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Next generation sequencing and other high-throughput experimental techniques of recent decades have driven the exponential
growth in publicly available molecular and clinical data. This information explosion has prepared the ground for the development
of translational bioinformatics.The scale and dimensionality of data, however, pose obvious challenges in data mining, storage, and
integration. In this paper we demonstrated the utility and promise of cloud computing for tackling the big data problems. We also
outline our vision that cloud computing could be an enabling tool to facilitate translational bioinformatics research.

1. Introduction

The rate of accumulation of biomolecular data is increasing
astonishingly. This information explosion is being driven by
the development of low-cost, high-throughput experimental
technologies in genomics, proteomics, and molecular imag-
ing, amongst others. Success in the life sciences will depend
on our ability to rationally interpret these large-scale, high-
dimensional data sets into clinically understandable and use-
ful information, which in turn requires us to adopt advances
in informatics. Translational informatics, given the available
data resources, is now evolving as a promising methodology
that can drive the translation of laboratory data at the bench
to health gains at the bedside. This “translation” involves
correlating genotype with phenotype, which often requires
dealing with information at all structural levels ranging from
molecules and cells to tissues and organs, individuals to
populations.

2. Translational Bioinformatics:
Imperative to Collaborate

According to the scale of investigation, the fields of trans-
lational informatics can be roughly classified into four sub-
disciplines [1]: (1) bioinformatics (molecules and cells);
(2) imaging informatics (tissues and organs); (3) clinical

informatics (individuals); and (4) public health informatics
(populations). Each of the subfields is directed at a particular
level of research scale. Table 1 outlines the spectrum of
translational bioinformatics activities. The four subfields of
translational bioinformatics are compared along several
dimensions, including (1) areas of research purpose; (2) data
types; (3) informatics tools to support practice.

Bioinformatics traditionally concerns applying computa-
tional approaches to the analysis of massive data from geno-
mics, proteomics, metabolomics, and the other “-omic” sub-
fields. Such research might help better comprehend the intri-
cate biological details at molecular and cellular levels. Imag-
ing informatics is focused on what happens at the level of
tissues and organs. The essential informatics techniques to
extract andmanage the biological knowledge from images are
summarized in Table 1. At the individual level, clinical bioin-
formatics is oriented to provide the technical infrastructure
to understand clinical risk factors and pathophysiological
mechanisms. As for public health informatics, the stratified
population of patients is at the center of interest. Such
research relies on informatics solutions to study shared risk
factors for disease on a population level.

At each of these levels, large amounts of experimental data
are being generated. To fully understand a disease pheno-
menon, however, it is important to gather data at various lev-
els and analyze them in an integrated fashion. While the four
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Table 1: Spectrum of translational bioinformatics activities.

Subfields Research purpose Data types Informatics tools

Bioinformatics

Sequencing
Structure analysis
Expression analysis
Phylogenetic analysis
Structure modeling

Sequence information
Microarray

Mass spectrum
SNP

Haplotypes

Pattern recognition [45–47]
Data mining [48–50]
Machine learning [47, 51, 52]
Visualization [53–55]
Automatic annotation [49, 55–58]

Imaging informatics

Image feature identification
Image segmentation
Image reconstruction
Image annotation
Image indexing
Image visualization

DICOM
JPEG
TIFF
PNG
GIF
BMP

Content-based image retrieval [59, 60]
Natural language processing [61, 62]

Clinical informatics

Clinical decision support
Clinical information access
Electronic patient record system
Disease reclassification

Clinical laboratory results
Physical examination
Symptoms and signs

Patient history
Prescriptions

Probabilistic decision-making [63]
Expert reasoning system [64–66]
Assessment and validation vocabularies
[67, 68]
Text-parsing tools [69]

Public health
informatics

Tracking of infectious diseases
Assessment clinical interventions
Monitoring disease risk factors

PHCDM-based health
information

Access control [70, 71]
Information security technology [37, 72]
Semantic and syntactic standards [73]
Structured data-collection techniques
[74, 75]

areas of research differ in their scientific foundations, they
nevertheless share a core set of informatics methodologies,
such as data acquisition systems, controlled vocabularies,
knowledge representation, simulation and modeling, infor-
mation retrieval, and signal and image processing, which
provide a basis for their intersection.

3. Crisis Looms for
Multidisciplinary Collaboration

The current push for personalized disease treatment is enco-
uraging bioinformatics to seamlessly integrate data acquired
frommultiple levels of investigation, frommolecular scale to
organisms and tissues and further to individuals and popu-
lations. To achieve this goal, multidisciplinary collaboration
between the fundamental aspects of translational informatics
(e.g., bioinformatics, imaging informatics, clinical informat-
ics, and public health informatics) has become essential.

However, the large scale and high dimensionality of data
have posed obvious challenges in data mining, storage, and
integration. Traditionally, basic research, clinical research,
and public health are seen as different worlds based on
distinct or incompatible principles. Data transfer, access con-
trol, and model building rank are among the most pressing
challenges.

4. Cloud Computing to the Rescue

Recent studies and commentaries [2–6] have proposed cloud
computing as a solution that addresses many of the lim-
itations mentioned above. Cloud computing is a relatively
recent invention. It refers to a flexible and scalable internet
infrastructure where processing and storage capacity are

dynamically provisioned. The basic idea of cloud computing
is to divide a large task into subtasks, which can then
be executed on a number of parallel processors. A key
technology with the cloud is the virtual machine (VM) that
can be prepackaged with all software needed for a particular
analysis.

Large utility-computing services have been emerging in
the commercial sector, for example, the Amazon Elastic
Compute Cloud (EC2) (http://aws.amazon.com/ec2/) [7],
and noncommercial public cloud computing platforms also
exist to support research, such as the IBM/Google Cloud
Computing University Initiative [8] launched by Google and
IBM.

Cloud computing infrastructures offer a new way of
working. It features a special parallel programming model
(e.g., MapReduce [9] designed by Google) to efficiently scale
computation to many thousands of commodity machines.
These commodity machines form a cluster that can be
rented over the internet. Applications in the cloud have also
benefited from hadoop (http://hadoop.apache.org/) [10], an
open-source implementation of MapReduce. Since it is easy
to fine tune and highly portable, Hadoop, together with
MapReduce, has been widely used for large-scale distributed
data analysis in both academy and industry.

Cloud computing infrastructures offer a highly flexible
and economical means of working. Cloud computing pro-
vides scalable, flexible access to larger computer processing
power and storage and avoids the fixed cost of capital invest-
ments in local computing infrastructures, computing main-
tenance, and personnel. The end users are essentially renting
capacity on their demand [11].

Cloud computing allows the sharing of data in real-time
collaboration with other users. It addresses one of the chal-
lenges related to transferring and sharing data. Researchers

http://aws.amazon.com/ec2/
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Table 2: Application of cloud computing in bioinformatics research.

Software Website Description Reference

ArrayExpressHTS http://www.ebi.ac.uk/Tools/rwiki/ RNA-Seq data processing and quality
assessment [76]

Bioscope http://www.lifescopecloud.com/ Reference-based read mapping [77]
Cloud-MAQ http://sourceforge.net/projects/cloud-maq/ Read mapping and assembly [78]
CloudAligner http://sourceforge.net/projects/cloudaligner/ Read mapping [79]
CloudBurst http://cloudburst-bio.sourceforge.net/ Reference-based read mapping [6]
CloudCoffee http://www.tcoffee.org/homepage.html Multiple sequence alignment [20]
Contrail http://contrail-bio.sourceforge.net/ De novo read assembly [80]
Crossbow http://bowtie-bio.sourceforge.net/crossbow/ Read mapping and SNP calling [4]

FX http://fx.gmi.ac.kr/
RNA-Seq data analysis for gene
expression levels and genomic variant
calling

[81]

GeneSifter http://www.geospiza.com/Products/AnalysisEdition.shtml Customer-oriented NGS data analysis
services [82]

Myrna http://bowtie-bio.sf.net/myrna/ Differential expression analysis for
RNA-Seq data [83]

PeakRanger http://www.modencode.org/software/ranger/ Peak caller for ChIP-Seq data [84]

Roundup http://rodeo.med.harvard.edu/tools/roundup/ Optimized computation for comparative
genomics [19]

SeqMapReduce http://www.seqmapreduce.org/ Read mapping [85]

YunBe http://tinyurl.com/yunbedownload/ Gene set analysis for biomarker
identification [86]

can store their data in the cloud with high availability.
For example, Amazon web services provide free access to
many useful data sets, for example, the Ensembl [12] and
1000 Genomes data [13]. In addition, the users can have
thousands of on-demand powerful computers ready to run
their analysis. To this end, cloud computing has the potential
to facilitate large-scale efforts in translational data integration
and analysis.

5. Translational Bioinformatics Research
in the Cloud

There is considerable enthusiasm in the bioinformatics com-
munity to deploy open-source applications in the cloud.
Various services provided by cloud-computing vendors are
described below.

5.1. Cloud-Based Application in Bioinformatics. Numerous
of studies have reported the successful application cloud
computing in bioinformatics research. Most of these cloud
computing applications deal with high-throughput sequence
data analysis. CloudBLAST [14] is the first cloud-based
implementation to solve sequence analysis problems. Other
projects have since been launched on the cloud. Some
initiatives have utilized preconfigured software on cloud sys-
tems to support large-scale sequence processing. Some tools
are available for sequence alignment, short read mapping,
SNP identification, genome annotation, and RNA differential
expression analysis, amongst others (Table 2). Efforts in

comparative genomics [15–20] and proteomics [21] have also
incorporated the cloud to expedite their data processing.

5.2. Cloud-Based Application in Imaging Informatics. The
volumes of high-resolution and dynamic imaging data can be
estimated to reach petabytes, which indicates that the image
reconstruction and analysis is computationally demanding.
Cloud-computing is an obvious potential contributor to this
end. Image clouds would enable multinational sharing of
imaging data, as well as advanced analysis of imaging data
away from its place of origin.

Many studies have shown the utility of MapReduce for
solving large-scale medical imaging problems in a cloud
computing environment. For example, Meng et al. [22]
developed an ultrafast and scalable image reconstruction
technique for 4D cone-beamCT usingMapReduce in a cloud
computing environment. Avila-Garcia et al. [23] proposed
a cloud computing-based framework for colorectal cancer
imaging analysis and research for clinical use. Silva et al.
[24] implemented a set of DICOM routers interconnected
through a public cloud infrastructure to support medical
image exchange among institutions.

Imaging clouds is also making unprecedentedly large-
scale imaging research feasible. For example, Euro-Bioimag-
ing [25], a pan-European research infrastructure project aims
to deploy a distributed biological and biomedical imaging
infrastructure in Europe in a coordinated and harmonized
manner. It is expected to offer platforms for storing, remotely
accessing, and post-processing imaging data on a large scale.
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5.3. Cloud-Based Application in Clinical Informatics. Amajor
challenge for clinical bioinformatics pertains to the accom-
modation of the range of heterogeneous data into a single,
queryable database for clinical or research purposes. Elec-
tronic health record (EHR), an integrated clinical informa-
tion storage systems, has recently emerged and stimulated
increased research interest. EHR is a record in digital format
that is capable of organizing clinical data by phenotypic
categories. An ideal EHR provides complete personal health
andmedical summary by integrating personal medical infor-
mation from different sources. The inclusion of genetic
imaging and population-based information in EHR has the
potential to provide patients with valuable risk assessment
based on their genetic profile and family history and to carve
a niche for personalized cancer management.

The potential benefits of cloud computing facilitating
EHR sharing and EHR integration have been realized. With
cloud computing, EHR service could store data into cloud
servers. In this way the resources could be flexibly utilized
and the operation cost can be reduced. It is envisioned that
through the internet or portable media, cloud computing
can reduce electronic health record startup expenses, such
as hardware, software, networking, personnel, and licensing
fees and therefore will promise an explosion in the storage of
personal health information online [26–29].

Many previous studies proposed different cloud-based
frameworks in an attempt to improve EHR. Among them,
Chen et al. [30] proposed a new patient health record access
control scheme under cloud computing environments which
allows accurate access to patient health record with security
and is suitable for enormous multiusers. Chen et al. [31]
proposed an EHR sharing and integration system in health-
care clouds. Doukas et al. [32] presented the implementation
of a mobile system that enables electronic healthcare data
storage, update and retrieval using cloud computing. Rolim
et al. [33] proposed a cloud-based solution to automate
processes for patients’ vital data collection via a network of
sensors connected to legacy medical devices and to deliver
the data to a medical center’s cloud for storage, processing,
and distribution. The system provides users with real-time
data accessibility labor work to collect, input, and analyze the
information. Rao et al. [34] introduced a pervasive cloud-
based healthcare application called Dhatri, which leveraged
the power of cloud computing and mobile communications
technologies to enable physicians to access real-time patient
health information from remote areas.

Besides academic researches described above, multi-
ple commercial vendors are competing on this relatively
new market. Many world-class commercial companies have
heavily invested in the cloud, offering personal medical
records services, such as Microsoft’s HealthVault [35], which
is currently the largest commercial personal health report
platform.

5.4. Cloud-Based Application in Public Health Informatics.
Public health informatics heavily relies on the data exchange
between public health departments and clinical providers.
However, public health’s information technology systems lack

the capabilities to accept the types of data proposed for
exchange. Data silos across organizations and programs will
present a set of challenges. With cloud services, however,
public health applications, software systems, and services
would be made available to health departments, therefore
facilitating the exchange of specified types of data between
different organizations. In addition, through remote hosting
and shared computing resources, public health departments
could overcome the problem of funding constraints and
insufficient infrastructure for public health systems.

6. Concerns and Challenges for
the Biomedical Cloud

Cloud computing offers new possibilities for biomedical
research, as data can now be easily accessed and shared.
Despite the potential gains achieved, there are also several
important issues to be addressed before the cloud computing
can become more popular. The most significant concerns
pertain to information security and data transfer bottlenecks.

6.1. Information Security and Privacy. Lately, many health-
care organizations are looking to move data and applications
to a cloud environment. While this offers flexibility and easy
access to computational resources, it also introduces security
and privacy concerns, which are particularly evident in fields
such as clinical informatics and public health informatics.
Highly specialized data, such as clinical data from human
studies, have exceptional security needs. Hosting such data
on publicly accessible serversmay increase the risk of security
breaches. There are additional privacy concerns relating to
personal information. Therefore these data must be posted
according to privacy and security rules, such as the Health
Insurance Portability and Accountability Act (HIPAA) [36].
For a biomedical cloud to be viable, a secure protection
scheme will be necessary to protect the sensitive information
of the medical record. For example, sensitive data will have to
be encrypted before entering the cloud. Also, only authorized
users are allowed to place and acquire sensitive security
metadata in the cloud. More advanced encryption measures
as well as access control schemes need to be deployed under
cloud computing environments.

So far, some research efforts have been made to build
security and privacy architectures for biomedical cloud com-
puting [37, 38]. Main cloud service providers (e.g., Amazon,
Microsoft, and Google) have also made commitments to
develop best practices to protect data security and privacy.

6.2. Data Transfer Bottlenecks. Another major obstacle to
moving to the cloud is the time and cost of data transfer.
Biomedical research institutions may need to frequently
export or import large volumes of data (on the order of
terabytes and soon to be petabytes) to and from the cloud.
Given the size of the data set, one may find that there is a
data transfer bottleneck. Networking bandwidth limitation
causes delays in data transfer and incurs high bandwidth
costs from service providers. Bandwidth costs might be
low for smaller internet-based applications that are not
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data intensive. However, as applications continue to become
more data intensive, these costs can quickly add up, making
data transfer costs an important issue. For applications that
require substantial data movement on a regular basis, cloud
computing currently does not make economic sense.

7. Future Developments and Applications

As discussed above, the future of translational medical bioin-
formatics will depend on integration of diverse data types
of patient characteristics. It is therefore crucial to develop
an open, data-sharing environment. We suggest that future
initiatives should include (1) development of standards to
facilitate informational exchange, (2) integration of databases
to allow cross-referencing of multilevel data.

7.1. The Need for Standardized Data Formats. Data exchange
across the subfields of translational bioinformatics is often
difficult because the data come from heterogeneous infor-
matics platforms and are stored in different formats (e.g.,
numerical values, free text, and graphical and imaging
material). The high dimensionality of potential data types
mandates standards to represent data in a uniform manner.
To work toward this goal, integrated medical/biological
terminologies and ontologies have to be adopted, together
with advanced semantic-based models and natural language
processing (NLP) techniques to objectively describe medical
and biomolecular findings.

Numerous attempts have been made in developing
standards for data integration in specialized domains. For
example, minimum information about microarray experi-
ment (MIAME) [39] is a standard developed to represent
and exchange microarray data. In the field of imaging
informatics, existing standards include the foundational
model of anatomy clinical community, and digital imaging
and communications in medicine (DICOM) [40]. Health
level 7 (HL7), clinical data standards interchange con-
sortium (CDISC), systematized nomenclature of medicine
(SNOMED) and the international statistical classification of
diseases and related health problems (ICD-10) represent the
standard for clinical community.

These community-specific standards alone, however, are
not sufficient to enable intercommunity data sharing. In
this regard, the development of integrated standards will be
essential. While it is unlikely to develop a single standard to
cover all domains, semantic mapping between terminologies
seems more practical. Several pioneering medical informat-
ics projects are underway to define such intercommunity
standard. For example, the ACGT project [41] launched
by the European Union developed a set of methodological
approaches as well as tools and services for semantic integra-
tion of distributed multilevel databases.

7.2.TheNeed for UnifiedDatabases. Currently different layers
of biomedical data are stored within databases that are
highly distributed, and often not interoperable. Even the
databases that hold large data sets are often specialized and
fragmented, obstructing the path to information sharing. We

need database integration to allow cross-referencing of mul-
tilevel data for research or clinical purposes. Opportunities to
develop integrated storage systems are increasing as a result of
participatory initiatives. Funded by theUSNational Institutes
of Health (NIH), many local platforms in the biomedical
informatics space have been established to support data
sharing, including informatics for integrating biology and
the bedside (i2b2) [42], cancer biomedical informatics grid
(caBIG) [43], and biomedical informatics research network
(BIRN) [44].

NIH-funded i2b2 Center developed an open-source scal-
able informatics framework that integrates clinical research
data from medical record and genomic data from basic
science research. This platform helps better understand the
genetic bases of complex diseases. To date, i2b2 has been
deployed by over 70 sites internationally. caBIG aims to
provide open source standards for data exchange and inter-
operability in cancer research. At the heart of the caBIG
approach is a grid middleware infrastructure called caGrid.
caGrid is a service-oriented platform that provides the tools
for organizations to integrate data silos, securely share data,
and compose analysis pipelines. caBIG enjoys widespread
adoption throughout the cancer community. BIRN is an
initiative funded by NIH to provide infrastructure, software
tools, strategies, and advisory services for sharing biomedical
research across disparate groups. These efforts contributed
to the transfer and integration of distributed, heterogeneous
and multilevel data across the major realms of translational
bioinformatics.

8. Conclusion

Biomedical cloud, given the proper architecture, could inte-
grate all the petabytes of available biomedical informatics
data in one place and process them on a continuous basis.
In this way, we would continuously observe the connections
between genotypic profiles and phenotypic data.We can envi-
sion that the cloud-supported translational bioinformatics
endeavorswill promote faster breakthroughs in the diagnosis,
prognosis, and treatment of human disease.
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