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Recent technological advances have enabled researchers to collect large amounts of electroencephalography (EEG) signals in
labeled and unlabeled datasets. It is expensive and time consuming to collect labeled EEG data for use in brain-computer interface
(BCI) systems, however. In this paper, a novel active learning method is proposed to minimize the amount of labeled, subject-
specific EEG data required for effective classifier training, by combining measures of uncertainty and representativeness within an
extreme learning machine (ELM). Following this approach, an ELM classifier was first used to select a relatively large batch of
unlabeled examples, whose uncertainty was measured through the best-versus-second-best (BvSB) strategy. The diversity of each
sample was then measured between the limited labeled training data and previously selected unlabeled samples, and similarity is
measured among the previously selected samples. Finally, a tradeoff parameter is introduced to control the balance between
informative and representative samples, and these samples are then used to construct a powerful ELM classifier. Extensive
experiments were conducted using benchmark andmulticlass motor imagery EEG datasets to evaluate the efficacy of the proposed
method. Experimental results show that the performance of the new algorithm exceeds or matches those of several state-of-the-art
active learning algorithms. It is thereby shown that the proposedmethod improves classifier performance and reduces the need for
training samples in BCI applications.

1. Introduction

Brain-computer interfaces (BCIs) are systems that allow
users to control external devices via observed brain activity,
without relying on peripheral nerve or muscle activity [1].
The most common and useful BCIs are constructed using
noninvasive brain activity recording techniques, such as
electroencephalography (EEG) [2]. While EEG has become
widely used for medical monitoring, rehabilitation, neuro-
prosthesis, and other healthcare applications [3–5], the data
acquisition process can be lengthy and exhaustive for users
[6]. In addition, EEG signals often vary over the course of an
experiment due to both biological and technical causes,
including subject-specific anatomical differences, interses-
sion variability, and the attentional drift of subjects [7].
Consequently, users must often undergo a long data

collection process to train a suitable BCI system.This poses a
prohibitive burden for individuals with paralysis or a se-
verely injured central nervous system, making it a major
hurdle for therapeutic applications. It is therefore of the
utmost importance that developed BCI systems achieve
efficient and robust performance with as few samples as
possible.

One approach that has been effectively applied to cases
with limited training sets is the introduction of active
learning (AL) to the BCI calibration procedure. AL queries
the class labels of informative samples within the unlabeled
sample space to maximize the efficiency of the learning
model, and its application greatly reduces the complexity of
training samples without any obvious loss of classification
accuracy [8]. In essence, AL is an iterative sampling and
labeling procedure. On each iteration, AL extracts the
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sample or batch of samples that are most valuable for im-
proving the current classification model from the unlabeled
data pool, and these samples are then manually labeled. The
greatest challenge for AL methods is identifying the most
informative samples so that the maximum prediction ac-
curacy can be achieved. A number of sample-selection
criteria have then been applied to this task, including (1)
query-by-committee (QBC), in which several distinct clas-
sifiers are used and the selected samples are those with the
largest difference between the labels predicted by different
classifiers [9–11]; (2) margin uncertainty sampling, wherein
the samples are selected according to the maximum un-
certainty based on their respective distances from the
classification boundaries [12, 13]; (3) max-entropy sampling,
which uses entropy as the uncertainty measure via proba-
bilistic modeling [14, 15]; and (4) diversity sampling, which
prefers selecting representative samples [16].

Over the past few decades, many supervised learning
models have been adopted as baseline classifiers for AL,
including linear discriminate analysis (LDA) [12, 17], sup-
port vector machine (SVM) [18, 19], artificial neural net-
work (ANN) [20], and extreme learning machine (ELM)
[21, 22]. Among these, the ELM has shown a high learning
speed and good generalizability in preliminary testing.
Additionally, it can be directly applied to both two-class and
multiclass classification. To date, few studies have attempted
to introduce AL algorithms into the ELM framework, al-
though these have shown the method to be competitive with
active SVMs [13, 14, 23]. Specifically, Yu et al. [13] proposed
an active learning method called AL-ELM with the goal of
saving training time, and results showed a classification
performance comparable to that of AL-SVM [18]. Zhang
and Er [23] then introduced the SEAL-ELM method by
combining the online sequential ELM (OS-ELM) with AL,
yielding a higher classification accuracy than offline com-
binations of AL and SVM on most test datasets. Regrettably,
these existing active ELMs only consider a single-querying
strategy, leaving space for improvement. The intuitive next
step was to then introduce multiple querying strategies to
select desirable samples. In fact, researchers have tried to
combine two strategies in AL with base classifier SVM, with
each performing better than their single-query counterparts
[24–26]. At present, however, few implementations of active
learning with ELM have been explored and applied for
motor imagery- (MI-) based BCI systems [8, 13].

The present investigation intends to fill this gap by
combining a two-query AL algorithm with an ELM and
testing the method in a BCI application. A well-defined,
general framework for active learning is thereby developed
in a manner that accounts for both informativeness and
representativeness in a multiclass situation. First, an un-
certainty sampling strategy is adopted to select a relative
large number of samples using the base ELM classifier. The
degree of diversity between labeled training data and pre-
viously selected, unlabeled samples is then assessed, along
with the degree of similarity between the unlabeled samples.
Finally, highly informative and representative samples are
used to update the ELM classifier through the introduction
of a tradeoff parameter. The method is then tested on several

benchmark datasets, along with a multiclass MI EEG dataset
from BCI Competition IV Dataset 2a. Results demonstrate
that the performance of the new method compares favorably
with that of existing AL approaches.

Compared to existing ELM-based active learning algo-
rithms, the new method has several noteworthy aspects:

(1) Considering that the use of a single uncertainty
strategy may not take full advantage of the abundant
information with unlabeled data, the AL-ELM al-
gorithm is extended to combine two querying
strategies (uncertainty and diversity) in order to
select the most valuable samples from the unlabeled
EEG data pool.

(2) The proposed algorithm provides a straightforward
and meaningful way to measure representativeness
by assaying two kinds of similarity: the similarity
between a query sample and the labeled dataset, and
the similarity between any two possible query
samples. Employing this modified diversity strategy
can help isolate highly representative samples during
the active learning process.

2. Background Knowledge

2.1. Active Learning. Active learning methods typically
comprise five basic components: L, U, T, Q, and S. L is the
limited labeled dataset, U is the pool of samples/instances
that contains abundant unlabeled instances, T is the clas-
sification model trained by L, Q is a query strategy to select
the most valuable instances from U, and S is a human
annotator that labels the selected instances correctly. AL is
an iterative procedure that gradually adds the most im-
portant samples, queried by Q and labeled by S, from U to L
to update the classificationmodel T.The iterative AL process
will continue in this manner until a predefined criterion is
met. The ability to identify both an excellent classification
model T and an effective query strategy Q is highly im-
portant for active learning algorithms.

Depending on the number of querying samples at each
iteration, AL can be divided into two groups: stream-based AL
and pool-based AL. In stream-based AL, the learner can only
access one sample per iteration, while pool-based AL allows the
learner to select a batch of samples during each iteration.
Adjusting the selection method and number of queried
samples then creates different AL algorithms, such as the QBC
strategy, the uncertainty strategy, and the diversity strategy.

2.2. Basic ELM. Single-hidden-layer feedforward neural
networks (SLFNs) are capable of universal approximation
[21]. Consider a dataset containing N training samples,
X,Y{ } � xj, yj 

N

j�1, with the input xj � [xj1, xj2, . . . ,

xjp]
T ∈ Rp and a corresponding desired output of

yj � [yj1, yj2, . . . , yjq]
T ∈ Rq, where p and q represent the

respective dimensions and T denotes a transpose operation.
Assuming that M is the number of hidden neurons, the
output function of the SLFNs is mathematically modeled as
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yj �
M

i�1
βig aTi xj + bi , j � 1, . . . , N, (1)

where βi � [βi1, βi2, . . . , βiq]
T ∈ Rq is the weight vector that

connects the i-th hidden neuron to the output neurons, ai �
[ai1, ai2, . . . , aip]

T ∈ Rp is a randomly chosen input weight
vector connecting the i-th hidden neuron to the input
neurons, bi ∈ R(i � 1, . . . ,M) is a randomly chosen bias of
the i-th hidden node, and g(•) is the activation function,
which can be any nonlinear piecewise continuous function
(such as a sigmoid function or Gaussian function).

For convenience, equation (1) can be rewritten in matrix
notation as

Y � Hβ, (2)

where Y � [y1, y2, . . . , yN]
T ∈ RN×q is the expected network

output, β � [β1, β2, . . . , βM]
Τ ∈ RM×q denotes the weight of

output layer, and H is the hidden layer output matrix which
is defined as

H �

g aT1x1 + b1(  . . . g aTMx1 + bM( 

. . . . . . . . .

g aT1 xN + b1(  . . . g aTMxN + bM( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×M

. (3)

Unlike SLFNs, which require that the parameters of
hidden neurons are adjusted during training, ELM adopts
randomly generated hidden layer parameters and a tuning-
free training strategy [22]. Even with these random hidden
node parameters, ELM maintains the universal approxi-
mation capability of SLFNs [21]. The ELM training then
aims to find suitable network parameters to minimize the
approximation error ‖Hβ − Y‖2. To achieve better gener-
alization performance, a regularization parameter c is in-
troduced in [27], with its corresponding objective function
given as

min
β

1
2
‖β‖22 +

c

2
‖Hβ − Y‖22, (4)

where ‖·‖2 denotes the l2-norm of a matrix or a vector. We
can obtain the output weight vector β using the Moore-
Penrose principle. The solution of equation (4) is then β �
((I/c) +HTH)− 1HTY if N>M, and β � HT((I/c) +
HHT)− 1Y if N<M.

3. The D-AL-ELM Method

In this section, we present a novel active learning algorithm,
D-AL-ELM, that incorporates both the uncertainty and
diversity strategies into consecutive steps. This identifies the
most valuable, informative instances, which can then be
selected to update the baseline classifier ELM during each
learning round.

3.1. Discriminative Information by the Uncertainty Criterion.
The uncertainty criterion is used to measure the informa-
tiveness of each sample. Uncertain samples which lie along
the boundaries of different classes carry more information
and play a more significant role in the construction of a

classifier. In this implementation, the best-versus-second-
best (BvSB) strategy is adopted to estimate the uncertainty of
each sample. The BvSB strategy is based on a calculation of
posterior probability, which considers the difference in
probability values between the two classes with the highest
estimated probabilities [28]. The outputs of the ELM then
approximate the posterior probabilities of the different classes
[13]. To do this, a sigmoid function is used to construct a
mapping relationship between the real outputs of the ELM
and the posterior probabilities, which is described as

p y � 1|fi(x)(  �
1

1 + exp − fi(x)( 
, (5)

where fi(x) denotes the actual output of the i− th output
node corresponding to the time instance x. In practice,
equation (5) is only applied to two-class problems, such that
the sum of the converted posterior probabilities for the
instance x is always 1. However, application in multiclass
problem may create a summed posterior proximity that
exceeds 1, so calculated probabilities were normalized using
the following formula:

p y � 1|fi(x)(  �
p y � 1|fi(x)( 


q
j�1 p y � 1|fj(x) 

, (6)

where p(y � 1|fi(x)) is the original probability of the i − th
class.

Based on the above parameters, the BvSB strategy for
each sample x can be expressed as

f(x)BvSB � p ybest|x(  − p ysecond− best|x( , (7)

where p(ybest |x) and p(ysecond− best |x) are the largest and
second largest posterior probabilities of x, respectively. It
should be noted that f(x)BvSB values are inversely related to
the amount of uncertainty in a sample, with smaller values
indicating greater uncertainty.

3.2. Representative Information by the Diversity Criterion.
The selection of redundant or overly similar samples is of
little use when attempting to construct a robust classifier. It
is therefore necessary to use a diversity criterion to select a
batch of samples which are diverse in nature. A feasible way
of measuring the diversity of uncertain samples is the cosine
angle distance. Following this approach, the similarity be-
tween two samples xi and xj is given by

S xi, xj  � |cos xi, xj | �
xi · xj





xi
����
���� xj

�����

�����
. (8)

As can be seen from equation (8), the similarity S(xi, xj)
between the two samples xi and xj is small if these two
samples are far from each other, and vice versa.

Suppose a batch of samples W � w1, w2, . . . , wn . If the
value ofmaxi�1,...,nS(x, wi) is small, then the new sample x is
diverse from the samples inW. The similarity between a new
sample x and W is defined as

div(x,W) � max
wj∈W

S x,wj . (9)
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Note that a smaller di v(x,W) value implies more di-
versity between x and W.

In order to avoid selecting highly redundant samples, a
novel diversity criterion is defined by combining the simi-
larity between a query sample and the labeled set, and the
similarity between any two candidate query samples at the
same time. This calculation is given by

div wi(  � div wi,W(  + div wi, L( , (10)

where div(wi,W) represents the diversity between the
sample wi and the candidate set W (apart from wi), and
div(wi,L) represents the diversity between the sample wi
and the labeled training set L.

3.3. Proposed D-AL-ELM Algorithm. The BvSB sampling
method is a highly effective strategy for sample selection in
active learning. Unfortunately, the BvSB may also select
some uncertain samples which contain highly redundant
information, which reduces the information available for
classification. To address this problem, optimal samples were
selected for classification. An ideal sample would not only
furnish significant information for the classifier but also
show diversity from the candidate unlabeled set and a
minimal amount of redundancy within the labeled set.

The specific steps for each iteration of the D-AL-ELM
algorithm are as follows:

Step 1: the BvSB strategy is adopted to select the hmost
uncertain samples from the unlabeled samples pool U.
Step 2: let h represent the most uncertain samples,
denoted by W � w1, w2, . . . , wh ⊆U, and Sm be an
arbitrary subset containing m(m ≤ h) samples selected
fromW. Two evaluations are then performed, including
the diversity from the labeled set L and the candidate set
Sm, and the similarity to the samples in Sm.
Step 3: combining the discriminative and representa-
tive parts, the following formulation is obtained to
select the m samples which are uncertain and diverse
from each other:

xBvSB− div � argmin
si∈Sm

λf si( 
BvSB

+ (1 − λ) div si, Sm( (

+ div si,L( ,

(11)

where λ is a tradeoff parameter that can balance the in-
formativeness and representativeness criteria, and L is the
labeled training set. xBvSB− div denotes the unlabeled sample
that will be annotated and then included into the labeled
training dataset for updating the ELM classifier.

The implementation of the proposed method is sum-
marized in Algorithm 1.

In order to quantitatively evaluate the quality of each
learning algorithm, area under the learning curve (ALC) [13]
was calculated as a performance metric, which is described as

ALC � 

Niter − 1

i�0

yi + yi+1

2Niter

, (12)

whereNiter denotes the number of learning iterations and yi
denotes the classification accuracy at the i-th learning round,
such that ALC ∈ [0, 1]. It is noted that the larger the ALC
value, the better the performance of the learning algorithm.

4. Experimental Results and Discussions

In this section, several experiments were performed on
benchmark datasets and multiclass MI EEG datasets to
evaluate the performance of the proposed D-AL-ELM
method, in comparison with the other state-of-the-art ap-
proaches, including passive learning-based ELM, AL-ELM
[13], and entropy-based ELM [14]. All methods were
implemented using the MATLAB 2014b environment on a
computer with a 2.5GHz processor and 4.0GB RAM.

4.1. Experiments on the Benchmark Datasets

4.1.1. Description of the Benchmark Datasets. A series of
experiments were performed to evaluate the D-AL-ELM
algorithm on 9 benchmark datasets from the KEEL dataset
[29] and UCI dataset repositories [30]. Datasets included
both binary and multiclass classification problems. As in
[13], each raw dataset was divided into three parts: a small
initial labeled set, a large unlabeled set, and a testing set.
Testing instances comprised 50% of the total number of
samples, while the percentage of initially labeled instances
was assigned based on the size of the raw dataset and the
number of categories. Detailed information regarding these
datasets is presented in Table 1.

4.1.2. The Compared Algorithms, Parameter Settings, and the
Performance Metric. In our experiments, we compare the
proposed method with other state-of-the-art learning al-
gorithms, including the following:

(1) PL-ELM: a passive learning algorithm that randomly
selects some instances from the unlabeled set to train
the initial classifier

(2) AL-ELM: a batch-mode active learning method
based on ELM that uses themargin sampling strategy
to select most uncertain examples for labeling [13]

(3) ELM-Entropy: querying discriminative samples
through entropy measures [14]

In this study, the ELM adopted a sigmoid function as the
activation function on the hidden level. A grid search based
on tenfold cross-validation was then used to find the optimal
number of hidden nodesM in the initial labeled set. For the
regularization parameter c, a leave-one-out (LOO) cross-
validation strategy was adopted based on the minimum
MSEPRES to find the optimal parameter value [31]. The
optimal parameters M and c were determined from
M ∈ 10, 20, . . . , 200{ } and c ∈ e− 5, e− 4.9, . . . , e5  on all the
datasets except for the Letter dataset, where the parameterM
was searched among 100, 200, . . . , 1000{ }. Additionally, the
tradeoff parameter λ ∈ 0.1, 0.2, . . . , 0.9{ } for equation (10)
was chosen by grid search whenM and c were fixed through
the aforementioned methods. It should be noted that the
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ELM parameter selection process was implemented in the
same manner for all four methods.

Parameter details are shown in Table 2. It should be
noted that the regularization parameter c was automatically
identified using the LOO cross-validation and was not fixed
during the learning process (thus, not shown in Table 2).

The batch mode was adopted to add new labeled in-
stances. For the proposed D-AL-ELM method, h samples
were first selected from the unlabeled set using equation (7),
and then m samples were selected from the h samples using
equation (11) and added to the labeled set for each iteration.
In this experiment, h was empirically set to h � 5m while m
was 5% of the total instances in the original unlabeled set for
8 of the 9 datasets (except Letter). For the Letter dataset, m
was 1% of the total instances in the original unlabeled set and
h was set to h � 2m. These parameters were chosen to de-
crease the labeling cost, considering the size of the raw
dataset and the number of categories.

To provide a fair comparison, all four methods queriedm
instances on each iteration. For each dataset, the procedure
was stopped when the prediction accuracy stabilized or the
number of selected samples was greater than 80% of the
original unlabeled set. Additionally, to ensure the validity of
experimental results, ten runs were performed for each
learning method in each experiment, and average results
were calculated.

4.1.3. Comparisons with Relevant State-of-the-Art
Algorithms. Figure 1shows the trends of classification ac-
curacy for the classifiers when trained by increasing num-
bers of data points across the various datasets. The results
show that the proposed D-AL-ELM algorithm yielded the
highest accuracy of all four methods on most of datasets
(excepting the Wine and Iris datasets) at the last learning
round. Specifically, the proposed method performed better
than the remaining three methods over the majority of the
active learning period for the Twonorm, Hayes-Roth, and
Letter datasets. Moreover, the D-AL-ELM yielded the fastest
learning rate over the first few iterations of the learning
process for most datasets. This phenomenon indicates that
the new method begins by effectively identifying the most
informative and representative samples, unlike the other
algorithms. Additionally, the ELM-Entropy approach gen-
erally yielded lower accuracy in multiclass classification,
failing to surpass the PL-ELM on theWine, Hayes-Roth, Iris,
and Letter datasets. Another interesting observation was that
the performance tended to degrade at a certain interval on
the Segment dataset. It was considered that the Segment
dataset may have a more irregular data structure, con-
founding the BvSB strategy and deteriorating the result. In
cases such as this, a more adaptive stop criterion should be
designed to stop the learning program at a more appropriate
right time, before output degrades.

Inputs: L � (xi, yi)  with nl labeled samples, U � xi  with nu unlabeled samples (nu≫ nl), the tradeoff parameter (λ), the number of
samples selected on basis of their uncertainty (h), the batch size (m), and the terminating condition.

Output: The final learned ELM classifier.
(1) Train the ELM classifier using labeled set L.
(2) Repeat
(3) Calculate the estimated probability for the samples in U with the pretrained ELM classifier according to equation (5) or (6).
(4) Calculate the uncertainty level of each sample in U using equation (7).
(5) Include the h most uncertain samples into the set W.
(6) Select m samples from W using equation (11).
(7) Label the selected m samples.
(8) Update the labeled set L and unlabeled set U.
(9) Use the extended set L to train a new ELM classifier.
(10) Until the terminating condition is satisfied.
(11) Return the output the final learned ELM classifier.

ALGORITHM 1: The double-criteria active learning with the ELM algorithm.

Table 1: Details of the datasets including the numbers of the corresponding features and samples.

Dataset
Number of Percentage of initial labeled

instances (%)
Percentage of initial unlabeled

instances (%)
Percentage of test
instances (%)Features Instances Classes

Liver 7 345 2 10 40 50
Diabetes 8 768 2 10 40 50
Wdbc 30 569 2 10 40 50
Twonorm 20 7400 2 1 49 50
Hayes-Roth 4 160 3 10 40 50
Iris 4 150 3 10 40 50
Wine 13 178 3 10 40 50
Segment 19 2310 7 10 40 50
Letter 16 20000 26 1 49 50
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Table 3 presents the mean classification accuracies of the
four methods across the 9 datasets during the learning
process. The ALC values for the four methods are further
compared in Table 4. The results shown in Tables 3 and 4
indicate that the D-AL-ELM method yielded the best per-
formance among all datasets for the tested methods. As in
[13], the ALC metric not only was related to the learning
velocity but also had close relationship to the quality of the
learning model.The proposed D-AL-ELM outperformed the
other methods in terms of ALC, with the AL-ELM per-
forming second best, with an accuracy close to that of the
D-AL-ELM on the Wdbc and Segment datasets. For the
Wdbc dataset, although the proposed method had a slightly
higher ALC value than the AL-ELM, both algorithms yielded
the same mean accuracy for the overall learning process.

Finally, Table 5 reports the average time for the learning
stage of each algorithm across all datasets. As expected, the
PL-ELMwas the fastest method because it lacked any criteria
for the evaluation of samples. The proposed D-AL-ELM
required slightly more learning time than AL-ELM and
ELM-Entropy, since it computed both informativeness and
representativeness of each instance. Considering the im-
provement of classification performance, this extra timemay
be deemed an acceptable tradeoff.

4.1.4. Analysis of Effect of Different Batch Size Values. In this
experiment, the performance of the proposed active learning
method was further evaluated using different batch sizes
(i.e., h and m values).

The new method was tested with different querying sizes
by varying the values of h andm, respectively.The remaining
experimental settings were the same as in earlier experi-
ments and testing was conducted on two benchmark
datasets: Iris and Wine. TheM and λ parameters were set as
M � 100, λ � 0.5 to observe the performance with different
batch sizes. Results are reported in Figures 2 and 3. In
Figure 2, m was fixed at 5% of the total number of instances
in the original unlabeled set and h was chosen from a
candidate set h � 1.1m, 1.2m, 1.5m, 2m, 4m, 5m{ }. In Fig-
ure 3, h was fixed at the value of 2m andm was chosen from
1%, 2%, 4%, 6%, 8%{ }. It can be seen from Figure 2 that
learning rates at the start of the curve increased with higher h
values. Performance on Iris was less sensitive to the h value
when enough instances were queried, and learning curves

tended to be similar when query numbers and h values were
large. In contrast, performance on the Wine dataset was
more sensitive to h. This may be a result of the Wine dataset
having a more complex distribution, which is difficult to
capture. Although the D-AL-ELM performed differently on
the two datasets, relatively larger h values were consistently
able to obtain favorable performance. On the other hand,
this increase in h value leads to a greater computational
burden. Figure 3 shows the effects of different values of m
on the Iris and Wine datasets. From this, it was observed
that convergence can be more easily achieved with small m
values. Alternatively, when m is large, more instances can
be learned at each iteration and the number of total iter-
ations greatly reduced, although this boost in performance
does not provide substantially increased accuracy. In
conclusion, optimizing the h andm values is not crucial for
the D-AL-ELM, as most values yield similar results. It
should be noted, however, that larger h andm are generally
recommended.

4.2. Experiment on Multiclass MI EEG Data

4.2.1. Description of EEG Datasets. This section further
evaluates the performance of the proposed D-AL-ELM
method on multiclass MI EEG data from the BCI Com-
petition IV Dataset 2a [32]. This dataset consists of the EEG
signals from 9 subjects who performed 4 tasks, including left
hand, right hand, foot, and tongue MI. EEG signals were
recorded using 22 electrodes. Each subject underwent a
training and testing session, each consisting of 288 trials (a
total of 576 trials across the two sessions).

4.2.2. Experimental Setup and Parameter Settings. Data
preprocessing was first performed on the raw EEG data. For
each trial, features were extracted from the time segment
lasting from 0.5 s to 2.5 s after the cue instructing the subject
to perform MI. Each trial was first band-pass filtered from
8–30Hz using a fifth-order Butterworth filter. Next, the
dimension of the EEG signal was reduced to a 24-dimension
feature set using the one-versus-rest common spatial pattern
(OVR-CSP) algorithm [33], which is an effective and
popular feature extraction method for EEG multi-
classification that computes the features that discriminate
each class from the remaining classes. Finally, the features

Table 2: Details of the optimal parameter settings for the different datasets using four methods.

Dataset
D-AL-ELM AL-ELM ELM-Entropy PL-ELM

M λ M M M

Liver 110 0.1 110 110 110
Diabetes 110 0.3 110 110 110
Wdbc 200 0.1 200 200 200
Twonorm 120 0.1 120 120 120
Hayes-Roth 100 0.3 100 100 100
Iris 170 0.9 170 170 170
Wine 60 0.7 60 60 60
Segment 200 0.6 200 200 200
Letter 700 0.4 700 700 700
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Figure 1: Continued.
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extracted by OVR-CSP were discriminated using the dif-
ferent classification methods.

Optimal selection of the M, λ, and c parameters was
performed in the same manner described in Section 4.1.2.
The number of hidden nodes M was searched within

10, 20, ..., 150{ }. For each subject, the first 400 trials were
considered as the training set, while the remaining 176 trials
were used as the independent testing set [11]. The values for
m and h were set atm � 10 and h � 5m. Finally, experiments
included ten runs for each learning method from which
average results were calculated.

Table 3: Mean accuracy results of the learning processes on 9
datasets (%).

Dataset D-AL-ELM AL-ELM ELM-Entropy PL-ELM
Liver 67.59 67.46 67.14 66.14
Diabetes 76.31 76.13 76.12 74.60
Wdbc 96.18 96.18 96.11 94.69
Twonorm 97.38 97.25 97.25 97.13
Wine 96.08 95.72 95.64 95.79
Hayes-Roth 59.43 56.23 54.03 56.56
Iris 96.65 96.43 94.44 95.58
Segment 89.26 89.17 88.06 87.63
Letter 82.89 81.67 67.09 75.76

Table 4: ALC comparisons of four methods on 9 datasets.

Dataset D-AL-ELM AL-ELM ELM-Entropy PL-ELM
Liver 0.7624 0.7610 0.7572 0.7447
Diabetes 0.7640 0.7624 0.7622 0.7469
Wdbc 0.9624 0.9623 0.9616 0.9474
Twonorm 0.9742 0.9729 0.9729 0.9715
Wine 0.9622 0.9584 0.9573 0.9584
Hayes-Roth 0.5959 0.5622 0.5395 0.5663
Iris 0.9676 0.9655 0.9450 0.9563
Segment 0.8939 0.8929 0.8812 0.8766
Letter 0.8330 0.8204 0.6718 0.7606
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Figure 1: The learning curves of the four different learning algorithms on 9 benchmark datasets. (a) Liver. (b) Diabetes. (c) Wdbc. (d)
Twonorm. (e) Wine. (f ) Hayes-Roth. (g) Iris. (h) Segment. (i) Letter.
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Table 5: Average running time (s) for each learning algorithm.

Dataset D-AL-ELM AL-ELM ELM-Entropy PL-ELM
Liver 0.9141 0.7531 0.7719 0.7453
Diabetes 1.2031 1.0438 1.0060 0.9719
Wdbc 1.3484 1.2500 1.2828 1.2234
Twonorm 7.9813 5.3047 5.5875 4.8844
Wine 0.5391 0.4625 0.4625 0.4391
Hayes-Roth 0.5109 0.4516 0.4594 0.4203
Iris 0.5250 0.4469 0.4856 0.4313
Segment 3.6578 3.3906 3312 3.3250
Letter 121.8047 115.5203 123.0641 111.4641
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Figure 2: The learning curves of the proposed algorithm with different h values on Iris and Wine. (a) Iris. (b) Wine.
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Figure 3: The learning curves of the proposed algorithm with different m values on Iris and Wine. (a) Iris. (b) Wine.
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Figure 4: Continued.
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4.2.3. Comparisons with Related Algorithms. Figure 4 il-
lustrates the trend lines of classification accuracy when
methods were applied to different testing datasets, while
Table 6 lists the mean classification accuracies of the four
methods during the learning process. Table 7 then provides
the ALC results, while Table 8 shows the average running
time (s) for the learning stage.

The results show that the performance of D-AL-ELM
method is comparable to that of the AL-ELM and better than
that of the ELM-Entropy and PL-ELM algorithms for all
subjects (except for subject 2 in PL-ELM). Specifically, the
proposed method surpassed the AL-ELM approach in 6 of
the 9 subjects (1, 2, 4, 5, 6, 9) in terms of the ALC metric. For
all 9 subjects, the D-AL-ELM method yielded a mean ac-
curacy of 71.36%, higher than that of AL-ELM (70.92%),
ELM-Entropy (70.34%), and PL-ELM (70.51%). These re-
sults demonstrate the effectiveness of the D-AL-ELM in
selecting both informative and representative instances from
unlabeled EEG samples. Additionally, they reveal that the
proposed method can calibrate an effective classifier for MI

EEG signals without the need for a large number of labeled
training samples.

For comparative purposes, Table 8 also provides the
average running time of each learning algorithm. Although
the D-AL-ELM exhibited slightly longer training time than
the other three methods, this may be considered a worth-
while tradeoff for the improved classification performance of
the D-AL-ELM.

4.3. Discussion. In these experiments, the proposed D-AL-
ELM method exhibited excellent performance in both
classification accuracy and computational efficiency, as
demonstrated on several benchmark datasets and an ex-
perimental MI EEG dataset. When compared to a passive
learning-based ELM, D-AL-ELM achieved improved per-
formance by effectively extracting the most valuable unla-
beled samples. The D-AL-ELM also outperformed the AL-
ELM and ELM-Entropy algorithms, which both employed a
single-query strategy. Improvement was seen on all nine
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Figure 4: Learning curves of the four different learning algorithms on BCI Competition IV Dataset 2a. (a) S1. (b) S2. (c) S3. (d) S4. (e) S5. (f )
S6. (g) S7. (h) S8. (i) S9.
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datasets in Section 4.1, evidencing the ability of the D-AL-
ELM to boost overall learning performance by combining
the uncertainty and diversity strategies when updating the
classifier with the selected samples. In terms of computa-
tional efficiency, the slight increase in training time for the
D-AL-ELM, as compared to the PL-ELM, AL-ELM, and
ELM-Entropy, was negligible in practice, especially when
considering the improved classification accuracy. The ex-
perimental results then demonstrate that the proposed al-
gorithm can effectively and comprehensively measure the
representativeness of samples. Simultaneously, the proposed
approach also measures how informative individual ex-
amples are, contributing to the improved classifier perfor-
mance. Combining these factors, suitable instances can be
selected for classifier construction.

Finally, the effectiveness of the D-AL-ELM was shown
in its application to an experimental multiclass MI task
from the BCI Competition IV Dataset 2a. Due to the low

signal-to-noise ratio of EEG data, the applied algorithms
struggled to generate adequate results. Consequently,
hand-designed features were first extracted from the raw
EEG data using the OVR-CSP approach, and the different
AL algorithms were then used to further extract the un-
labeled samples and calibrate a robust classifier. For sub-
jects S1, S3, S7, S8, and S9, the D-AL-ELM yielded an
acceptably high mean classification accuracy of over 80%
for the whole learning process. Unfortunately, all tested
methods performed poorly on subject S5. The proposed
algorithm was only able to achieve 49.06% accuracy which,
though insufficient, still ranked the highest among the
applied methods.

5. Conclusion

In this paper, a novel active learning method with ELM, the
D-AL-ELM, was developed for multiclassification.This new
algorithm combines the uncertainty and diversity strategies
and effectively reduces the expense and time cost of
obtaining labeled data manually. For each sample, the
proposed algorithm employs a BvSB strategy to measure
informativeness and the cosine angle distance to measure
diversity. The modified diversity measure not only esti-
mates the diversity between the limited labeled training
data and previously selected unlabeled samples, but also
calculates the similarity among previously selected samples.
Experimental results from several benchmark datasets and
the multiclass MI EEG data from BCI Competition IV
Dataset 2a were then used to verify the efficacy of the
proposed D-AL-ELM algorithm. These results indicate that
the performance of the proposed algorithm is consistently
better than, or at least comparable to, that of other popular
active learning techniques. Future work will then aim to
develop online learning for the D-AL-ELM [23, 34]. In
addition, an adaptive stopping criterion may be applied to
promote the efficiency of the D-AL-ELM and improve its
abilities for the classification and evaluation of MI EEG
signals.
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Table 6: Mean accuracy (%) of the learning process on BCI
Competition IV Dataset 2a.

Datasets D-AL-ELM AL-ELM ELM-Entropy PL-ELM
S1 83.78 83.64 83.32 83.76
S2 53.91 52.50 52.33 54.55
S3 85.66 86.06 85.57 84.39
S4 65.32 63.48 62.94 64.95
S5 49.06 48.90 47.79 48.00
S6 54.31 53.96 52.97 52.36
S7 83.15 83.34 82.45 81.96
S8 83.46 83.56 83.34 81.71
S9 83.57 82.80 82.39 82.91
Mean 71.36 70.92 70.34 70.51

Table 8: Average running time (s) of each learning algorithm.

Datasets D-AL-ELM AL-ELM ELM-Entropy PL-ELM
S1 1.7266 1.4625 1.4594 1.4172
S2 2.5125 2.2813 2.3859 2.2469
S3 1.7219 1.4859 1.4578 1.4234
S4 2.0719 1.7891 1.8328 1.8125
S5 2.0781 1.8281 1.8141 1.7719
S6 1.7609 1.4594 1.4094 1.3609
S7 2.4188 2.1969 2.1734 2.1641
S8 1.5562 1.3375 1.3609 1.3078
S9 1.2906 0.9484 0.9563 0.8906
Mean 1.9042 1.6432 1.6500 1.5995

Table 7: ALC values of the four methods on BCI Competition IV
Dataset 2a.

Datasets D-AL-ELM AL-ELM ELM-Entropy PL-ELM
S1 81.22 0.8109 0.8076 81.21
S2 0.5238 0.5100 0.5085 0.5296
S3 0.8302 0.8340 0.8291 0.8177
S4 0.6340 0.6159 0.6105 0.6308
S5 0.4764 0.4749 0.4638 0.4662
S6 0.5276 0.5241 0.5144 0.5088
S7 0.8066 0.8085 0.7996 0.7952
S8 0.8090 0.8100 0.8079 0.7923
S9 0.8103 0.8032 0.7992 0.8042
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