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INTRODUCTION
Exosomes, or extracellular vesicles (EVs), are formed 

by the endosomal system and function through paracrine 
(cell-to-cell) signaling after release into the extracellular 
space (Fig. 1). The cell-of-origin influences its composi-
tion and offers both diagnostic and therapeutic potential. 
Exosomes are packaged with tetraspanin surface markers 
to drive cell entry in tandem with various RNA, miRNA, 
siRNA, cytokines, and enzymes that are encased in a lipid 
bilayer membrane to prevent extracellular degradation. 
Exosome formation begins with maturation of early endo-
somes to multivesicular bodies followed by invagination 

of the endosomal membrane. Nanoscale size of exosomes 
allows for diffusion throughout tissues. Biological macro-
molecules can be trafficked and loaded into exosomes of 
endogenous cells, including proteins (eg, growth factors 
and enzymes) and nucleic acids (eg, mRNA and miRNA).1 
These macromolecules convey a biological effect on 
the recipient cell type via agonistic and/or antagonistic 
signaling.

As endogenous exosome cargo reflects parent cell 
type and function, it is important to consider the exosome 
source when characterizing inner cargo. Each exosome-
based therapeutic requires individual characterization 
for clinical translation2,3 When considering exosomes 
for therapeutic use, it is important to positively identify 
proteins contributing to the mechanism of action. In the 
authors’ experience, identification of antioxidant enzymes 
and proangiogenic cytokines contained within platelet 
exosomes have been essential for their therapeutic util-
ity.4 Efforts to standardize exosome manufacturing purity, 
potency, and batch consistency are warranted to eliminate 
dose-to-dose variability and realize their full therapeutic 
potential (Fig. 2).
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Summary: Exosomes, or extracellular vesicles, represent the latest cell-free addition 
to the regenerative medicine toolkit. In vitro preclinical studies have demonstrated 
the safety and efficacy of exosomes, which vary based on source and biomanufac-
turing, for a myriad of potential therapeutic applications relevant to skin and soft 
tissue reconstruction. Primary search was performed in September 2021 on the 
MEDLINE database via PubMed and Ovid, with focus on articles about therapeutic 
application of exosomes or extracellular vesicles. In total, 130 articles met crite-
ria for applicability, including early-stage clinical trials, preclinical research studies 
with in vivo application, and articles applicable to plastic and reconstructive surgery 
and dermatology. Most studies used animal models of human disease processes, 
using either animal donor cells to isolate exosomes, or human donor cells in animal 
models. Exosome technology has catapulted as an acellular therapeutic vehicle with 
off-the-shelf accessibility. These features eliminate prior threshold for broad adop-
tion of regenerative cell-based therapies into surgical and medical practice. To date, 
there are no exosome products approved by the US Food and Drug Administration. 
This review highlights exosomes as the new frontier in regenerative medicine and 
outlines its preclinical therapeutic applications for cutaneous repair and restoration. 
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METHODS
Primary search was performed in September 2021 on 

the MEDLINE database via PubMed and Ovid with focus 
on articles about clinical application of exosomes or EVs. 
Medical Subject Headlines were used, including the terms 
“exosome,” “multivesicular body,” “extracellular vesicle,” 
and “clinical application” (authors involved in search: 
I.M. and E.E.W.). Primary search resulted in 1280 articles. 
These results were filtered for clinical trials within the 
last 10 years. Article titles and abstracts were screened for 
applicability including clinical trials, studies with in vivo 
application, and articles applicable to plastic and recon-
structive surgery and dermatology. In total, 130 articles 
met the criteria and were summarized. Screened articles 
were variable in design, methods, execution, and results. 
There remains a paucity of data on therapeutic interven-
tions in human clinical trials. Most studies utilized animal 
models of human disease processes, using either animal 
donor cells to isolate exosomes, or human donor cells in 
animal models. (See table, Supplemental Digital Content 
1, which displays descriptive summaries of included stud-
ies on EVs. These studies provide comparative analysis of 
regenerative outcomes from preclinical and clinical analy-
sis of acellular treatments in 2D cell culture, mouse, rat 
or human models. http://links.lww.com/PRSGO/D428.)

Wound Healing
Wound management remains a mainstay of surgical 

practice. Exosomes offer a new frontier in wound care, 
including chronic nonhealing wounds and scar improve-
ment. Exosome-mediated intercellular communication 
influences many functions within the skin and has been 
demonstrated to have a role in chronic inflammatory 
skin disorders.3 For example, adipose-derived mesenchy-
mal stem cell (MSC) EVs are implicated in mechanisms 
of wound healing, including enhanced collagen produc-
tion,5 angiogenesis,6 cellular proliferation and migration,7 
skin barrier repair, reduced inflammation, and extracel-
lular matrix remodeling.8

MSC exosomes and associated miRNAs have an impor-
tant role in migration and proliferation of fibroblasts 
and endothelial cells throughout the stages of cutaneous 
regeneration.9 Certain umbilical cord MSC exosomes 
were found to suppress myofibroblast differentiation 
by inhibiting TGF-β/SMAD2 during wound healing.10 
Skin treated with MSC exosomes resulted in improved 
reepithelization, collagen maturation, myofibroblast 
formation, and reduced scarring from burn injuries.11,12 
Topical adipose MSC exosomes following fractional CO2 
laser for facial acne scarring demonstrated efficacy. In 
a prospective, randomized, double-blinded study, 25 
patients received multiple laser treatments followed by 
posttreatment regimen of adipose MSC exosomes on 
one side of the face, and control gel on the contralateral 
side. Exosome-treated sides demonstrated significantly 
greater improvement in échelle d’évaluation clinique des 
cicatrices d’acné (ECCA) acne scarring grade, compared 
with controls. They also demonstrated milder erythema 
and shorter posttreatment recovery.13 Platelet exosomes 
as a topical postprocedure skincare have demonstrated 
reduction in post-CO2 laser crusting, erythema, and 

Takeaways
Question: What is the evidence behind emerging exo-
some therapy?

Findings: Across 130 publications in our PubMed review of 
the literature, the type of exosome can greatly vary based 
on source (eg, mesenchymal stem cells or platelets), and 
exosome isolation method. The types and success rates 
in early preclinical models varied based on disease condi-
tion. Evidence on therapeutic use is sparse due to lack of 
Food and Drug Administration approval to date.

Meaning: Exosome therapy is an emerging area of regen-
erative medicine that offers potential to restore skin struc-
ture and function. Clinical studies are in progress for 
validation.

Fig. 1. Key components of exosome structure. exosomes are composed of a lipid bilayer shell deco-
rated with transmembrane and surface proteins. Biomolecular cargo (eg, proteins and nucleic acids) 
are selectively loaded into the intraluminal space for extracellular trafficking. siRNa: small interference 
RNa; mRNa: messenger RNa.

http://links.lww.com/PRSGO/D428
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recovery.14 Furthermore, a murine wound model with 
human adipose MSC exosomes had improved healing 
via upregulation of lncRNA H19, miR-19b, and SOX9 
axis.15 Human bone marrow MSC exosomes stimulated 
with magnetic nanoparticles and a static magnetic field 
(mag-BMSC-Exo) accelerated wound healing, narrower 
scar width, and increased angiogenesis.16 Epidermal 
stem cell-derived exosomes improved rate of wound 
healing and reduced scar formation in a rat model by 
downregulating TGF-β1 by downstream effects on myo-
fibroblast differentiation and reduced expression in 
dermal fibroblasts.17 Human bone marrow MSCs and 
engineered synthetic exosome-like liposomes improved 
wound healing in mice through increased blood vessel 
density in granulation tissue.18 Another study showed 
dose-dependent improvement in wound closure on full 
thickness rat wounds with human amniotic fluid MSC 
exosomes with improved collagen organization.5 Na et al 
showed improved wound healing closure with upregula-
tion of MMP-1, extracellular matrix proteins, and type 
I collagen.19 Human bone marrow MSC–cultured media 
injected intraperitoneally to rats with burn wounds dem-
onstrated increased epidermal and dermal volume, as 
well as reduced inflammatory cells.20

Chronic wounds remain a challenge; hyperglyce-
mia, chronic vascular changes, biofilm formation and 
increased oxidative stress contribute to decreased poten-
tial for wound healing. Enhanced wound healing was 
documented in polyvalent exosomes purified from apher-
esis platelets (PEP), driving angiogenic and wound heal-
ing events in a rabbit ischemic wound model.21 This study 
highlights the key mechanisms by which exosomes con-
tribute to soft tissue healing, including antioxidant activ-
ity, induction of mitogenesis, induction of angiogenesis, 
and immune modulation.

Exosomes retain characteristics from their cell-of- 
origin and undergo changes in cargo due to external 
factors, including metabolic stress. This offers another 
avenue to tailor them for a specific therapeutic goal. 
Approaches for mass exosome scalability toward custom-
ized therapeutic targets will be instrumental in advancing 
the utility of regenerative biotherapies for wound healing.

Fat Grafting
Numerous clinical studies demonstrated the positive 

effects of fat grafting22 on recipient tissues from volu-
mizing to improving skin quality in the setting of radia-
tion, burns,23 and scars.24 Fat grafting has unpredictable 

Fig. 2. overview of extracellular vesicles. extracellular vesicles, specifically exosomes, are carriers of biomarkers that can vary based on 
their origin, composition, purpose, and methods of isolation. a detailed understanding of isolation and analysis methods is required 
to allow the use of exosomes in the clinical setting for wound healing, fat grafting, bone modulation, lymphangiogenesis, and skin 
flap reconstruction.
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retention rates due to graft resorption as related to local 
ischemia,25 processing, and factors such as body mass 
index26 and tissue handling and processing. Attempts 
to improve graft survival led to the introduction of cell-
assisted lipotransfer, improving graft retention for small 
volumes.27 This concept was based on the principle that 
fat grafts enriched with adipose MSCs would improve graft 
survival through neovascularization and tissue regenera-
tion via paracrine signaling, creating a suitable microenvi-
ronment for cell survival. Heterogenous cell populations 
within adipose stromal vascular fraction contribute vari-
ably during the process of neovascularization and are not 
yet fully elucidated.28 A paradigm shift from cell-assisted 
lipotransfer to understanding the adipose MSC secretome 
is underway, and exosomes are at the forefront. Cell-based 
therapies are limited by risk of uncontrolled differentia-
tion, hence the interest in cell-free and storage-friendly 
alternatives.

As a cell-free alternative, adipose MSC exosomes have 
been used in fat grafting to promote neovascularization 
and enhance graft survival.29 Mice fat grafted and treated 
with either hypoxia or normoxia-derived exosomes 
showed improved neovascularization in the hypoxia-
derived group via upregulation of VEGF/VEGF-R and 
ANG-1/Tie2.30 A 2021 systematic review showed higher 
graft retention rates in EV-enriched fat grafts compared 
with untreated groups. Graft retention rates were simi-
lar following EV and MSC treatment,31 although MSC 
EVs resulted in reduced inflammation, earlier revascu-
larization, and improved fat graft integrity.32 Han et al 
evaluated grafted fat in mice in four quadrants, with each 
quadrant treated differently. Grafts treated with hypoxic 
preconditioned adipose MSC exosomes were evaluated by 
laser Doppler for neovascularization. Hypoxic precondi-
tioned adipose MSC exosomes and normal conditioned 
exosomes had significantly higher weight than control 
groups; hypoxic adipose MSC exosomes superseded nor-
moxia conditioned exosomes at 8 weeks. Exosome groups 
had less fat necrosis, more homogenous lipocytes, and 
increased perfusion,32 suggesting that therapeutic effector 
of stem cells is its exosomal paracrine output. Exosome 
therapy optimization may preclude the need for stem cell-
based therapy as a modality to achieve optimal outcomes.

Flap Viability
Exosomes offer a new modulating factor to increase 

proangiogenic gene expression, increasing vasculariza-
tion of free tissue transfer. Superficial inferior epigastric 
vessel flaps elevated on rats were ligated for 6 hours to 
produce an ischemia-reperfusion flap model. Following 
ischemia, flaps were injected with H2O2-preconditioned 
adipose MSC exosomes, normal adipose MSC exosomes, 
or controls. Flap survival and capillary density were signifi-
cantly increased with decreased apoptosis and inflamma-
tion in the H2O2-preconditioned exosomes as compared 
with other methods.33 Pectoral skin flaps elevated on the 
right long thoracic artery were then subject to three hours 
ischemia then injected with adipose MSC exosomes with 
IL-6 expression. The experimental group had a smaller 
inflammatory area and increased epithelialization and 

skin appendages as compared with the control group. 
IL-6 silenced models showed decreased flap recovery.33 
Xiong et al used a prefabricated artificial dermal flap, 
which are prone to necrosis due to poor vascularization; 
adipose MSC and adipose MSC-exosome treatment sig-
nificantly increased flap thickness and collagen as com-
pared with human foreskin fibroblast cells (HFF) and 
HFF-exosome groups.34 Tetraspanin structure of exo-
somes facilitate cellular entry and foster rapid induction 
of antioxidant, immunomodulatory, and pro-vasculogenic 
events. Exosome-mediated flap viability provides a unique 
roadmap for critical pathways required to tailor exosome-
based therapies.

Nerve Regeneration
Peripheral nerve injuries can be life-altering events, 

often with limited reconstructive options and less-than-
ideal outcomes. Multiple in vivo studies have demon-
strated improved nerve regeneration in exosome-treated 
animals modeling peripheral nerve injury. Rau et al iso-
lated exosomes from interscapular brown fat of mice 
and purified in adipose MSC media in the presence or 
absence of the immunosuppressive nerve enhancing drug 
(FK506). Nerve injury, as modeled by sciatic nerve com-
pression in mice, was treated with topical adipose MSC 
exosomes and assessed for regenerative capacity. adipose 
MSC exosomes without FK506 versus adipose MSC exo-
somes pretreated with FK506 had similar nerve regen-
eration including significantly larger nerve fiber width, 
axonal width, fiber area, myelin area, and total fiber area.35 
Sciatic nerve injury models in rats were randomized into 
various treatment groups: graft conduit, graft conduit 
with control exosomes, graft conduit with exosomes with 
neurotrophic factor 3 (NT3), and autologous grafting. 
Engineered exosomes with NT3 graft conduit produced 
mRNA in stem cells and significantly promoted nerve 
regeneration and improve functional recovery of gastroc-
nemius muscles as compared with control.36 In another 
study, unilateral 10-mm sciatic nerve defects in rats were 
reversed. Specifically, rats were randomized to autograft, 
autograft with fibrin glue, and autograft with fibrin glue 
impregnated with a platelet-derived exosomal product 
(PEP). Isometric tetanic force and axonal diameter was 
significantly improved in the exosome-treated group. 
GAP43, a cytoplasmic nervous tissue protein, had signifi-
cant upregulation in the treatment group.37 In a similar 
peripheral nerve injury rat model, bone marrow MSC 
exosomes were injected into rat gastrocnemius muscle at 
different doses and evaluated for sciatic nerve function, 
latency of thermal pain, number, and diameter of regen-
erated fibers distal to the injury. Treatment groups had 
a significant increase in peripheral nerve diameter and 
regeneration of myelinated nerve fibers, superior latency 
of thermal pain, and improved gait. There was also a dose-
related effect between the number and diameter of regen-
erated myelinated fibers; however, it did not correlate with 
improved functional regeneration.38 Bucan et al evaluated 
exosomes on neurite outgrowth using a similar sciatic 
nerve injury model in rats. Adipose MSCs harvested from 
rats were injected proximal and distal to the site of injury. 
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The exosome treatment group demonstrated increased 
number and branching points but did not reach signifi-
cance compared with control. The exosome group had a 
larger number of regenerated fibers (40% higher) com-
pared with control.39

Bone Modulation
Exosomal-induced bone regeneration is another new 

frontier in regenerative medicine with the potential to 
revolutionize the approach to bone reconstruction. As 
with standard paracrine signaling, MSC exosomes can 
be signaled and mediated towards osteoblastic differ-
entiation. Osteoblasts are further directed to increase 
proliferation and synthesis of pro-osteogenic factors 
responsible for new bone formation. Tendon injuries 
also face similar challenges. Huang et al injected bone 
marrow MSC-derived exosomes into rats that underwent 
rotator cuff reconstruction. Exosome-treated rats had 
increased angiogenesis and breaking load, which exhib-
ited improved tendon-bone growth.40 Ren et al recently 
showed that platelet-derived purified exosomes (PEP) in 
a rodent model of rotator cuff (supraspinatus tendon) 
injury accelerated tendon-bone healing. Qin et al cre-
ated two 5-mm calvarial defects in rats; one treated with 
control hydrogel, and the other treated with extracellular 
vesicle hydrogel. EV-treated wound defects, as evaluated 
by microCT, demonstrated significant increase in bone 
formation via upregulation of miR-196a, with downstream 
effects on ALP, OCN, OPN, and Runx2.41 In addition, stud-
ies of multiple myeloma have demonstrated preferential 
osteoblast and osteoclastic activity by exosome signaling. 
In contrast to soft tissue regeneration, bone formation 
has unique prerequisites to drive progenitors towards an 
osteogenic program. Effective bone-forming exosomes 
mandate selection and priming of ideal packaging cellular 
system as well as upregulation of key signaling elements to 
efficiently drive these molecular events.

Lymphangiogenesis
Lymphedema continues to be a significant postsurgi-

cal problem despite breakthroughs in surgical treatments. 
Lymphangiogenesis plays a vital role in tumor progression 
in cancer. Exosome-derived noncoding RNAs mediate 
posttranscriptional regulation and affect gene expres-
sion. Formation of new lymphatic vessels facilitates tumor 
spread in mice. Lymphatic enlargement increases the 
diameter of lymphatic vessels and facilitates nodal metas-
tasis. Vascular endothelial growth factor (VEGF) pathways 
are considered the primary signaling mediators in lym-
phangiogenesis and lymphatic remodeling.42 Melanoma-
derived exosomes facilitate lymphatic remodeling that 
creates a pro-metastatic microenvironment.43 The ability 
to monitor lymphangiogenesis markers, and the future 
potential of therapeutic targets to modify lymphatics 
could change our approach from cancer to regeneration.

Biomarkers and Other Applications
Exosomes have been widely studied as biomarkers 

for various disease processes, from cognitive disorders 
to malignancies. A systematic review encompassing 921 

breast cancer patients in 11 studies showed association of 
exosomal biomarkers and relation to tumor recurrence, 
distant organ metastasis, and chemotherapy resistance 
with expression of certain exosomal proteins.44 A similar 
systematic review and meta-analysis on solid tumor exo-
some biomarkers, which pooled data from 28 studies 
with 4017 patients with solid tumors, including breast 
cancer, showed a 0.74 sensitivity and 0.81 specificity for 
solid tumors; urinary system tumor exosomes had higher 
diagnostic power.45 A meta-analysis of differential exo-
somal miRNA expression and prognosis of cancer patients 
showed that high exosomal miR-21 expression was associ-
ated with poor overall survival. Furthermore, miR-21, miR-
451a, miR-1290, and miR-638 strongly predicted prognosis 
in solid tumors and possibly to treatment response.46 Ono 
et al demonstrated metastatic breast cancer suppression in 
a murine model via an exosome-mediated overexpression 
of miR-23b, as well as a decreased resistance to doclitaxel.47 
High circulating levels of EV-associated-TGFβ3 correlated 
with poor response to chemoradiation therapy in head 
and neck squamous cell carcinoma. Head and neck squa-
mous cell cancers were sensitized to chemotherapy in vitro 
by silencing TGFβ3.48 Numerous studies look at biomark-
ers for cognitive impairment and Alzheimer disease,49–53 
malignancies,54,55 coagulopathy associated with cancer cell-
derived exosomes,56 graft and transplant,57,58 and diabetic 
nephropathy.59 Other disease processes have been studied 
in regard to their effect on exosomal production.60

Exosome Production and Stability
Exosome source and production conditions are impor-

tant for evaluated EV therapeutics. EVs reflect phenotype 
and condition of their derived cells, including cargo and 
downstream effect.

The field gained an appreciation for the utility of MSC-
derived EVs throughout the rapid adoption of MSCs as a 
therapeutic approach within the last two decades.61 MSCs 
have been used extensively in clinical studies, although 
cGMP scale-up of MSC cultures has proven difficult to 
achieve at the scale required to support clinical efforts.62 
Culture systems produce heterogenous MSC populations 
within systems and lot-to-lot variability.

Well-characterized cell lines and validated cell culture 
systems can mitigate heterogeneity.

Using robust quality control assays to release the 
final EV product is important; however, their devel-
opment has proven challenging.63 The International 
Society for Extracellular Vesicles provides guidance 
on types of characterization and assays that may be 
appropriate for EV-based products.64 Additional charac-
terization of surface marker decoration and cargo iden-
tification allows for the link between exosome particle 
and EV. Surface marker and cargo profiles provide a link 
to parent cell type and help confirm target population 
isolation. From a functional standpoint, potency assays 
linked to mechanism are important to verify product sta-
bility. Most importantly, lot-to-lot consistency should be 
demonstrated.

Several methods have been developed for storage and 
preservation of isolated exosomes. Storage conditions in 
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a refrigerated liquid state (2˚C–8˚C) and frozen (−20˚C) 
or ultracold (−80˚C) conditions have shown altered exo-
some structure, leading to degradation.65,66 Further, the 
need for frozen or ultracold storage and transport render 
distribution and administration challenging. Generating 
a stabilized, lyophilized powder containing isolated exo-
somes provides a room temperature-stable final drug 
product preserving exosome integrity and stability (Rion, 
Inc., data on file).

DISCUSSION
Exosomes are an exciting new frontier in regenerative 

medicine and surgery with exponential growth in basic 
and translational research. Exosome technology offers an 
acellular, off-the-shelf, stable, therapeutic option for the 
modern surgical toolkit. There are over 200 registered 
studies on ClinicalTrials.gov concerning exosomes as of 
September 2021.67 Yet, to date, there are no Food and Drug 
Administration–approved exosome therapies for clinical 
indications. Exosomes have thus far avoided ethical and 
logistical barriers that have limited the actualization of 
stem cell therapies. As the medical community witnessed 
the hype associated with stem cell tourism, caution must 
be executed to avoid this path for exosome technology.68 
As therapeutic targets and manufacturing requirements 
can be sufficiently defined in nonliving biologics, the 
hope for this new nanomedicine is that regenerative medi-
cine practitioners will adopt an evidence-based approach 
to realize the benefit.

Current literature shows promise for plastic and recon-
structive surgery and dermatology applications, including 
skin care69 and cutaneous wound healing70 (eg, chronic 
diabetic wounds), bone regeneration, flap viability, and 
nerve regeneration. Enhancing exosome properties can 
meet patient needs beyond the one-size-fits-all application 
to complex problems faced by today’s plastic surgeons and 
dermatologists. Indeed, it is important to recognize the 
risk with exosome therapy based on source, such as the 
high risk of chromosomal changes in MSC cultures that 
can underpin a pro-oncogenic exosome when derived 
from MSCs in culture for numerous cell-doubling events.71 
Additional Food and Drug Administration–regulated 
studies for safety and efficacy are needed to develop regu-
latory guidelines. Much remains to be elucidated before 
realizing the reality of exosome therapy. Today, we recog-
nize that the foundational research has burgeoned and 
demonstrates an exciting addition to the reconstructive 
and cosmetic elevator of plastic surgery and dermatology.
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