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Abstract
RNA genomes from coronavirus have a length as long as 32 kilobases, and the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) that caused the outbreak of coronavirus disease 2019 (COVID-19) pandemic has long 
sequences which made the analysis difficult. Over 20,000 sequences have been submitted to GISAID, and the num-
ber is growing fast each day which increased the difficulties in data analysis; however, genome sequence analysis is 
critical in understanding the COVID-19 and preventing the spread of the disease. In this study, a principal component 
analysis (PCA) was applied to the aligned large size genome sequences and the numerical numbers were converted 
from the letters using a published method designed for protein sequence cluster analysis. The study initialized with 
a shortlist sequence testing, and the PCA score plot showed high tolerance with low-quality data, and the major 
virus sequences from humans were separated from the pangolin and bat samples. Our study also successfully built 
a model for a large number of sequences with more than 20,000 sequences which indicate the potential mutation 
directions for the COVID-19 which can be served as a pretreatment method for detailed studies such as decision 
tree-based methods. In summary, our study provided a fast tool to analyze the high-volume genome sequences such 
as the COVID-19 and successfully applied to more than 20,000 sequences which may provide mutation direction 
information for COVID-19 studies.

Keywords Principle Component Analysis · COVID-19 · Genome Sequences · Mutation

Introduction

Coronavirus is an RNA virus that contains large known 
RNA genomes with 27 to 32 kilobases in length, and 
coronavirus disease 2019 (COVID-19) is caused by a novel 
coronavirus called severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) [1, 2]. Coronavirus evolution 
has been studied using a phylogenetic network [3] to 
reconstruct their evolutionary paths. Phylogenetic tree 
analysis [4–6] was used to investigate the identification 

of coronavirus. Dimension reduction algorithm Uniform 
Manifold Approximation and Projection (UMAP) [7, 8] 
has also been applied for COVID-19 protein studies [9], 
but the genome sequence application is rare. A potential 
problem for the phylogenetic relationship-based method 
is that only largely complete genomes are preferred 
with limited noise suppression [3]. Principal component 
analysis (PCA) is a powerful tool for reducing the 
dimensionality of complex data sets [10, 11]. The PCA 
study has been reported to have high performance in noise 
suppression and fast data process for various applications 
[12–14] and showed high performance in excluding 
outliers or artifacts [15, 16]. When over 20,000 viral 
genome sequences have been shared in GISAID (www.
gisai d.org), PCA is one of the best options to study the 
sample clustering information and provides the potential 
virus mutation information for further studies. Though 
GISAID is considered as an effective and trusted database 
for sharing of both published and “unpublished” influenza 
data [17, 18], it is still possible to get low quality of data 
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due to various types of errors. Therefore, PCA could also 
be served as good noise suppression and data-pretreatment 
tool for other popular genome sequences analysis methods.

PCA has been applied to study both protein sequences 
[19–21] and whole-genome [22] to simplify the highly 
complex data. A frequency-rank-based method was 
specially designed for PCA on protein sequence [23] 
which can efficiently reserve the variance information. 
In the PCA study, when projecting the large size data 
set into an eigenspace that represents the directions of 
greatest variation, complex samples such as large size 
protein sequences could be represented by principal 
component [23, 24]. The method has been successfully 
applied to distinguish protein clusters; however, it has not 
been applied to DNA or RNA sequences that are much 
longer than the protein sequences. Though DNA or RNA 
sequences have fewer variables (possible nucleotides) 
than that of protein sequences (20 amino acids), the 
idea of converting letter sequences to the numerical 
data matrix is similar. While the RNA genome has fewer 
options than proteins, the core idea of reserve sequence 
variance using frequency is the same. Since the ranks are 
used as the final data (same frequency data are ranked 
alphabetically), the difference between protein and RNA 
sequences is limited after mean-centered scaling. PCA is 
a suitable tool to work with higher volumes of features 
than observations [25], and the RNA genomes like the 
coronavirus which is as large as 30 k are appropriate for 
PCA analysis. The GISAID database has collected more 
than 20,000 sequences from clinicians and researchers all 
over the world from December 2019 till mid-May 2020, 

and the number is growing fast each day which provides 
a great opportunity to study the potential application of 
frequency-based PCA analysis. The method in this study 
would provide a fast tool to analyze the extremely large 
amount of sequences with regular lab computers and have 
a high tolerance to the potential noises. More important, 
the clustering analysis generated by PCA could help to 
track the COVID-19 genome mutations.

Materials and Methods

Genome Sequence Alignment

The genome sequences were obtained from the GISAID 
database (www.gisai d.org) in fasta format. The data 
were downloaded on May 25, 2020, and the laboratories 
contributed to the database are listed in Dataset S1. The 
genome sequences were then aligned using MAFFT [26] 
version 7 (https ://mafft .cbrc.jp/), and the whole genome was 
aligned using a lightweight option.

Sequence Conversion

The aligned sequences were imported to Matlab 2019 
(Mathworks) for the frequency conversion analysis. The 
aligned sequence was also visualized in UGENE V34.0 
(Unipro) [27, 28]. The sequence conversion was carried out 
using the algorithm reported before [23] in a Matlab script. 

Fig. 1  The PCA score plot of 
the shortlist sequences. The plot 
contains 75 sequences including 
2 sequences from the bat and 
4 sequences from pangolin 
(the orange dots); the rest of 
the sequences were randomly 
selected from human virus 
samples from all over the world 
(the blue dots)

http://www.gisaid.org
https://mafft.cbrc.jp/
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Briefly, the method converted letters to numerical numbers 
using the frequency of each letter in their sequence 
position. The converted numerical matrix was analyzed 
using the PLS-tool box to do the PCA analysis using the 
singular value decomposition (SVD) algorithm [29].

Genome Sequence Selections

To test the performance of the method, 75 random 
sequences were selected from various places of the 
world samples and 6 animal samples were included for 
comparison purposes, and the detailed sequence name 
and date information is in Table 1. After the shortlist 
of sequences was tested, the total number of more than 
20,000 sequences was applied to test the performance of 
the method in a large number of sample sizes.

Results

The Sequence Alignment and Conversion

After alignment using MAFFT, a total of 31,690 elements 
were obtained for the shortlist (75) sequences, and 35,466 
elements were obtained when the total sequences were 
applied to a total number of 21,094 sequences. One example 
of the aligned sequence is listed in the supporting files. 
(Dataset S2).

The PCA Study of the Shortlist Sequences

The conversion method successfully converted the letter 
sequences to numerical numbers which are suitable 
for PCA studies. The PCA study was carried out using 
mean-centered data, and the first two PCs showed a clear 
separation between the animal sequences and human 
sequences (Fig. 1). Most human sequences were separated 
from the first principal component (PC1) direction, and 
four sequences were separated from the second principal 
component (PC2). The loading plot [31] represented 
the features in the raw sequence which could lead to the 
separation of the samples in the score plot. In another word, 
when a potential mutation was observed by the PCA score 
plot, it is possible to track the changes in the sequence. 
For example, when the separation was mostly observed 
in the first PC, it is of interest to study the higher absolute 
values of PC1. However, the PCA score plot was calculated 
with a combined contribution of a large number of loadings 
but not just a single position. In the combined plot of the 
PCA score and loading plot (Fig. 2), the positions that lead 
to the separation and two large loadings can be analyzed 
by studying similar directions, and three representative 
positions were shown on the top of Fig. 2, and the detailed 
information was listed in Table  1. Though the score 
plot was calculated based on the combinations of all the 
important loadings, the difference between the animal 
samples and human virus samples can also be observed 

Fig. 2  The score and loading 
combined plot of the shortlist 
sequences. The red dots are ani-
mal sample scores, orange dots 
are human sample scores, and 
the blue dots are loadings. The 
scores were scaled to the range 
of the loading plot to allow the 
plotting in the same figure. The 
numbers on the figure indicate 
the representative nucleotide 
positions and the sequences 
were listed in Table 1
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in the representative positions (Table 1), and the results 
showed clear differences between the human samples and 
animal samples. In addition, the discovered nucleotide 

position regions with high first PC loadings (Fig. 3) are 
very similar to previous studies [30]. Position numbers may 
be different due to the alignment of the different sequences.

Fig. 3  The first PC load-
ing distributions for the 
shortlist genome sequences 
which showed the genome 
site differences. The selected 
high loadings are included in 
Table 1, and more details can be 
obtained in Table 1

Fig. 4  The PCA score plot 
of the COVID-19 sequences 
including 19,697 samples. 
The orange dots are sequences 
reported from East and South-
east countries and regions. 
The blue dots are the samples 
reported from countries and 
regions in the other part of the 
world. The PCA score plot 
showed the distribution of the 
genome sequences from all over 
the world with differences in the 
first and second PC directions. 
The other PCs (PC3 to PC10) 
are listed in Fig. 5



Cognitive Computation 

1 3

The PCA Study of a Large Number of Sequences

A large size dataset with 21,094 genome sequences 
obtained from GISAID was analyzed using the PCA 
method. The calculation for about 19,697 sequences 
cost around 90 min using a personal computer with 12G 
ram. Due to the complexity of the sequences, a hoteling 
T2 method was applied to exclude the potential outliers 
in the PCA score plot to minimize the error caused by 
potential human errors in sequence upload. The final 
dataset reserved 19,697 samples from all over the world 
and a PCA model was built using the mean-centered data 
in Figs. 4 and 5. The PCA score plot separation is mainly 
in the PC1 direction with several potential sub-groups. 
Since the pandemic was firstly reported in China, the 
East and Southeast Asian samples were highlighted in the 
score plot. No significant difference was observed in the 
highlighted samples excepted the left bottom part showed 
relatively fewer samples. Though the score plot showed 
that Asian samples tend to appear on the right side of the 
score plot, a clear difference that can classify virus types 
like the previous reported phylogenetic network study 
using 160 samples [3] was not observed. The comparison 

between Europe and the USA were also highly mixed 
(Fig. 6). Hence, the data reported time was applied in 
the following analysis.

Discussion

The Potential Changes with the Sequences Report 
Time

The mutation of COVID-19 is critical to study the 
prevention and drug development to fight with the novel 
coronavirus. When the early reported samples (before 
Jan 15, 2020) were highlighted in the PCA score plot, 
they mainly showed on the right side of the score plot 
(red dots in Figs. 7 and 8). With a slight increase in the 
time point to the end of January, more sequences were 
shown to the left side of the plot and the March samples 
showed more cases to the left side. Though the trend was 
observed, newer cases were scattered in all the parts of 
the PCA score plot which is reasonable since the newer 
reported cases are not necessarily newer mutations. The 
total of around 1700 samples on the left bottom side 

Fig. 5  The PCA score plot of the COVID-19 sequences including 
19,697 samples. The orange dots are sequences reported from East 
and Southeast countries and regions. The blue dots are the samples 
reported from countries and regions in the other parts of the world. 

PCA score plots for PCs from 4 to 10. a Scores of PC3 vs PC4. b 
Scores of PC5 vs PC6. c Scores of PC7 vs PC8. d Scores of PC9 vs 
PC10
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of the score plot are mainly from Europe and North 
America (around 95%) which may draw some attention 
for further mutation studies. The geographic clustering 
and time section were analyzed after the unsupervised 
PCA study without pre-settings. The nonlinear PCA 
method [32] could help to reduce errors judging by the 
short test data (Fig. 9); however, the methods consume 
hundreds of times processing time which could be used 
only for a small number of sequences.

PCA Loading Plot Information

The score plot was calculated with a combined contribution 
of a large number of loadings but not just a single position, 
so the loading plot provides the protentional important 
positions. For example, if there are group differences in 
the score plot, the loadings in the same direction will 
be more important in the differences. In the shortlist 
sequences, the beginning and end positions usually have 

Fig. 6  The PCA score plot with the comparison of Europe and the US. a Scores of PC1 vs PC2. b Scores of PC3 vs PC4. c Scores of PC5 vs 
PC6. d Scores of PC7 vs PC8. e Scores of PC9 vs PC10
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Fig. 7  The PCA score plot 
of the COVID-19 sequences 
including 19,697 samples. The 
red dots, green dots, and yellow 
dots are sequences reported 
before Jan 15, 2020, before Feb 
1, 2020, and before March 1, 
2020, representatively. The blue 
dots are the samples reported 
after March 1, 2020. The other 
PCs (PC3 to PC10) are listed 
in Fig. 8

Fig. 8  The PCA score plot of the COVID-19 sequences includ-
ing 19,697 samples. The red dots, green dots, and yellow dots are 
sequences reported before Jan 15, 2020, before Feb 1, 2020, and 

before March 1, 2020, representatively. The blue dots are the samples 
reported after March 1, 2020. a Scores of PC3 vs PC4. b Scores of 
PC5 vs PC6. c Scores of PC7 vs PC8. d Scores of PC9 vs PC10
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Fig. 9  The PCA score plot for 
non-linear PCA for the shortlist 
sample in Fig. 1 (processing 
time is about 2 h using a per-
sonal computer with 12 G ram)

Fig. 10  The comparison of the 
PCA score plot between the 
original one and the one after 
removing the first and last 1000 
positions. The blue and orange 
dots are the full sequences for 
human virus and animal virus, 
representatively. The grey 
dots and yellow dots are the 
sequences without end positions 
for the human and animal virus, 
representatively
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differences due to the low coverages or the undetermined 
nucleotide; however, when the first and last 1000 positions 
were excluded from the calculation, almost no significant 
difference could be observed (Fig. 10). This showed a great 
advantage in a large amount of data interpretation when 
potential errors could exit with a hard cleanup process. 
Figure 11 showed that the first PC loadings lead to the 
separation of Fig. 7 which indicates the potential mutation 
after time. The important loadings are listed under Fig. 11, 
and a large area with multiple important loadings lies in 
position 22,182 which is the spike protein gene site [33]. 
The predicted gene site positions may contribute to the 
mutation studies in COVID-19. In addition, though the 
loading plot can only provide the general trend of the virus 
sequence difference, it can still be powerful in filtering 
important changes.

Conclusions

In this study, we adapted the frequency method-based 
PCA approaches originally designed for protein sequence 
to COVID-19 genome sequences which have more than 

30,000 positions after alignment. The study was first 
demonstrated using a randomly selected shortlist of 
sequences with 75 samples with animal samples from 
bat and pangolin for testing the method, and the PCA 
showed as a powerful tool to separate the human samples 
from the animal samples using in the PCA score plot. The 
study also indicated that the end sequence uncertainty and 
gap positions have very limited influence on the score 
plot clustering which is suitable for the COVID-19 data 
which were submitted by users from all over the world 
and may have potential errors. The method was applied 
to a total of more than 20,000 sequences which showed 
the potential direction of the virus mutation with the time. 
The PCA method is expected to provide a fast analysis 
method with limited requirements for data cleaning but 
may have limitations in classifications. The authors 
suggest researchers use the tool in combination with 
other methods when a classification result is expected. 
When the COVID-19 genome sequence database 
becomes larger and larger, the method provides a great 
opportunity to study the mutation of the coronavirus and 
may also be served as a pre-processing for other methods 

Fig. 11  The first PC loading 
distributions for the total 19,697 
genome sequences which 
potentially indicated the muta-
tion directions from time. The 
large loadings are 1782 3584, 
9804, 11126, 12276, 16358, 
20593, 22182, 22220, 30306, 
and 32631
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such as the tree building-related approaches. The PCA 
score plot interpretation also discovered that potential 
virus evolution directions may worth further study to 
investigate COVID-19 potential mutations.
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Appendix

Table 1  The detailed sequences 
names reported locations and 
dates with the three nucleotides 
positions listed. The animal 
samples are listed at the bottom 
of the table. The first 3 positions 
were selected by using the 
2D loading plot and the rest 
positions were selected using 
the PC1 plot. The difference 
could be clearly observed from 
the last few rows for the animal 
samples

Sequence names 23011 22815 23404 2576 2534 11141 11201 19245 18748 26368 26437

Japan C A A A A A A C C A A
Japan C A A A A A A C C A A
Beijing C A A A A A A C C A A
Beijing C A A A A A A C C A A
Belgium C A A A A A A C C A A
England C A A A A A A C C A A
Ireland C A A A A A A C C A A
Ireland C A A A A A A C C A A
England C A A A A A A C C A A
Algeria C A A A A A A C C A A
Algeria C A A A A A A C C A A
Austria C A A A A A A C C A A
Austria C A A A A A A C C A A
Greece C A A A A A A C C A A
Brazil C A A A A A A C C A A
Germany C A A A A A A C C A A
Lebanon C A A A A A A C C A A
Russia C A A A A A A C C A A
Russia C A A A A A A C C A A
Switzerland C A A A A A A C C A A
France C A A A A A A C C A A
Latvia C A A A A A A C C A A
Switzerland C A A A A A A C C A A
Iceland C A A A A A A C C A A
Iceland C A A A A A A C C A A
Sweden C A A A A A A C C A A
Denmark C A A A A A A C C A A
Germany C A A A A A A C C A A
Lebanon C A A A A A A C C A A
Slovakia C A A A A A A C C A A
Denmark C A A A A A A C C A A
Latvia C A A A A A A C C A A
Sweden C A A A A A A C C A A
Scotland C A A A A A A C C A A
Greece C A A A A A A C N A A
France C A A A A A A C C A A
Scotland C A A A A A A C C A A
Belarus C A A A A A A C C A A
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