, A774, P799, P800, G801, H803, A804,
F812, C813, H842, H843, G844, N845, G846, G868 and F871) among the 29 identified residues
of the HDAC4c mutations are located at the surface region of HDAC4c (bold letters in Fig 1B
and red triangles in Fig 4). These residues were represented on the corresponding positions of
the three-dimensional structure of HDAC4c, nicely generating two adjacent hot-spot regions
at the surface of HDAC4c (orange in Fig 5B). Interestingly, one of the surface region, composed
of four residues (C667 and C669 in α1-α2 loop, C751 in β3-β4 loop, and S767 in α8 region),
was positioned at the structural zinc-binding domain known to exist only in class IIa enzymes
(Fig 5A and 5B). In contrast, the remaining 17 residues generated a large surface region mainly
composed of β5-α9 and β6-α10 loops on the rim of catalytic active site (Fig 5A and 5B). The
SRID mutations of HDAC5c were also presented on the surface of the HDAC4c structure, as
structural data for HDAC5c are not available. The positions of the SRID mutations of
HDAC5c were changed to those of HDAC4c according to the MSA data, and displayed at the
corresponding positions of the HDAC4c structure (orange in Fig 5C). In accordance with the
HDAC4c data, one small region composed of four residues (H665/H694, C667/C696, C751/
C781 and S767/S797 in HDAC4c/HDAC5c) appeared on the surface of the structural zinc-
binding domain. Interestingly, 19 out of 25 surface residues of HDAC5c mutations were again
mapped to the rim surface of the catalytic site, forming a major binding surface with a more
extended region than that of HDAC4c (Fig 5B and 5C).

Taken together, our findings consistently indicated that most of the surface mutations were
mapped to the rim of the catalytic entry site, rather than to the structural zinc-binding domain,
which strongly suggests that this mutational hot-spot region is the major binding surface of
SRD3c. This result is unexpected because the active site regions are evolutionally conserved
among all HDAC members, making it unable to explain the reason why SRD3c specifically
interacts only with class IIa HDACs. However, detailed analysis of the SRID mutant residues
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Fig 5. Surface presentation of SRIDmutations on HDAC4c structure. (A) Ribbon diagram of HDAC4c
structure (PDB code 2VQJ) [40]. The structural zinc-binding domain is shown by magenta. Two zinc ions and
their chelating residues are drawn as spheres and sticks, respectively. (B) Positions of SRID mutations of
HDAC4c are presented on the surface of the HDAC4c structure (PDB code 2VQJ). Among SRID mutants of
HDAC4c, 21 residues located on the surface are indicated, and their surface positions are shown in orange.
(C) Surface presentation of SRID mutations of HDAC5c at the corresponding positions of the HDAC4c
structure. The positions of the SRID mutations of HDAC5c were changed to those of HDAC4c according to
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revealed that six residues (C667, C669, C751, D759, T760 and F871) of the HDAC4c surface
mutations and five residues (H694, C696, C781, D789 and F901) of the HDAC5c surface muta-
tions could be identified as class IIa HDAC-specific residues on the basis of the structure-based
MSA (yellow letter in Fig 5). Among them, four residues (C696, C781, D789 and F901) of
HDAC5c had overlapped positions with those of HDAC4c (C667, C751, D759 and F871). We
suggest that these residues act as the specific requirements for SRD3c interaction with the class
IIa HDACs, providing the molecular basis of their specific interactions.

Functional Analyses of HDAC4c Mutants Containing SRID Allele
As mentioned, the enzymatic activity associated with the endogenous class IIa HDAC complex
is dependent on SMRT/NCoR-HDAC3, which is recruited through association of the HDAC
domain [36]. To investigate the functional consequence of SRID mutations on HDAC4c, we
next measured the in vitroHDAC activities of HDAC4 mutants purified from mammalian
cells. To accomplish this, HA-tagged versions of 25 SRID mutants of HDAC4c were con-
structed and transiently expressed along with HDAC3 protein in HEK293 cells. The endoge-
nous complex containing HDAC4c mutants was immuno-purified from the whole cell lysate
using anti-HA antibody and then subjected to measurement of the in vitroHDAC activity
toward Lys acetamide substrate, as described in the materials and methods. Intriguingly, the
levels of HDAC activity of the immuno-purified HDAC4c mutants were dramatically
decreased by eight to ten-fold compared to the wild-type HDAC4c (Fig 6A). The significant
differences between the in vitro HDAC activities of wild-type and mutants HDAC4c were con-
firmed by statistical analysis (see p-values in S3 Table). We reasoned that the reduced HDAC
activity of the immuno-purified HDAC4c mutants may be due to the compromised binding of
the SMRT-HDAC3 complex to the HDAC4c mutants in vivo. To test this possibility, 10 surface
mutants of HDAC4c harboring mutations at the class IIa HDAC-specific regions (C667, C751,
D759, S767, and F871) or at the conserved regions among class I and IIa HDACs (P800, H803,
F812, H842, and G844) were selected. After transient expression of HDAC3 and HDAC4c
mutants in HEK293 cells, the endogenous complex containing wild-type or mutant HDAC4c
was immuno-purified as described and subjected to immunoblot analysis to examine the pres-
ence of HDAC3 protein in the immune complex. Although the expression levels of HDAC4c
mutants were comparable to that of the wild-type (Fig 6B, upper panel), HDAC3 displayed sig-
nificantly compromised association with the HDAC4 mutants in the cell lysate of HEK293
cells (Fig 6B, lower panel), consistent with their low levels of in vitroHDAC activity (Fig 6A).
From these observations, we concluded that the specific residues located at the rim surface of
the catalytic entry site of HDAC4c are involved in the in vivo interactions with endogenous
SMRT-HDAC3 complex.

Finally, we investigated the functional consequences of SRID mutations on the transcrip-
tional repressive activity of HDAC4c in a mammalian system. The Gal4N-fused version of
wild-type or selected mutants of HDAC4c were prepared and cotransfected with the Gal4N-
driven luciferase reporter plasmid into HEK293 cells. As shown in Fig 7A, the Gal4N-mediated
recruitment of wild-type HDAC4c showed a maximum of 7-fold repression of reporter gene
expression, suggesting the autonomous repressive activity of HDAC4c is provided by the
endogenous SMRT-HDAC3 complex. In contrast, all HDAC4c mutants lost their autonomous
repressive activities, displaying only 2 to 3-fold repression of luciferase expression (Fig 7A).
Statistical analysis by student’s t-test revealed the significance of the relevant differences

MSA data, and presented on the surface of HDAC4c structure in orange. The residues specific to class IIa
HDACs are indicated in yellow color.

doi:10.1371/journal.pone.0132680.g005
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between the autonomous repressive activities of wild-type and mutants HDAC4c (see p-values
in S3 Table). All of the Gal4N-fused HDAC4c proteins showed similar expression levels, as evi-
denced by immunoblotting using Gal4N antibody (Fig 7B). These results indicated that SRID
mutants of HDAC4c lost their repressive function due to the crippled interactions with the
endogenous SMRT-HDAC3 complex in vivo, in accordance with the previous results obtained
by the co-immunoprecipitation assay (Fig 6B).

Fig 6. Loss of in vitroHDAC activity of immuno-purified HDAC4cmutants due to inability to associate
with endogenous SMRT-HDAC3 complex. (A) In vitro HDAC assay and (B) co-immunoprecipitation assay
for HDAC4c SRID mutant proteins immuno-purified from HEK293 cells. The HA-tagged versions of the
indicated HDAC4c proteins were coexpressed with HDAC3 in HEK293 cells by transient transfection and
purified from cell lysates (300 μg) with the use of agarose beads coupled with anti-HA-antibody. (A) The
immune complex was subsequently subjected to in vitro HDAC assay using fluorescent-coupled Lys
acetamide as a substrate. HeLa nuclear extract (1 μg) was used as the positive control. The p-values for all
compared groups between wild-type and mutants are less than 0.0001. RFU: relative fluorescence units. (B)
For co-immunoprecipitation assay, immunoprecipitates from 1 mg of whole cell lysate were prepared and
analyzed for the presence of HA-HDAC4c and HDAC3 by immunoblot analysis.

doi:10.1371/journal.pone.0132680.g006
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Discussion
As mentioned in the introduction, the catalytic domain of class IIa HDACs exhibits a cryptic
deacetylase activity toward acetylated lysine substrate, and plays a major role in the recruitment
of the SMRT/NCoR-HDAC3 complex to repress the transcription of target genes in vivo. To
gain an understanding of the molecular determinants of the specific interactions between class

Fig 7. Transcriptional repressive activities of Gal4N-fused SRIDmutants of HDAC4c. (A) Mammalian one-hybrid assay of HDAC4c mutants. HEK293
cells were cotransfected with the Gal4-tk-luciferase reporter plasmid (200 ng) and wild-type (WT) or the indicated mutants of Gal4N-HDAC4c plasmids (50
and 100 ng), together with the pCMV-β-gal vector (100 ng). After 48 hours of transfection, the luciferase activities were measured and normalized, as
described in the materials and methods section. Fold repression indicates the mean ± S. E. value obtained from at least two independent experiments
performed in duplicate. The p-values for all compared groups between wild-type and mutants are less than 0.05. RLU: relative luciferase activity. (B) The
expression levels of wild-type (WT) or indicated mutants of Gal4N-HDAC4c proteins were examined by immunoblot analysis of whole cell lysates (15 μg)
using anti-Gal4Nmouse monoclonal antibody (Santa Cruz, sc-510; 1:3,000 dilution).

doi:10.1371/journal.pone.0132680.g007
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IIa HDACs and SRD3c, we isolated various kinds of SRID alleles for HDAC4c and -5c through
the operation of “Partitioned OPTHiS,” targeting the entire HDAC domains.

Partitioned OPTHiS for the Extensive Mutagenesis of the Entire
Catalytic Domains of HDACs
In an effort to develop a method for the high-throughput analysis of protein interaction inter-
faces, we devised a modified yeast two-hybrid system, termed “OPTHiS,” which efficiently
selects specific missense mutations that disrupt known protein-protein interactions [44]. To
date, we have utilized this system for analysis of the interfaces of many protein-protein interac-
tions between various nuclear receptors and their transcriptional coregulators, such as SMRT,
NCoR, SRC-1, ASC-2 and TRAP220 [47–53]. In all cases, we tried to select missense mutant
alleles of the coregulator proteins defective in nuclear receptor binding, which resulted in the
identification of short motifs comprised of less than a dozen amino acids as the molecular ele-
ments of coregulators required for their specific binding to nuclear receptors. As mentioned
above, our efforts to define the minimal region of the HDAC4c domain required for SRD3c
binding revealed that the entire domain of HDAC4c (amino acids 651 to 1055) is necessary
and sufficient for optimal binding to SRD3c. This result implicated that the intactness of the
SRD3c-binding surface of HDAC4c requires the three-dimensional structure comprised of the
whole catalytic domain, and a short motif within HDAC4c is not involved in SRD3c binding.
In OPTHiS, the prey protein for mutant screening is expressed as a triple fusion between
B42AD and GBD. Therefore, HDAC4c protein, which requires proper three-dimensional
structure for SRD3c binding, may not be a suitable target for mutant screening by OPTHiS
[45]. Fortunately, three-piece fusion forms of HDAC4c or -5c (B42-HDACs-GBD as a prey)
can interact well with the LexA-fused SRD3c protein (bait) in a yeast two-hybrid system,
enabling the screening of SRID mutants of these HDACs using OPTHiS. However, there is a
restriction on the length of the prey protein, owing to the difficulty of maintaining the optimal
mutation rate by PCR-mediated random mutagenesis with increasing prey size. Thus far, we
have successfully analyzed prey proteins of up to 200 amino acids. We considered that the cata-
lytic domain of class IIa HDACs (about 400 amino acids) is too long to allow isolation of the
SRID mutants via the conventional OPTHiS screening method. Therefore, we solved this prob-
lem by developing a novel strategy, named “Partitioned OPTHiS”, in which a relatively long
prey protein (more than 300 amino acids) is divided into fragments of less than 200 amino
acids, and the interaction-defective alleles for each fragment are screened by the independent
operation of OPTHiS. In Partitioned OPTHiS, the design of the gap plasmid is critical, because
in vivo gap repair by the homologous recombination between the terminal regions of the PCR
fragment (mutagenic target) and the linearized gap plasmid should produce the full-length
prey protein, which can interact with the bait protein. For example, the gap plasmid G4N
employed herein was designed to harbor the HDAC4cT region between the B42AD and GBD
parts of the pRS324UBG plasmid (Fig 1A). During in vivo gap repair, the mutagenic
HDAC4cN fragment was inserted between the B42AD and HDAC4cT regions of the linearized
G4N plasmid, resulting in the generation of the full-length HDAC4c domain harboring the
random mutation(s) at the HDAC4cN region. Using the “Partitioned OPTHiS”method, we
were able to successfully isolate various kinds of SRID alleles of HDAC4c and -5c via extensive
mutagenesis of their entire catalytic domains. We propose that the “Partitioned OPTHiS”
method can be generally applied for the characterization of protein-binding interfaces, in
which the three-dimensional domain structure composed of more than 300 amino acids is
involved, via the rapid and efficient isolation of interaction-defective missense mutants.
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Interaction Surface of Class IIa HDACs with SMRT Corepressor
According to the MSA data, most of the SRID mutants of HDAC4c and -5c were commonly
found in six regions of the HDAC domains as mutational hot-spots (Fig 4). Two of the regions
are conserved in all HDAC members (β5-α9 and β6-α10 loops), while the remaining four are
specific to class IIa HDACs (α1-α2 loop, β3-β4 region, α11-α12 loop and β9-α15 loop). A pre-
vious report showed that some catalytic core mutants of HDAC4 exhibited compromised bind-
ing to the SMRT-HDAC3 complex in vivo, and consequential loss of in vitroHDAC activity
when immuno-purified from HEK293 cells [36]. Among these mutants, three mutations
located in the β5-α9 loop (H803Y, H842L and N845S) were isolated in our SRID mutant
screening, verifying that these residues, positioned in the evolutionally conserved catalytic
pocket, are involved in SRD3c binding.

The surface display of SRID mutant residues on the corresponding positions of the
HDAC4c structure allowed identification of two adjacent hot-spot regions as the SRD3c-bind-
ing surface of class IIa HDACs: one minor surface located on the structural zinc-binding
domain, and one major region corresponding to the rim surface of the catalytic pocket of
HDAC enzymes (Fig 5). As noted, the structural zinc-binding domain exists exclusively in
class IIa members, and is considered to participate in substrate recognition and modulation of
enzyme activity via protein interaction(s) with the regulatory proteins [39–41]. In addition, a
previous report indicated that mutation of the residues (e.g. C669A) coordinating the struc-
tural zinc ion prevented its association with the endogenous SMRT-HDAC3 complex, pointing
to a key role of the structural zinc-binding domain in the recruitment of binding partner pro-
teins [40]. All of these results strongly suggested the structural zinc-binding domain as a good
candidate for the specific interactions of class IIa HDACs with SRD3c. This notion left open
the possibility that both of the two adjacent surface regions mapped by our SRID mutant
screening are directly involved in SRD3c binding via simultaneous interactions with two inde-
pendent parts of the SRD3c region.

However, our analysis of the SRID alleles consistently indicated that most of the surface
mutations (17 out of 21 residues of HDAC4c and 19 out of 25 residues of HDAC5c) were
mapped to the rim surface of the catalytic pocket, rather than to the structural zinc-binding
domain (Fig 5). This observation raises another intriguing possibility that SRD3c solely inter-
acts with the major binding surface on the catalytic pocket, but not with the minor surface
region on the structural zinc-binding domain. According to this view, the SRID phenotype
caused by mutations at the structural zinc-binding domains can be explained by “indirect
effects," in which the conformational changes of the structural zinc-binding domain could
affect the structural stability of the neighboring catalytic pocket region and indirectly lead to
the loss of SRD3c-binding ability observed in these mutants. The previous structural analyses
support this notion, that the two adjacent regions have an intimate structural relationship and
that the flexibility of the structural zinc-binding domain might be involved in this connection.
For example, the binding of some active site inhibitors and/or substrates to the catalytic pocket
of HDAC4c may affect the conformation of its structural zinc-binding domain [40]. This opin-
ion is based on the observation that the apo-form of the active site mutant of HDAC4c
(H976Y) showed considerable differences in the conformation of the structural zinc-binding
domain (“closed” conformation) compared with the inhibitor-bound structures (“open” con-
formation). This structure resembles the structure of the substrate-bound HDAC8 complex,
regarded as the active conformation of the HDAC domain [40]. We propose that the confor-
mational change of the structural zinc-binding domain may affect the intactness and SRD3c-
binding capacity of the genuine interacting surface formed on the catalytic pocket region. Con-
versely, it is also possible that the structural zinc-binding domain is the unique and genuine
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binding partner of SRD3c, and that the mutational effects of the major surface mutants are
indirect. We considered this case as unlikely for the following two reasons. Firstly, there was a
widespread distribution of major surface mutations from the catalytic entry site to the bottom
wall region of the catalytic pocket (β5-α9 loop and α11- α12 region), which is spatially distant
from the structural zinc-binding domain (Figs 4 and 5). Secondly, there was a striking differ-
ence between the numbers of mutations in the two SRD3c-binding surfaces, in which most of
the residues of the surface mutations (17 out of 21 residues of HDAC4c and 19 out of 25 resi-
dues of HDAC5c) formed the large SRD3c-binding surface on the catalytic pocket region.
Taken together, we suggest the major mutational hot-spot region formed on the active site
pocket to be the SRD3c-binding surface of class IIa HDACs, though we cannot rule out the
possibility of direct involvement of the structural zinc-binding domain in this interaction.

Molecular Determinants of HDAC4c and -5c Required for Their Specific
Binding to SRD3c
Among the surface residues of HDACs required for SRD3c binding, three residues (C667,
C669, and C751 in HDAC4c) located on the structural zinc-binding domain were identified as
class IIa HDAC-specific residues on the basis of the structure-based MSA. In the major binding
surface on the catalytic pocket, three residues (D759, T760, F871) of HDAC4c and two of
HDAC5c (D789 and F901) were proven to be specific to class IIa HDACs. Considering the
binding mode and the structural basis typically observed in many protein-protein interactions,
it is unlikely that all of the surface residues required for SRD3c binding are directly involved in
this interaction. Rather, we suppose that a few residues, including class IIa HDAC-specific
ones (e.g. D759, T760 or F871 of HDAC4c), actually participate in SRD3c-binding, while the
rest of the surface residues indirectly affect the intactness of the SRD3c-binding surface. Deter-
mination of the molecular requirements of SRD3c for HDAC binding and detailed analysis of
the binding interface by a crystallographic study will eventually clarify the binding mode of
SRD3c to class IIa HDACs and the structural basis of the specific interactions.

Class IIa HDACs have been implicated as potential therapeutic targets for many human dis-
eases, including cancers, metabolic disorders, pathological cardiac hypertrophy, acute ischemic
injury, inflammatory or autoimmune conditions and central nervous system disorders
[11,35,54–60]. Therefore, the development of small molecule activators or inhibitors selective
for class IIa HDACs would have a great impact on the treatment of these diseases, with mini-
mization of off-target effects. To date, most HDAC inhibitors share the common structural
characteristics of a pharmacophore model comprised of a metal binding moiety, linker region
and surface recognition domain [61]. Thus, all of these inhibitors can bind simultaneously to
the rim, channel and active site of the catalytic pocket, thereby inhibiting HDAC activity by
blocking substrate access. Most inhibitors effective for class IIa HDACs also have the same
pharmacophore structure, with direct binding to this catalytic site. The active site region
bound by these inhibitors is evolutionally conserved among the all zinc-dependent HDAC
enzymes [61], explaining why these inhibitors do not show isotype or class-specific effect.
Using a mutagenesis approach, we identified the surface region of HDAC4c responsible for the
interaction with SRD3c, which acts as the binding module specific to class IIa HDACs. Our
results strongly suggest that the surface region of the catalytic pocket of class IIa HDACs, rather
than active site channel, could be a more plausible and reasonable target for the development
of class IIa HDAC-specific inhibitors, because this region has structural features distinguish-
able from those of class I enzymes.

Recently, novel inhibitors selective for class IIa HDACs were developed, and their therapeu-
tic effects on Huntington’s disease were evaluated [62]. Interestingly, these HDAC inhibitors
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were designed to exploit the lower pocket of the catalytic entry site that shows a characteristic
of the class IIa HDACs, but not found in other HDAC classes. From the co-crystal structure of
HDAC4c bound by these inhibitors, we found that the targeted lower pocket region is over-
lapped with the major SRD3c-binding surface mapped by our mutagenesis study. Furthermore,
the inhibitors dock on the lower pocket region via key interactions with the HDAC4 residues,
including D759, H803, F812, D840, H842, F871 and D943 [62]. Most of these residues (D759,
H803, F812, H842 and F871) were found in the major SRD3c-binding surface revealed herein,
raising the intriguing possibility that the surface region composed of these residues directly
participates in the binding of SRD3c by means of structural characteristics specific to class IIa
HDACs.

In conclusion, our mutagenesis study provided the molecular basis for the specific interac-
tions of SRD3c with HDAC4 and -5, as well as structural insights into the binding interface,
which may be helpful for the design of modulators specific to class IIa HDACs.

Supporting Information
S1 Fig. Defective interactions of SRD3 with the isolated HDAC4c and -5c mutants in yeast-
two hybrid assay. The expression constructs for LexA-fused SRD3c and B42AD-GBD-fused
HDAC4c (A) or -5c (B) mutants were co-transformed into EGY48 strains containing a LacZ
reporter plasmid, pSH18-34. Transformants were subjected to liquid β-galactosidase assay to
measure the binding strength between SRD3c and HDAC mutants. β-galactosidase activity was
shown as the representative of three independent experiments. E.V (empty vector) samples
were used as the negative control. The p-values for all compared groups between wild-type and
mutants are less than 0.001
(TIF)

S2 Fig. Confocal analysis of the images produced by the interactions between SRD3c and
SRIDmutants of HDAC4c in BiFC assay. BiFC assay was performed to assess the interactions
between SRD3c and the indicated SRID mutants of HDAC4c (A) and -5c (B) in HEK293 cells.
The expression constructs for KGN-SRD3c (500 ng) and KGC-HDAC4c or -5c mutants (500
ng) were transiently cotransfected into HEK293 cells. After 48 hours of transfection, the cells
were fixed on micro cover-slides and the green fluorescence signals from the cells were
observed using a laser-scanning confocal microscope.Magnification: 60 X.
(TIF)

S1 Table. Transformation and screening of SRID mutants by OPTHiS. Each of the muta-
genic PCR products of the HDAC domains was generated and co-transformed with the indi-
cated gap plasmid into strain YOK400 carrying the pSH18-34 reporter as well as the bait
plasmid, pRS325LexA-SRD3c. His+ transformants were obtained after a 3-day incubation at
30°C on glucose media lacking histidine. Transformants were picked onto plate media contain-
ing X-gal but lacking histidine, and the yeast colonies showing white color were isolated as can-
didates of non-interactor.
(DOCX)

S2 Table. List and sequences of oligonucleotides used in this study.
(DOCX)

S3 Table. The p-values obtained by student’s t-test for the compared groups in graphs.
(DOC)
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