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Lysosomal storage diseases (LSDs) are a group of metabolic diseases caused by inborn
mutations of lysosomal enzymes, which lead to lysosome substrate accumulation in various
cell types. As a result, a complex variety of pathogenic cascades are triggered, resulting
in a clinical profile characterized by multisystemic involvement [1]. Indeed, LSDs are
featured by a broad spectrum of clinical signs depending on both substrate and site of
accumulation [2]. Among common clinical manifestations, nervous system (NS) implication
is one of the most frequent signs and is shared among almost all types of LSDs [2].

Although the biochemical nature of LSDs was first revealed in 1934 [3], it is only
over the last two decades that a series of studies have contributed to the understanding
of the pathogenic mechanisms of such diseases [4–10]. These studies have disclosed the
important role of the altered autophagy flux [4] and mitochondrial function [5], which,
along with the stimulation of inflammatory response and immune abnormalities [6], appear
to represent a common feature of many LSDs. In addition, the interplay between the
accumulation/mislocalization of substrates and the alteration of many signaling pathways
is also gaining attention in the context of LSDs [7–10]. However, despite advances that
have been made in the treatment of these diseases, current therapies are available for only
a subset of them, most of which only aim to ameliorate disease symptoms [11–17].

This Special Issue provides a comprehensive view of the molecular aspects of various
LSDs. Our goal is to collect state-of-the-art research on LSDs and their pathomechanisms,
with a focus on recent discoveries that have been made on the NS involvement, such as
the association between LSDs and neurodegenerative disorders, or the use of neurological
LSDs models for pathogenesis investigation and drug discovery.

Clarke et al. provided interesting insights on the interplay between LSDs and protein
aggregation in neurodegenerative disorders. More specifically, they analyzed seven LSDs
(Gaucher, Fabry, Sandhoff, Niemann–Pick A, Hurler, Pompe, and Niemann–Pick C) murine
models and found evidence of neuroinflammation and α-synuclein, both reminiscent of
α-synucleinopathies such as Parkinson’s disease [18].

Moreover, the role of lysosomal and endosomal dysfunction in the pathophysiology
of neurodegenerative disorders is well known. Bécot et al. provided a review that focuses
on the association between endosomal system impairment and the generation of amyloid
plaques in Alzheimer’s disease (AD). They highlighted how AD-related dysfunction of the
endosomal system, which diverts from a degradative to a secretory function, can promote
the formation of exosome and exocytosis of pathogenic amyloid species [19].

Another association between neurodegenerative disorders and lysosomal dysfunction
was reported by Bicchi et al. They reported lysosomal engulfment and autophagy impair-
ment in primary fibroblast of transgenic mice expressing a mutant form of superoxide
dismutase 1 (SOD1), a gene frequently mutated in amyotrophic lateral sclerosis type-1
(ALS1) [20].
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Although NS involvement is the most severe consequence of the majority of LSDs,
the impairment of other organs and tissues is very common. For instance, it is estimated
that 60–90% of mucopolysaccharidosis (MPS) patients, a type of LSD characterized by
glycosaminoglycans (GAGs) accumulation, suffer from cardiac valve dysfunctions [21,22].
Moreover, deposition of GAGs can also occur in the vascular smooth muscle and in car-
diac muscle cells. As a result, MPS is frequently associated with heart diseases such as
myocardium fibrosis and coronary heart disease [23–25].

Additionally, a large screening study performed on kidney transplantation recipients
highlighted the importance of the accurate and early diagnosis of the Fabry disease, an
LSD caused by mutations in the enzyme alpha-galactosidase A (GLA), with its most life-
threatening clinical sign represented by end-stage kidney failure [26].

During the last few decades, large efforts have been made to set up reproducible models
that finely replicated the clinical features of LSDs patients. To this end, a widely used model
organism is represented by Drosophila melanogaster: as reviewed by Rigon et al., given the
evolutionary conservation of genes and pathways involved in several LSDs pathogenesis
between the fruit fly and Homo sapiens, it can be used both to study molecular mechanisms
underlying LSDs pathology and as a tool to new drugs and treatments discovery [27].

More recently, induced pluripotent stem cells (iPSCs) have been proven to be effective
emerging tools for the study of some types of LSDs—such as metachromatic leukodystrophy
(MLD) [28]. Nevertheless, factors such as the difficulty to yield somatic cells from patients,
high cost, and uncertain physiological fidelity can significantly limit their employment [29].
In an attempt to overcome this limitation, Esmail et al., leveraging a deep machine-learning
platform, developed artificially induced whole-brain organoids (aiWBO) as a model of
MLD. aiWBO accurately simulated the phenotype of both wild-type and MLD nervous
system cells. Importantly, the same research group demonstrated that such a model could
also predict the efficacy of combined drug treatment that ameliorate the MLD disease
profiles, rendering it eligible for new therapies discovery [30].

Altogether, the articles of this Special Issue contribute to enhancing the knowledge in
the field of LSDs, with a focus on the nervous system involvement. In particular, the cited
articles provide new insights on pathological mechanisms, setups of new study models,
and the discovery of new therapies related to this group of metabolic diseases.
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