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A B S T R A C T

Brain volumes computed from magnetic resonance images have potential for assisting with the diagnosis of
individual dementia patients, provided that they have low measurement error and high reliability. In this paper
we describe and validate icobrain dm, an automatic tool that segments brain structures that are relevant for
differential diagnosis of dementia, such as the hippocampi and cerebral lobes. Experiments were conducted in
comparison to the widely used FreeSurfer software. The hippocampus segmentations were compared against
manual segmentations, with significantly higher Dice coefficients obtained with icobrain dm (25–75th quan-
tiles: 0.86–0.88) than with FreeSurfer (25–75th quantiles: 0.80–0.83). Other brain structures were also com-
pared against manual delineations, with icobrain dm showing lower volumetric errors overall. Test-retest ex-
periments show that the precision of all measurements is higher for icobrain dm than for FreeSurfer except for
the parietal cortex volume. Finally, when comparing volumes obtained from Alzheimer's disease patients against
age-matched healthy controls, all measures achieved high diagnostic performance levels when discriminating
patients from cognitively healthy controls, with the temporal cortex volume measured by icobrain dm reaching
the highest diagnostic performance level (area under the receiver operating characteristic curve = 0.99) in this
dataset.

1. Introduction

Structural neuroimaging with magnetic resonance imaging (MRI)
(or computed tomography (CT)) plays a key role in the diagnostic work-
up of dementia. It allows to rule out structural lesions of the brain that
might cause cognitive problems. In addition, structural neuroimaging
may contribute to the early and differential diagnosis of the neurode-
generative disease underlying the dementia syndrome (Chui et al.,
1992; Roman et al., 1993; Chan et al., 2001; Rosen et al., 2002a, 2002b;
Boccardi et al., 2003). Indeed, neurodegenerative disorders that cause
dementia are often associated with typical brain atrophy patterns.
Alzheimer's disease (AD), for instance, is characterized by medial
temporal lobe atrophy, including the hippocampus, and parietal
atrophy. Frontotemporal dementia, on the other hand, mainly presents
with atrophy of the frontal and (anterior and / or lateral parts of the)
temporal lobes. Dementia with Lewy bodies usually does not show

specific structural abnormalities, while vascular dementia is mainly
characterized by global atrophy and diffuse white matter lesions, la-
cunes and/or strategic infarcts. As such, global and focal atrophy to-
gether with vascular disease are important factors to consider when
establishing a differential dementia diagnosis. Gradually, these factors
are being included into diagnostic clinical criteria for dementia
(McKhann et al., 1984; Roman et al., 1993; Neary et al., 1998;
McKhann et al., 2011; McKeith et al., 2017).

Besides contributing to differential diagnosis of prevalent dementia,
structural neuroimaging may also aid in predicting progression to de-
mentia in subjects who have not reached the dementia stage yet. MRI
studies have shown hippocampal atrophy to be associated with in-
creased risk of progression to dementia due to AD (Dubois, 2018).
Hippocampal atrophy is included as a biomarker for early AD diagnosis
in the revised diagnostic criteria of the National Institute on Aging –
Alzheimer Association working group (Albert et al., 2011;
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Sperling et al., 2011).
In order to segment brain regions-of-interest and measure brain

atrophy, fully automated processing techniques have been developed.
These can be used in large study cohorts, saving both time and costs,
and are easily reproducible, as opposed to manual segmentation by
neuroanatomical experts or semi-automated measures that still require
a priori information on the region-of-interest (Duchesne et al., 2002;
Barnes et al., 2008; Kennedy et al., 2009; Dewey et al., 2010;
Boccardi et al., 2011; Doring et al., 2011; Bosco et al., 2017). FreeSurfer
is a very frequently used automatic tool (Fischl, 2012); depending on
hardware, may require a long computation time of up to several tens of
hours per scan (http://surfer.nmr.mgh.harvard.edu/).

Applying automated measures of brain volumes on individual de-
mentia patients requires a low measurement error and high reliability.
For instance, a meta-analysis pointed to an annual atrophy rate of the
hippocampus of 4.66% in AD patients compared with 1.41% in controls
(Barnes et al., 2009). Hence, the measurement error of the brain vo-
lumetric measures should be minimal, in order to draw meaningful
conclusions in individual patients.

In this study we validate an automated method to measure volumes
of the whole brain (WB), total gray matter (GM), frontal, parietal and
temporal cortex, hippocampi, and lateral ventricles. In order to eval-
uate the applicability of the method for brain volume quantification of
individual dementia patients, this paper focuses on the accuracy, re-
liability and diagnostic performance of these volumetric measures.

2. Materials and methods

2.1. Dataset 1.a (accuracy)

Dataset 1.a was acquired from 35 healthy subjects (mean age 34
(± 20 SD) years, 67% females,) as part of the OASIS project (http://
www.oasis-brains.org). Manual brain segmentations were produced by
Neuromorphometrics, Inc. (neuromorphometrics.com) using the
brainCOLOR labeling protocol. The data were part of the 2012 MICCAI
Multi-Atlas Labeling Challenge, where 15 subjects were used as training
and the remaining 20 images were used for testing. Since all 35 manual
segmentations were made available, we do not make this distinction
and, thus, we report results on all 35 images. The 3D magnetization-
prepared rapid gradient-echo (MP-RAGE) T1-weighted MRIs were ac-
quired using a 1.5T Siemens Vision MR scanner, voxel size of
1 × 1 × 1 mm and dimensions up to 256 × 334 × 256 mm.

2.2. Dataset 1.b (accuracy)

Dataset 1.b was acquired from 46 subjects of a memory clinic-based
research population who participated in a study at the University of
Antwerp, Belgium (mean age 72.0 (± 7.8 SD) years, 50.0% females,
Mini–Mental State Examination (MMSE) score 25.8 ± 3.1). This po-
pulation consisted of 6 cognitively healthy controls as well as patients
with subjective cognitive decline (n = 3), mild cognitive impairment
(n = 28) and dementia due to AD (n = 9). Local ethics committees
(Hospital Network Antwerp and University of Antwerp / Antwerp
University Hospital) approved the study and all patients signed in-
formed consent forms. MR imaging was performed on each subject on a
3T whole body scanner with a 32-channel head coil (Siemens Trio/

PrismaFit, Erlangen, Germany). The 3D MP-RAGE (TR/TE = 2200/
2.45 ms) was used to obtain 176 axial slices without slice gap and
1.0 mm nominal isotropic resolution (FOV = 192 × 256 mm).

An expert (LC) performed bilateral manual hippocampus segmen-
tation on all subjects according to the EADC-ADNI harmonized hippo-
campus segmentation guidelines (Boccardi et al., 2015). These manual
segmentations were further used as ground truth references.

2.3. Dataset 2 (reproducibility)

Dataset 2 consisted of 42 cognitively healthy subjects (i.e., having
score 0 on the Clinical Dementia Rating scale) who received long-
itudinal scans up to 10 days apart (mean age 61.4 (± 8.6 SD) years,
59.5% females), provided by the publicly available database OASIS-3
(http://www.oasis-brains.org). MR imaging was performed on each
subject on a 3T whole body scanner with a 16-channel head coil
(Siemens TIM Trio or BioGraph mMR PET-MR, Erlangen, Germany).
The baseline and follow-up scans of three subjects were done on the
same scanner, while all other 39 subjects had different scanner types for
their baseline and follow-up scans.

The MP-RAGE protocol of TIM Trio scanner was as follows: TR/
TE = 2400/3.16 ms,± 176 axial slices without slice gap and 1.0 mm
nominal isotropic resolution (FOV = 256 × 256 mm). The MP-RAGE
protocol of BioGraph mMR PET-MR scanner was as follows: TR/
TE = 2300/2.95 ms,± 176 axial slices without slice gap and 1.2 mm
nominal isotropic resolution (FOV = 256 × 256 mm).

2.4. Dataset 3 (diagnostic performance)

Dataset 3 consisted of 46 AD patients (age 71.5 ± 7.2, 60.9% fe-
males, Mini–Mental State Examination (MMSE) 19.2 ± 4) and 23
cognitively healthy subjects (age 70.4 ± 7.1, 47.8% females, MMSE
29.4 ± 0.8) of the publicly available MIRIAD database (mir-
iad.drc.ion.ucl.ac.uk). An overview of the MIRIAD demographics, di-
agnostic procedures, and imaging protocol was published previously
(Malone et al., 2013). In brief, AD patients were diagnosed with
mild–moderate probable AD according to the NINCDS–ADRDA clinical
criteria (McKhann et al., 1984), while the control subjects did not have
subjective cognitive complaints, nor evidence of cognitive impairment.
All scans were conducted on a 1.5T whole body scanner (GE Medical
systems Signa, Milwaukee, Wisconsin, USA). Three-dimensional T1-
weighted (T1w) images were acquired with an IR-FSPGR (inversion
recovery prepared fast spoiled gradient recalled) sequence, FOV
240 mm, 256 × 256 matrix, 124 1.5 mm coronal partitions, TR/
TE = 15/5.4 ms.

A summary of the 3 datasets can be found in Table 1.

2.5. MRI analysis

2.5.1. icobrain dm
icobrain dm (version 4.3) is a medical device software that mea-

sures relevant volumes of brain structures to assist radiologic assess-
ment of dementia patients. The general icobrain pipeline segments a
T1w image into white matter, gray matter and cerebrospinal fluid.
When a FLAIR image is available, white matter FLAIR hyper-intensities
are also identified and included in the white matter segmentation. The

Table 1
Short overview of datasets used for method validation.

DATA # subjects Age Cognitive state Source

Dataset 1.a: accuracy 35 34 ± 20 Healthy controls MICCAI 2012 challenge neuromorphometrics.com
Dataset 1.b: accuracy 46 72.0 ± 7.8 MMSE: 25.8 ± 3.1 University of Antwerp, Belgium
Dataset 2: reproducibility 42 61.4 ± 8.6 Healthy controls OASIS-3 www.oasis-brains.org
Dataset 3: diagnostic performance 46 71.5 ± 7.2 MMSE: 19.2 ± 4 MIRIAD miriad.drc.ion.ucl.ac.uk

23 70.4 ± 7.1 Healthy controls

H. Struyfs, et al. NeuroImage: Clinical 26 (2020) 102243

2

http://surfer.nmr.mgh.harvard.edu/
http://www.oasis-brains.org
http://www.oasis-brains.org
http://www.oasis-brains.org
http://www.oasis-brains.org


main blocks of the icobrain pipeline have been described previously
(Jain et al., 2015); in short, after skull stripping and bias correction, the
T1w image is segmented using a probabilistic image intensity model
and non-rigidly propagated tissue priors from an MNI atlas
(Evans et al., 1992). Lesion segmentation is obtained as intensity out-
liers to a probabilistic FLAIR image segmentation, and the tissue seg-
mentation is improved iteratively by re-segmenting the lesion-filled
T1w image. Volumes are normalized for head size, using the determi-
nant of the affine transformation to MNI atlas as a scaling factor. ico-
brain dmfurther refines this main tissue segmentation in order to ob-
tain sub-segmentations of cortical gray matter lobes and of the
hippocampi.

Sub-segmentations of cortical lobes are obtained from the icobrain
cortical gray matter segmentation, annotated according to a set of
cortical labels available in MNI space (Klein and Tourville, 2012). In-
itial non-rigid registration (Modat et al., 2010) between the patient's
T1w image and the MNI template is used to obtain a first propagation of
the cortical labels from atlas space (“CGM labels”) to the patient's T1w
image space. This label propagation is further refined through a second
non-rigid registration between the skeleton of the patient's binarized
cortical gray matter segmentation and the skeleton of the binarized
propagated CGM labels. Finally, each cortical gray matter voxel ias
assigned as the cortical label matching the closest voxel in the skeleton
of the non-rigidly propagated CGM labels.

Segmentation of the hippocampi starts from the T1w scans pre-
processed by the icobrain pipeline, including bias field correction,
brain orientation and skull stripping. After preprocessing, a multi-atlas
segmentation approach registers binary anatomical priors (i.e., a set of
manually annotated hippocampi corresponding to the guidelines of the
EADC-ADNI harmonized protocol - (Boccardi et al., 2015)) for left and
right hippocampi to the T1w image space using an affine and a non-
rigid image registration algorithm. The propagated segmentations are
then combined into one probabilistic segmentation for each hippo-
campus. This label fusion is based on a local ranking using the locally
normalized cross correlation as a similarity metric (Cardoso et al.,
2013). Subsequently, the probabilistic segmentation of each hippo-
campus is used as a prior in an intensity-based 2-step maximum like-
lihood expectation-maximization algorithm (Cardoso, 2012) to obtain
the final hippocampus segmentation. As a post-processing step, voxels
mainly considered as CSF by the main tissue segmentation are excluded
from the hippocampus segmentation, to keep in line with the EADC-
ADNI harmonized protocol, which agreed on excluding internal CSF
pools from manual hippocampus segmentation. icobrain dm was exe-
cuted on a Linux server with 8 CPU cores (Intel Xeon Platinum 8000)
and 16 GB RAM, and required between 15 and 30 min per scan to
complete.

2.5.2. FreeSurfer
The Freesurfer image analysis suite (version 6.0) is documented and

freely available for download online (http://surfer.nmr.mgh.harvard.
edu/) and has been thoroughly described elsewhere (Fischl et al., 2002;
Fischl, 2012). In this paper, we used the recon-all stream with fully-
automated directive -all, in order to reconstruct all brain volumes, in-
cluding cortical and subcortical parcellations. Since we used very di-
verse datasets, they were all processed with identical command and
default parameters, without optimizing for a specific dataset (e.g.,
without −3T or -mprage options).

Cortical labels corresponding to the frontal, temporal and parietal
gray matter regions were grouped in order to obtain volumes of the
same three cortical lobe regions as for icobrain dm.

When reporting volumes normalized for head size, in order to ob-
tain brain volumes in the same range as icobrain, we performed a
scaling of the FreeSurfer volumes using the formula below, where
1985.026 ml is the intracranial volume of the MNI template used in
icobrain and ‘Estimated Total Intracranial Volume’ is the total in-
tracranial volume reported by FreeSurfer:

RegionOfInterestVolume
EstimatedTotalIntracranialVolume

ml*1985.026

FreeSurfer's more recent functionality for segmentation of hippo-
campal subfields and nuclei of the amygdala (Iglesias et al., 2015) was
also applied on the accuracy datasets 1.a and 1.b, from which volumes
of the whole left and right hippocampi were extracted.

FreeSurfer was executed on a Linux server with 16 CPU cores (Intel
Xeon Platinum 8000) and 64GB RAM, and required between 9 and 13 h
per scan to complete.

Both icobrain and FreeSurfer used only the T1w images as input.

2.6. Validation

icobrain dm and FreeSurfer were validated in terms of accuracy,
reproducibility and diagnostic performance of all measures. Accuracy
of the hippocampal segmentation received special attention, as it was
compared against two different approaches implemented in FreeSurfer.
Statistical analyses were performed using the integrated development
environment for R programming language, RStudio (version 1.0.136)
(Team R, 2016). Per experiment, significant differences between ico-
brain dm and FreeSurfer were evaluated using the nonparametric
Wilcoxon signed-rank test, using R package ‘MASS’ (Venables and
Ripley, 2002), at significance level 0.01.

First, we quantified measurement error of all structures and in
particular of the hippocampus segmentation with respect to manual
ground truth segmentation (datasets 1.a and 1.b). The measurement
error was computed as the (absolute) volume difference between
ground truth volume and icobrain dm or FreeSurfer volume. In addi-
tion, accuracy of the hippocampal segmentation was assessed by the
Dice similarity coefficient (DSC). DSC was used to measure the simi-
larity between the ground truth and the automatic segmentation results
separately for left and right hippocampus and for total hippocampal
volume for each method. According to (Dill et al., 2015) a DSC of 0.80
can be considered a good accuracy value, since it was measured by
previous studies as the average rate of similarity between two manual
hippocampus segmentations performed by experienced operators.

Subsequently, we assessed reproducibility of all measures on tes-
t–retest images from cognitively healthy subjects (dataset 2), based on
the absolute volume difference between these pairs of images.

Finally, the diagnostic performance of the measures to distinguish
AD patients and cognitively healthy subjects was evaluated (dataset 3)
by means of a receiver operating characteristic curve (ROC) analysis
with DeLong tests at significance level 0.05, using the ‘pROC’ package
(Robin et al., 2011).

3. Results

3.1. Accuracy of brain (sub)structures segmentation

Fig. 1 illustrates the accuracy results for the brain segmentation
obtained by icobrain dm and FreeSurfer on dataset 1.a (MICCAI 2012
challenge). These results are also summarized in Table 2. It is obvious
that several volumes are biased with respect to the ground truth vo-
lumes obtained from manual segmentation, and icobrain dm and
FreeSurfer typically have the same bias direction (i.e. underestimation
for WB, GM and the cortical lobes), with the exception of the hippo-
campi, where FreeSurfer's default hippocampus segmentation over-
estimates most of the volumes. On the other hand, FreeSurfer's hippo-
campal subfield functionality underestimates them. For all
measurements, icobrain dm has lower bias and lower absolute error.
Moreover, there are fewer outliers.

3.2. Accuracy of hippocampus segmentation

Continuing with the dataset 1.a, we report the DSC for hippocampus
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segmentations for icobrain dm at 0.8223 (0.8142; 0.8321) (median
and interquartile range), while FreeSurfer's default hippocampus seg-
mentation scores a DSC of 0.7988 (0.7867; 0.8158). FreeSurfer's newer
hippocampal subfield functionality (Iglesias et al., 2015) scores a
slightly lower DSC of 0.7953 (0.7867; 0.8092).

Fig. 2 illustrates the accuracy of the hippocampus segmentation
obtained by icobrain dm and FreeSurfer (dataset 1.b), with panel A
showing the absolute volume difference from ground truth, panel B the
DSC, and panel C scatter plots of automated measurements versus
manual ground truth. These results are also summarized in Table 3. The
median absolute volume difference of icobrain dm was significantly
lower than that of FreeSurfer's default stream and FreeSurfer's hippo-
campal subfield functionality, which is also supported by a significantly
higher DSC for icobrain dm compared with FreeSurfer methods. It
should be noted that 44/46 subjects had a DSC above 0.80 when seg-
mented by icobrain dm compared with 35/46 subjects for FreeSurfer
and 42/46 for FreeSurfer's hippocampal subfield functionality.

Fig. 3 shows two illustrations of hippocampus segmentations by
icobrain dm and FreeSurfer with high and low DSCs, respectively.

3.3. Reproducibility

Fig. 4 illustrates the absolute volume differences between test and
retest scans (dataset 2) for all measures. Detailed volume differences are
presented in Table 4. The segmentations obtained by icobrain dm
systematically tended to have lower volume differences than Free-
Surfer, except for parietal lobe volume, with significant differences for
whole brain, total gray matter, and hippocampal volumes.

3.4. Diagnostic performance

As shown in Table 5, all measures from both icobrain dm and
FreeSurfer have high area under the curve (AUC) levels to distinguish
AD patients from cognitively healthy controls (dataset 3). Temporal
lobe volume measured by icobrain dm produced the highest AUC
(0.9896), which was significantly higher than the temporal lobe AUC
produced by FreeSurfer (0.9565, P = 0.04646).

4. Discussion

In this paper, the automated method icobrain dm for measuring

Fig. 1. Scatter plots illustrating the brain volumes segmentations by icobrain dm and FreeSurfer (including FreeSurfer's hippocampal subfield functionality, denoted
“FS subfields”) compared to expert manual segmentation on dataset 1.a.
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brain volumes is presented and compared to the widely used FreeSurfer.
In order to assess the use of this method in clinical practice on MRI
scans of individual dementia patients, the reliability of the method is
evaluated in terms of accuracy, reliability and diagnostic performance
of all measures. Results are compared to FreeSurfer, a well-validated
and extensively used method for measuring brain volumes in clinical
studies and trials. icobrain dm and FreeSurfer results on dataset 1.a
demonstrated bias in most volumes compared to manual delineations. A
systematic bias is not dangerous as such, because volumes obtained
with a certain automated software would typically only be compared
with the same software between patient groups or between patients and
healthy controls. A reason for bias to manual delineations could be the
absence of partial volume effect in the manual ground truth. Both
icobrain dm and FreeSurfer compute theirs volumes from probability
maps, where the voxels close to the brain contour are partly brain
tissue, partly CSF, without sharp edges.

Hippocampus segmentation showed however a divergent trend be-
tween the 2 automated methods, with FreeSurfer's default stream
overestimating most volumes, and icobrain dm slightly under-
estimating them. On the other hand, FreeSurfer's hippocampal subfields
segmentation module (Iglesias et al., 2015), which is currently included
in FreeSurfer's development version and thus is not yet the default al-
gorithm, underestimates the considered manual segmentations slightly
more than icobrain dm. A recent paper (Ataloglou et al., 2019) re-
ported state-of-the-art hippocampus segmentation results using deep
convolutional neural network (CNN) ensembles, reaching a Dice score
of 0.88 on the same MICCAI 2012 challenge dataset. However, the
authors had to tune their CNN with transfer learning on a training
subset of the MICCAI 2012 challenge dataset in order to reach these
maximal performance results. Deep learning is increasingly superior to
classical brain segmentation approaches, but it is limited by the

amount, the diversity and the quality of the data used for training.
icobrain dm results on dataset 1.b demonstrated a small measurement
error for hippocampus segmentation, with a median absolute volume
difference from ground truth of 0.230 ml. The similarity with ground
truth was generally high, with a median DSC of 0.87 and 44/46 seg-
mentations with a DSC above 0.80. The accuracy of icobrain dm was
significantly higher than that of both the default hippocampal seg-
mentation in FreeSurfer 6.0 recon-all stream and FreeSurfer's hippo-
campal subfields segmentation module (Iglesias et al., 2015), con-
firming the same trends observed in dataset 1.a.

Bias in hippocampal volumes between automated methods and
manual annotations is not surprising, since not all methods and all
manual raters use the same definition of the hippocampal borders seen
on MRI. The recent EADC-ADNI harmonized protocol (Boccardi et al.,
2015), which is used for the multi-atlas approach of icobrain dm, is
more clearly defined compared to prior protocols, but it differs from the
Center for Morphometric Analysis (CMA) guidelines (Filipek et al.,
1994) underlying FreeSurfer's probabilistic atlas used by the default
recon-all stream. Other recent studies such as (Schmidt et al., 2018)
found that FreeSurfer 6.0 overestimates the hippocampal volume by
20% compared to manual raters, which is explained by the fact that
FreeSurfer includes further caudal regions, resulting in larger tails, as
well as some voxels between hippocampus and lateral ventricles. On the
other hand, the newer FreeSurfer hippocampal subfields segmentation
module (Iglesias et al., 2015) is based on a quite different definition of
the hippocampal formation at the subregion level, using ultra-high re-
solution ex vivo MRIs. The total hippocampal volume obtained with
this approach underestimates the volumes obtained from manual seg-
mentations in both accuracy datasets considered in this paper. A po-
tential explanation for this bias towards smaller volumes is that the
hippocampus subfield atlas was built using elderly subjects, and was

Table 2
Accuracy of volumes obtained by icobrain dm and FreeSurfer when compared with expert manual segmentation on dataset 1.a (MICCAI 2012 challenge), where
volume differences are computed as ground truth segmentation volume minus volume computed automatically by icobrain dm, FreeSurfer or FreeSurfer's hippo-
campal subfield functionality, “FS subfields”.

volume differences to ground truth absolute volume differences to ground truth number of volumetric outliers P values icobrain dm vs.
FreeSurfer

icobrain dm FreeSurfer icobrain dm FreeSurfer icobrain dm FreeSurfer

Whole brain 78.6 116.0 78.6 116.0 2 6 < 0.001
(65.5; 91.3) (97.4; 127.4) (65.5; 91.3) (97.4; 127.4)

Gray matter 45.1 149.6 45.5 149.6 1 21 < 0.001
(31.1; 71.4) (123.7; 170.4) (31.8; 71.4) (124; 170.4)

Frontal lobe 14.0 38.7 14.1 38.7 2 13 < 0.001
(9.4; 20.8) (34.1; 44.7) (9.6; 20.8) (34.1; 44.7)

Parietal lobe 10.0 27.2 10.6 27.2 1 3 < 0.001
(4.5; 17.6) (18.8; 33.8) (5.3; 17.6) (18.8; 33.8)

Temporal lobe 21.7 42.9 21.7 42.9 1 22 < 0.001
(14.7; 24.3) (35.8; 48.5) (14.7; 24.3) (35.8; 48.5)

Hippocampus 0.3 −0.7 0.3 0.9 1 23 < 0.001
(0.1; 0.6) (−1.0; −0.2) (0.2; 0.6) (0.5; 1.4)

Left hippocampus 0.1 −0.4 0.2 0.5 1 10 0.01
(−0.1; 0.2) (−0.5; −0.2) (0.1; 0.3) (0.2; 0.7)

Right hippocampus 0.2 −0.3 0.2 0.4 0 13 0.02
(0.0; 0.3) (−0.6; −0.1) (0.1; 0.3) (0.3; 0.6)

Lateral ventricles 0.6 1.7 0.9 2.0 0 4 0.006
(−0.3; 1.7) (0.6; 3.1) (0.5; 1.7) (0.8; 3.3)

icobrain dm FS subfields icobrain dm FS subfields icobrain dm FS subfields P values icobrain dm vs. FS subfields

Hippocampus 0.3 0.4 0.3 0.5 1 1 0.03
(0.1; 0.6) (0.0; 0.7) (0.2; 0.6) (0.2; 0.7)

Left hippocampus 0.1 0.1 0.2 0.2 1 2 0.23
(−0.1; 0.2) (0.0; 0.3) (0.1; 0.3) (0.1; 0.3)

Right hippocampus 0.2 0.2 0.2 0.2 0 2 0.21
(0.0; 0.3) (0.0; 0.4) (0.1; 0.3) (0.1; 0.4)

Note: Values in the first 4 columns are median (25–75th quantiles) volume differences or absolute volume difference in ml (not normalised for head size). Volumetric
outliers are defined as measurements below (25th percentile - 1.5 interquartile range) or above (75th percentile + 1.5 interquartile range), where these limits are
obtained from the volumetric errors of icobrain dm (first column of the table). P values are obtained from Wilcoxon signed-rank tests applied on absolute volume
differences for icobrain dm and Freesurfer.
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based on a detailed ex vivo MRI delineation protocol that cannot be
performed on in vivo brain scans.

The test-retest error on dataset 2 was lower for icobrain dm for all
measures except parietal lobe volume, although these differences were
significant only for whole brain, total gray matter, and hippocampal
volumes. Regarding hippocampal volume, the average test-retest ab-
solute volume difference of the hippocampus is 0.111 ml, which re-
presents 1.20% of the average icobrain dm hippocampal volume
(measured by icobrain dm; test and retest combined). As such, the
measurement error is below the average annual hippocampal atrophy
rates of 1.41% in healthy individuals (Barnes et al., 2009). For Free-
Surfer's hippocampal subfields segmentation, which we explored in the
accuracy experiments (Iglesias et al., 2015), Iglesias et al. (2016) re-
ported test-retest reliability of around 2.5% for the whole left and right
hippocampus.

It should also be noted that test-retest exercises are usually per-
formed with datasets on the same scanner. In this manuscript we
evaluated test-retest reliability on different scanner types. This in-
creases variability and is better in line with clinical practice.

Finally, when using dataset 3, we found that all measures achieve
high diagnostic performance levels when discriminating AD patients
from cognitively healthy controls. The temporal lobe volume measured
by icobrain dm reached the highest diagnostic performance level
(AUC = 0.9896). Although hippocampal atrophy is considered the
most disease-specific for Alzheimer's disease, it is not surprising that
this structure has slightly lower diagnostic performance compared to
the temporal lobe volume, since lower volumes (such as hippocampus)
are likely affected by proportionally higher measurement errors.
Moreover, not all subjects had severe dementia, as dataset 3 consisted
of mild-moderate probable AD.

Fig. 2. Accuracy of hippocampus segmentation by icobrain dm and FreeSurfer, including FreeSurfer's hippocampal subfield functionality, denoted “FS subfields”,
when compared with expert manual segmentation on dataset 1.b. A. Absolute volume difference between manual and automated segmentation. B. Dice similarity
coefficient between manual and automated segmentation. C. Scatterplots comparing ground truth volumes to those obtained from icobrain dm and FreeSurfer. Note:
p-values are obtained from Wilcoxon signed-rank tests.
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Of note, the frontal lobe produced the lowest diagnostic perfor-
mance levels, with FreeSurfer showing stronger differences compared
to icobrain dm. In fact icobrain dm finds the frontal cortex volumes in
this particular dataset as being close to normal values for that age. As
this region is the least of all included measures affected in AD
(McKhann et al., 2011), this result is in line with our expectations.

We conclude that due to its low measurement error, icobrain dm
could be of added value to the clinical diagnostic practice of AD pa-
tients. In future studies the performance of the measures to diagnose
(very) early stages of AD as well as to distinguish between different
dementia illnesses should be further investigated.

Table 3
Accuracy of hippocampus segmentation by icobrain dm and FreeSurfer, including FreeSurfer's hippocampal subfield functionality, denoted “FS subfields”, when
compared with expert manual segmentation on dataset 1.b (only hippocampal segmentations), where volume differences are computed as ground truth segmentation
volume minus volume computed automatically by icobrain dm, FreeSurfer or “FS subfields” software.

Volume difference, ml,
median (25–75 quantiles)

Absolute volume difference, ml,
median (25–75 quantiles)

Dice similarity coefficient,
median (25–75 quantiles)

Number of volumetric
outliers

icobrain dm Hippocampus 0.19 0.23 0.87 1
(−0.06; 0.46) (0.14; 0.48) (0.86; 0.88)

Left hippocampus 0.10 0.15 0.87 1
(−0.05; 0.34) (0.07; 0.35) (0.84; 0.88)

Right hippocampus 0.04 0.13 0.88 0
(−0.03; 0.21) (0.04; 0.22) (0.87; 0.89)

FreeSurfer Hippocampus −0.70 0.70 0.82 19
(−1.01; −0.36) (0.36; 1.01) (0.80; 0.83)

Left hippocampus −0.38 0.38 0.81 8
(−0.53; −0.16) (0.18; 0.53) (0.79; 0.83)

Right hippocampus −0.32 0.32 0.83 17
(−0.50; −0.21) (0.21; 0.50) (0.81; 0.84)

FS subfields Hippocampus 0.82 0.82 0.82 3
(0.55; 1.03) (0.61; 1.03) (0.81; 0.83)

Left hippocampus 0.47 0.48 0.82 1
(0.24; 0.61) (0.29; 0.61) (0.80; 0.83)

Right hippocampus 0.36 0.36 0.83 2
(0.26; 0.45) (0.26; 0.45) (0.82; 0.84)

P values icobrain dm vs.
FreeSurfer

Hippocampus <0.0001 <0.0001 <0.0001
Left hippocampus .0002 0.0049 <0.0001
Right hippocampus <0.0001 <0.0001 <0.0001

P values icobrain dm vs. FS
subfields

Hippocampus <0.0001 <0.0001 <0.0001
Left hippocampus <0.0001 <0.0001 <0.0001
Right hippocampus <0.0001 <0.0001 <0.0001

Note: Hippocampal volumes are not normalized for intracranial volume as the analyses are performed in native space. Manual segmentation volumes ranged from
3.8 ml to 8.6 ml. P values are obtained from Wilcoxon signed-rank tests.
Volumetric outliers are defined as measurements below (25th percentile - 1.5 interquartile range) or above (75th percentile + 1.5 interquartile range), where these
limits are obtained from the volumetric errors of icobrain dm.

Fig. 3. Illustrations of hippocampus segmentation by an expert (ground truth), icobrain dm, and FreeSurfer from dataset 1.b. The top panel shows segmentations
with high Dice similarity coefficient (0.90 for icobrain dm, 0.84 for FreeSurfer and 0.85 FreeSurfer's hippocampal subfield functionality), while segmentations with
lower Dice similarity coefficients are presented in the bottom panel (0.79 for icobrain dm, 0.77 for FreeSurfer and 0.75 for FreeSurfer's hippocampal subfield
functionality).

H. Struyfs, et al. NeuroImage: Clinical 26 (2020) 102243

7



CRediT authorship contribution statement

Hanne Struyfs: Formal analysis, Investigation, Writing - original
draft. Diana Maria Sima: Methodology, Software, Validation, Formal

analysis, Writing - original draft, Writing - review & editing,
Supervision. Melissa Wittens: Resources, Data curation, Validation,
Writing - review & editing. Annemie Ribbens: Methodology, Project
administration, Funding acquisition. Nuno Pedrosa de Barros:
Methodology, Software, Validation, Writing - review & editing. Thanh
Vân Phan: Methodology, Software, Validation, Writing - review &
editing. Maria Ines Ferraz Meyer: Resources, Data curation, Software.
Lene Claes: Resources, Data curation. Ellis Niemantsverdriet:
Resources, Data curation. Sebastiaan Engelborghs: Writing - review &
editing, Supervision, Funding acquisition. Wim Van Hecke:
Conceptualization, Funding acquisition. Dirk Smeets:
Conceptualization, Supervision, Project administration.

Declaration of Competing Interest

The following authors are employed (or have been employed at the
time of performing the work relevant for this paper) by icometrix:
Hanne Struyfs, Diana M. Sima, Annemie Ribbens, Nuno Pedrosa de
Barros, Thanh Vân Phan, Lene Claes, Maria Ines Ferraz Meyer, Wim Van
Hecke, Dirk Smeets. Melissa Wittens and Ellis Niemantsverdriet have no
competing interests. Sebastiaan Engelborghs has received unrestricted
research grants from Janssen Pharmaceutica NV and ADx
Neurosciences (paid to institution).

Acknowledgements

This research was funded in part by the agency of Flanders
Innovation & Intrepreneurship (VLAIO), the Flemish Agency for
Innovation by Science and Technology (IWT 140262), the Interreg V

Fig. 4. Reproducibility of segmentations by icobrain dm and FreeSurfer on dataset 2, measured by the absolute volume difference between test-retest segmentations.
Note: P values are obtained from Wilcoxon signed-rank tests.

Table 4
Reproducibility of segmentations by icobrain dm and FreeSurfer on dataset 2,
measured by the absolute volume difference in millilitres between test and
retest quantifications.

icobrain dm FreeSurfer

Whole brain 7.91 28.43
(3.55–15.05) (14.79–38.15)

Gray matter 6.33 11.01
(2.62–10.73) (6.81–21.20)

Frontal lobe 2.96 4.80
(0.99–4.56) (1.58–7.57)

Parietal lobe 3.60 2.61
(1.21–5.31) (1.20–5.01)

Temporal lobe 1.64 2.54
(1.07–3.66) (1.28–4.07)

Hippocampus 0.111 0.330
(0.032–0.232) (0.188–0.444)

Left hippocampus 0.094 0.161
(0.057–0.176) (0.080–0.228)

Right hippocampus 0.102 0.174
(0.054–0.175) (0.078–0.256)

Lateral ventricles 0.48 0.69
(0.22–0.83) (0.35–1.17)

Note: Values are median (25–75th quantiles) absolute volume differences in ml
(normalised for head size). FreeSurfer's hippocampal segmentations are ob-
tained with the default stream.

Table 5
Diagnostic performance to differentiate AD patients from age-matched controls on dataset 3.

icobrain dm FreeSurfer P value

Whole brain 0.9395 (0.8941–0.9849) 0.9414 (0.8964–0.9864) .9414
Gray matter 0.9386 (0.8955–0.9816) 0.9282 (0.8730–0.9834) .7313
Frontal lobe 0.7963 (0.7055–0.8872) 0.8790 (0.8109–0.9472) .0767
Parietal lobe 0.8601 (0.7848–0.9355) 0.8960 (0.8299–0.9621) .3242
Temporal lobe 0.9896 (0.9770–1.0000) 0.9565 (0.9187–0.9944) .0465
Hippocampus 0.9022 (0.8426–0.9617) 0.9168 (0.8631–0.9706) .2802
Left hippocampus 0.8776 (0.8000–0.9551) 0.9055 (0.8400–0.9709) .1735
Right hippocampus 0.8965 (0.8365–0.9565) 0.8885 (0.8253–0.9517) .6343
Lateral ventricles 0.8899 (0.8180–0.9617) 0.8488 (0.7660–0.9315) .0013

Note: Values are areas under the receiver operating characteristic curve (95% confidence interval). DeLong tests were used to test whether AUC levels
differed significantly between icobrain dm and FreeSurfer. FreeSurfer's hippocampal segmentations are obtained with the default stream.

H. Struyfs, et al. NeuroImage: Clinical 26 (2020) 102243

8



programme Flanders-The Netherlands of the European Regional
Development Fund (ERDF) (Herinneringen/Memories project),
the European Union's Horizon 2020 research and innovation pro-
gramme under grant agreement numbers 666992 (EUROPOND) and
765148 (TRABIT).

Data used in the preparation of this article were obtained from
the OASIS-3 database. The OASIS investigators did not participate in
analysis or writing of this report. The OASIS-3 dataset is made available
through support from grants. The authors thank Andrew J. Worth from
Neuromorphometrics for providing the data of the MICCAI 2012 chal-
lenge on multi-atlas labelling. The authors acknowledge the staff of the
memory clinic of the neurology department of Hospital Network
Antwerp (ZNA) Middelheim and Hoge Beuken for their contribution to
dataset 1.b. Data used in the preparation of this article were also ob-
tained from the MIRIAD database. The MIRIAD investigators did not
participate in analysis or writing of this report. The MIRIAD dataset is
made available through the support of the UK Alzheimer's
Society (Grant RF116). The original data collection was funded through
an unrestricted educational grant from GlaxoSmithKline (Grant 6GKC).

References

Ataloglou, D., Dimou, A., Zarpalas, D., Daras, P, 2019 Oct Oct. Fast and precise hippo-
campus segmentation through deep convolutional neural network ensembles and
transfer learning. Neuroinformatics 17 (4), 563–582. https://doi.org/10.1007/
s12021-019-09417-y.

Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., et al., 2011.
The diagnosis of mild cognitive impairment due to alzheimer’s disease: re-
commendations from the National Institute on Aging-Alzheimer’s Association work-
groups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & dementia 7
(3), 270–279.

Barnes, J., Bartlett, J.W., van de Pol, L.A., Loy, C.T., Scahill, R.I., Frost, C., et al., 2009. A
meta-analysis of hippocampal atrophy rates in Alzheimer's disease. Neurobiol. Aging
30 (11), 1711–1723.

Barnes, J., Foster, J., Boyes, R.G., Pepple, T., Moore, E., Schott, J.M., et al., 2008. A
comparison of methods for the automated calculation of volumes and atrophy rates in
the hippocampus. Neuroimage 40 (4), 1655–1671.

Boccardi, M., Bocchetta, M., Apostolova, L.G., Barnes, J., Bartzokis, G., Corbetta, G., et al.,
2015. Delphi definition of the eadc-adni harmonized protocol for hippocampal seg-
mentation on magnetic resonance. Alzheimer’s Dementia 11 (2), 126–138.

Boccardi, M., Ganzola, R., Bocchetta, M., Pievani, M., Redolfi, A., Bartzokis, G., et al.,
2011. Survey of protocols for the manual segmentation of the hippocampus: pre-
paratory steps towards a joint EADC-ADNI harmonized protocol. J. Alzheimers Dis 26
(Suppl 3), 61–75.

Boccardi, M., Laakso, M.P., Bresciani, L., Galluzzi, S., Geroldi, C., Beltramello, A., et al.,
2003. The MRI pattern of frontal and temporal brain atrophy in fronto-temporal
dementia. Neurobiol. Aging 24 (1), 95–103.

Bosco, P., Redolfi, A., Bocchetta, M., Ferrari, C., Mega, A., Galluzzi, S., et al., 2017. The
impact of automated hippocampal volumetry on diagnostic confidence in patients
with suspected Alzheimer’s disease: a european alzheimer’s disease consortium study.
Alzheimer’s dementia 13 (9), 1013–1023.

Cardoso M.J.NiftySeg: statistical segmentation and label fusion software package.
20122019 FEB 5th [cited 2019 FEB 26th]; Available from: http://cmictig.cs.ucl.ac.
uk/wiki/index.php/NiftySeg.

Cardoso, M.J., Leung, K., Modat, M., Keihaninejad, S., Cash, D., Barnes, J., et al., 2013.
STEPS: similarity and truth estimation for propagated segmentations and its appli-
cation to hippocampal segmentation and brain parcelation. Med. Image Anal. 17 (6),
671–684.

Chan, D., Fox, N.C., Scahill, R.I., Crum, W.R., Whitwell, J.L., Leschziner, G., et al., 2001.
Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease.
Ann. Neurol. 49 (4), 433–442.

Chui, H.C., Victoroff, J., Margolin, D., Jagust, W., Shankle, R., Katzman, R, 1992. Criteria
for the diagnosis of ischemic vascular dementia proposed by the state of California
Alzheimer's disease diagnostic and treatment centers. Neurology 42 (3), 473 -.

Dewey, J., Hana, G., Russell, T., Price, J., McCaffrey, D., Harezlak, J., et al., 2010.
Reliability and validity of MRI-based automated volumetry software relative to auto-
assisted manual measurement of subcortical structures in HIV-infected patients from
a multisite study. Neuroimage 51 (4), 1334–1344.

Dill, V., Franco, A.R., Pinho, M.S, 2015. Automated methods for hippocampus segmen-
tation: the evolution and a review of the state of the art. Neuroinformatics 13 (2),
133–150.

Doring, T.M., Kubo, T.T., Cruz, L.C.H., Juruena, M.F., Fainberg, J., Domingues, R.C.,
et al., 2011. Evaluation of hippocampal volume based on MR imaging in patients with

bipolar affective disorder applying manual and automatic segmentation techniques.
J. Magnetic Resonance Imaging 33 (3), 565–572.

Dubois, B., 2018. The emergence of a new conceptual framework for Alzheimer’s disease.
J. Alzheimers Dis. 62 (3), 1059–1066. https://doi.org/10.3233/JAD-170536.

Duchesne, S., Pruessner, J., Collins, D, 2002. Appearance-based segmentation of medial
temporal lobe structures. Neuroimage 17 (2), 515–531.

Evans, A.C., Marrett, S., Neelin, P., Collins, L., Worsley, K., Dai, W., et al., 1992.
Anatomical mapping of functional activation in stereotactic coordinate space.
Neuroimage 1 (1), 43–53.

PA1, Filipek, C, Richelme, Kennedy, D.N., Jr, Caviness VS, 1994. The young adult human
brain: an MRI-based morphometric analysis. Cereb Cortex 4 (4), 344–360.

Fischl, B., 2012. FreeSurfer. Neuroimage 62 (2), 774–781. https://doi.org/10.1016/j.
neuroimage.2012.01.021.

Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al., 2002.
Whole brain segmentation: automated labeling of neuroanatomical structures in the
human brain. Neuron 33 (3), 341–355.

Iglesias, J.E., Augustinack, J.C., Nguyen, K., Player, C.M., Player, A., Wright, M., Roy, N.,
Frosch, M.P., Mc Kee, A.C., Wald, L.L., Fischl, B., Van Leemput, K, 2015.
Hippocampus: a computational atlas of the hippocampal formation using ex vivo,
ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI.
Neuroimage 115, 117–137.

Iglesias, J.E., Van Leemput, K., Augustinack, J.C., Insausti, R., Fischl, B., Reuter, M, 2016.
Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using
subject-specific atlases. Neuroimage 141, 542–555. https://doi.org/10.1016/j.
neuroimage.2016.07.020.

Jain, S., Sima, D.M., Ribbens, A., Cambron, M., Maertens, A., Van Hecke, W., et al., 2015.
Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR
images. NeuroImage Clin. 8, 367–375.

Kennedy, K.M., Erickson, K.I., Rodrigue, K.M., Voss, M.W., Colcombe, S.J., Kramer, A.F.,
et al., 2009. Age-related differences in regional brain volumes: a comparison of op-
timized voxel-based morphometry to manual volumetry. Neurobiol. Aging 30 (10),
1657–1676.

Klein, A., Tourville, J., 2012. 101 labeled brain images and a consistent human cortical
labeling protocol. Front Neurosci. 6, 171.

Malone, I.B., Cash, D., Ridgway, G.R., MacManus, D.G., Ourselin, S., Fox, N.C., et al.,
2013. MIRIAD—Public release of a multiple time point Alzheimer's MR imaging
dataset. Neuroimage 70, 33–36.

McKeith, I.G., Boeve, B.F., Dickson, D.W., Halliday, G., Taylor, J.P., Weintraub, D., et al.,
2017. Diagnosis and management of dementia with Lewy bodies: fourth consensus
report of the DLB consortium. Neurology 89, 88–100.

McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M, 1984.
Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group
under the auspices of department of health and human services task force on
Alzheimer's disease. Neurology 34 (7), 939–944.

McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack Jr., C.R., Kawas, C.H.,
et al., 2011. The diagnosis of dementia due to Alzheimer's disease: recommendations
from the National Institute on Aging-Alzheimer's Association workgroups on diag-
nostic guidelines for Alzheimer's disease. Alzheimer's & dementia: the journal of the
Alzheimer's Association 7 (3), 263–269.

Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C.,
Ourselin, S., 2010. Fast free-form deformation using graphics processing units.
Comput. Methods Programs Biomed. 98, 278–284.

Neary, D., Snowden, J.S., Gustafson, L., Passant, U., Stuss, D., Black, S., et al., 1998.
Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria.
Neurology 51 (6), 1546–1554.

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.C., et al., 2011. pROC:
an open-source package for R and S+ to analyze and compare ROC curves. BMC
Bioinformatics 12, 77.

Roman, G.C., Tatemichi, T.K., Erkinjuntti, T., Cummings, J.L., Masdeu, J.C., Garcia, J.H.,
et al., 1993. Vascular dementia: diagnostic criteria for research studies. Report of the
NINDS-AIREN International Workshop. Neurology 43 (2), 250–260.

Rosen, H.J., Gorno–Tempini, M.L., Goldman, W., Perry, R., Schuff, N., Weiner, M., et al.,
2002a. Patterns of brain atrophy in frontotemporal dementia and semantic dementia.
Neurology 58 (2), 198–208.

Rosen, H.J., Kramer, J.H., Gorno-Tempini, M.L., Schuff, N., Weiner, M., Miller, B.L,
2002b. Patterns of cerebral atrophy in primary progressive aphasia. Am. J. Geriatric
Psychiatry 10 (1), 89–97.

Schmidt, M.F., Storrs, J.M., Freeman, K.B., Jr, Jack CR, Turner, S.T., Griswold, M.E., Jr,
Mosley TH, 2018. A comparison of manual tracing and FreeSurfer for estimating
hippocampal volume over the adult lifespan. Hum. Brain Mapp. 39 (6), 2500–2513.
https://doi.org/10.1002/hbm.24017.

Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., et al., 2011.
Toward defining the preclinical stages of Alzheimer’s disease: recommendations from
the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic
guidelines for Alzheimer’s disease. Alzheimer’s dementia 7 (3), 280–292.

Team R, 2016. RStudio: Integrated Development for R (Version 1.0.136) [Software].
RStudio Inc., Boston.

Venables, W.N., Ripley, B.D., 2002. Modern Applied Statistics With S. 4th ed. Springer,
New York.

H. Struyfs, et al. NeuroImage: Clinical 26 (2020) 102243

9

https://doi.org/10.1007/s12021-019-09417-y
https://doi.org/10.1007/s12021-019-09417-y
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0002
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0002
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0002
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0002
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0002
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0003
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0003
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0003
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0004
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0004
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0004
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0005
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0005
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0005
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0006
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0006
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0006
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0006
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0007
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0007
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0007
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0008
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0008
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0008
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0008
http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftySeg
http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftySeg
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0009
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0009
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0009
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0009
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0010
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0010
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0010
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0011
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0011
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0011
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0012
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0012
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0012
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0012
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0013
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0013
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0013
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0014
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0014
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0014
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0014
https://doi.org/10.3233/JAD-170536
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0016
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0016
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0017
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0017
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0017
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0018
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0018
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0020
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0020
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0020
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0022
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0022
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0022
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0022
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0022
https://doi.org/10.1016/j.neuroimage.2016.07.020
https://doi.org/10.1016/j.neuroimage.2016.07.020
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0024
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0024
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0024
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0026
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0026
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0026
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0026
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0027
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0027
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0028
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0028
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0028
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0029
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0029
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0029
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0030
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0030
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0030
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0030
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0031
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0031
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0031
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0031
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0031
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0032
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0032
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0032
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0033
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0033
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0033
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0034
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0034
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0034
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0035
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0035
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0035
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0036
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0036
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0036
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0037
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0037
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0037
https://doi.org/10.1002/hbm.24017
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0039
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0039
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0039
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0039
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0040
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0040
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0041
http://refhub.elsevier.com/S2213-1582(20)30080-2/sbref0041

	Automated MRI volumetry as a diagnostic tool for Alzheimer's disease: Validation of icobrain dm
	Introduction
	Materials and methods
	Dataset 1.a (accuracy)
	Dataset 1.b (accuracy)
	Dataset 2 (reproducibility)
	Dataset 3 (diagnostic performance)
	MRI analysis
	icobrain dm
	FreeSurfer

	Validation

	Results
	Accuracy of brain (sub)structures segmentation
	Accuracy of hippocampus segmentation
	Reproducibility
	Diagnostic performance

	Discussion
	CRediT authorship contribution statement
	mk:H1_18
	Acknowledgements
	References




