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Walking on natural terrain while performing a dual-task, such as typing on

a smartphone is a common behavior. Since dual-tasking and terrain change

gait characteristics, it is of interest to understand how altered gait is reflected

by changes in gait-associated neural signatures. A study was performed with

64-channel electroencephalography (EEG) of healthy volunteers, which was

recorded while they walked over uneven and even terrain outdoors with

and without performing a concurrent task (self-paced button pressing with

both thumbs). Data from n = 19 participants (M = 24 years, 13 females)

were analyzed regarding gait-phase related power modulations (GPM) and

gait performance (stride time and stride time-variability). GPMs changed

significantly with terrain, but not with the task. Descriptively, a greater

beta power decrease following right-heel strikes was observed on uneven

compared to even terrain. No evidence of an interaction was observed. Beta

band power reduction following the initial contact of the right foot was more

pronounced on uneven than on even terrain. Stride times were longer on

uneven compared to even terrain and during dual- compared to single-

task gait, but no significant interaction was observed. Stride time variability

increased on uneven terrain compared to even terrain but not during single-

compared to dual-tasking. The results reflect that as the terrain di�culty

increases, the strides become slower and more irregular, whereas a secondary

task slows stride duration only. Mobile EEG captures GPM di�erences linked

to terrain changes, suggesting that the altered gait control demands and

associated cortical processes can be identified. This and further studies may

help to lay the foundation for protocols assessing the cognitive demand of

natural gait on the motor system.
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Introduction

Walking while performing a concurrent task, like talking or

typing on a smartphone, is a common dual-task in daily life.

Altered gait characteristics, especially reduced gait speed in dual-

task conditions (1) may predict cognitive impairment as early

as 10 years before its onset (2). Moreover, altered gait speed is

associated with structural changes in the brain, for instance in

the frontal cortex and the basal ganglia (3). Hence, capturing

the neural signature of gait control may provide another

sensitive tool beyond assessing gait characteristics alone. The

early identification of individuals at risk for the cognitive decline

may offer earlier diagnosis and thus enhanced opportunities for

disease-modulating interventions. While some aspects of dual-

tasking, such as altered gait characteristics, neural correlates of

the concurrent tasks, or some neural correlates of gait itself have

been investigated, other signatures are less well-understood even

though they are commonly used to study single-task gait and

are sensitive to gait demands (4–7). In our view, understanding

these correlates of single- and dual-task walking in healthy

individuals will provide another important step toward further

understanding patterns of healthy aging and dissociating them

from those that reflect an increased risk for neurodegeneration.

While gait is often viewed as an automatic activity, it has

also been shown to require some level of cortical control. Studies

have shown altered gait patterns while dual-tasking compared

to single-task walking (8). Moreover, neural correlates of gait

have been discovered in various cortical areas, such as the

pre-supplementary and supplementary motor area, as well as

central sensorimotor and posterior-parietal regions [for a review

see (9)]. Walking is an important activity of everyday life and

can be impaired due to various neurodegenerative diseases, like

Parkinson’s disease (10). This has been linked to a loss in quality

of life (11, 12). Hence, understanding neural correlates of gait

is vital.

Dual-task effects (DTEs) on gait, such as decreased speed,

decreased cadence, decreased stride length, increased stride

time, and stride time variability have been observed repeatedly

(8). Several theories aim at explaining why DTEs emerge.

According to multiple resource models, the performance of a

task demands specific resources. Correspondingly, tasks only

interfere with each other if they demand common, limited

resources (13, 14). DTEs on gait will thus only arise if a

concurrent task involves areas also needed for gait control.

DTEs may manifest in the gait performance, the concurrent

task performance, both, or neither (15). Their manifestation

may be influenced by the participant’s task prioritization

(16). Both, performing cognitive tasks - especially ones using

internal reference compared to external frames - as well

as complex motor tasks while walking, alter gait patterns

(8, 17, 18).

Gait characteristics change when walking on uneven

compared to even terrain (19). Prominent findings are

slower stride time and greater stride time variability

on uneven terrain compared to even terrain during

unconstrained overground walking (20, 21). When

walking speed is constrained, stride times and steps are

shorter during perturbed compared to normal treadmill

walking (22, 23). These adaptations are assumed to be

compensatory, supporting gait stability and balance (20).

They are associated with greater metabolic cost (24, 25). Still,

decreased gait stability has been reported for some terrains

(26) and is linked to greater cognitive demands leading

to altered task prioritization (16) and potentially greater

DTEs (27).

Several studies investigated neural correlates of a concurrent

task performed while walking compared to sitting or standing

[(28–32), for a review see (33)]. It has been investigated,

whether these correlates change with aging [for a review

see (34)]. In addition, electroencephalography (EEG) power

differences between single and dual-task conditions have been

observed frequently (35–37). For instance, EEG alpha power

was found to be reduced at central locations while performing

a concurrent motor task compared to single-task walking

(17). Moreover, the performance of concurrent cognitive task

results in alpha and beta power reductions at central and

frontocentral sites for dual- compared to single-task walking

(17). In addition, gamma power increases over frontal areas

during finger tapping while walking compared to walking

alone (18). Finally, neural correlates of gait can be defined

as gait-cycle-related power fluctuations. Specifically, gait-cycle-

related spectral perturbations (gait ERSPs) can be calculated as

spectral perturbations relative to a standing baseline. Whereas,

gait-phase related spectral power modulations (GPMs), are

gait ERSPs further baseline corrected to the mean power at

each frequency across the average gait cycle (38) (for details

see Time-frequency decomposition). GPMs thus show power

modulations over the time of gait-cycle. GPMs are altered by

dual-tasking (7, 39). So far, few studies investigated GPMs in

dual-task gait. In one study, GPMs were only altered by some

concurrent tasks. GPMs changed by talking to the experimenter

but not by typing on a smartphone (7). This suggests that

some secondary tasks draw more on gait-related resources than

alternative tasks.

Neural correlates of gait are not only modulated by

concurrent tasks but also by terrain. Compared to walking

over an even surface, differences in central sensorimotor

and parietal clusters have been observed during ramp

and stair ascent (6). In both clusters and both conditions,

a greater beta desynchronization was evident during

initial double support compared to walking over even

terrain, which may indicate greater cortical recruitment

to tackle increased task difficulty (40). Furthermore, in

the central cluster, a greater alpha desynchronization has

been reported at the same time. For stair ascent, a greater

gamma synchronization has been reported during the first
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swing phase (6). Taken together, these results suggest that

navigating more complex terrains poses greater cognitive

demands on cortical gait control, which can be observed

in altered GPMs. Neural correlates of a cognitive task are

altered by standing compared to walking and by terrain

complexity (29). Yet, it remains open whether potential

influences of a concurrent task and terrain complexity on

GPMs interact.

In the present study, we investigate whether the gait-phase-

related neural activity is altered by terrain and whether an

interaction between terrain and the performance of a concurrent

task can be observed.We asked participants to walk two different

routes across campus: over an even, paved terrain (even) and

an uneven lawn (uneven). Both conditions were performed

alone (single-task, ST) or while performing a concurrent motor

task (self-paced button pressing, dual-task, DT). We employed

mobile EEG to study GPMs during these conditions. GPMs were

chosen because they may reflect adaptive cortical contributions

to gait control and execution. We used overground walking

because it has higher ecological validity than treadmill walking.

A simple finger-tapping task was selected as a concurrent task

to simulate tapping on a smartphone, similar to a previous

study (7). As task and terrain effects were reported previously

(6, 7), we compared gait-related activity at various frequencies

and time points at an electrode regularly associated with gait

control and possibly capturing the cortical activity of motor

and premotor areas (i.e. Cz) (5, 7, 17, 41–45). Furthermore,

we investigated whether gait performance (i.e., stride time

and stride time variability) changed with terrain and dual-

tasking. We expected longer stride times and greater stride time

variability on uneven compared to even terrain [(20, 46), for

a review see (47)] and during dual- compared to single-task

gait (17).

Since mobile EEG data can be contaminated by various

artifacts, we first assessed whether sufficient data quality

could be obtained after artifact attenuation. Therefore, the

multidimensional gait-related artifact footprint approach (48)

was used to validate mobile EEG signal quality independent of

the research question at hand.

Materials and methods

Participants

A young, healthy, right-handed sample of N = 26

participants (19 females and seven males) with unimpaired

gait was recruited via the online platform of the University

of Oldenburg. Participants provided written informed consent

and received monetary compensation (10e/h). The study

was approved by the ethics committee of the University of

Oldenburg (permit number: 2018-079).

Materials

EEG data were captured using two Live Amps (Brain

Products GmbH, Gilching, GER) placed on top of participants’

heads capturing data of 66 Ag/AgCl passive electrodes

embedded in custom 64-channel caps (Easy Cap GmbH,

Herrsching, GER). Wires were bundled to reduce their motion

and associated data noise (31, 49). Electrode impedances were

decreased to at least 10 kΩ . The online reference was FCz, the

ground AFz, and the sampling rate was 500Hz [for a setup

picture and channel layout see (48)]. EEG data were streamed via

a Bluetooth connection using the LiveAmpConnector software

(version 1.16, bit.ly/31P2mrd). Participants held the recording

laptop (Ultrabook, Latitude 5289, Dell Inc., Round Rock, TX)

in tablet mode with both of their hands. Presentation software

(version 20.02, Neurobehavioral Systems, Inc., Berkeley, CA,

RRID:SCR_002521) was used to control the experiment.

Participants’ motion was captured by a 3D accelerometer

built into the EEG amplifier on top of their heads, and two

3D accelerometers (eMotion Faros 180◦, Mega Electronics

Ltd, Kuopio, FIN) placed on top of their shoes. EEG data

and experimental events were time-synchronized using Lab

Streaming Layer and stored in a file by the LabRecorder

software (version 1.13, bit.ly/2ULAFhb). Foot acceleration

sensor signals were time-synchronized to the EEG data offline

using synchronization triggers sent at the beginning and end of

the recording [as described in (42)]. This dataset was analyzed in

a previous publication (48) and is available at OpenNeuro (see

Data Accessibility Statement).

Procedure

Data were recorded during a gait-initiation task indoors

and an overground walking task outdoors. Only the EEG data

recorded outdoors was analyzed in this study. Outdoors, a 2-min

standing baseline was followed by a self-paced button-pressing

task for 4min (see Figure 1B). Participants were instructed to

press buttons displayed on the left and right sides of the laptop’s

touchscreen with their left or right thumb, respectively. They

were asked to surprise the experimenter with the hand and

time of the button-presses and to wait for 1 to 3 s after each

button-press until the next one. This elicited a movement-

related cortical potential (50), as analyzed in a previous study

(48). Participants were asked to fixate their gaze to a point at

eye level, and not to look down at the laptop. So, to inform

them about successful button presses, each button press was

confirmed with a brief sound. Subsequently, participants were

shown two different routes (see Figure 1A) next to each other

on the university campus. One was over lawn (uneven terrain,

see Figure 1C) and the other one a paved footpath (even

terrain, see Figure 1C). Both routes were marked with pylons

and had to be walked in a clockwise direction. As the uneven
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FIGURE 1

(A) Map of the two routes with di�erent terrain (B) picture of the even terrain (C) experimental structure outdoors (D) picture of the uneven

terrain.

route was slightly longer, subjects walked it two times while

walking the even route three times, resulting in 3 to 4min of

walking per condition. Both terrains were walked two times in

a randomized order: once with the concurrent performance of

the button-pressing task (DT) and once without (ST), resulting

in four conditions (see Figure 1B). Participants were instructed

to avoid superfluous head movements and jaw clenching during

the blocks. After completing the experiment, participants were

asked to indicate on a 5-point Likert scale how difficult (1 =

not difficult at all, 5= very difficult) they perceived both terrains

(even, uneven) to walk on.

Gait analysis

Gait events were identified with custom scripts in

MATLAB (MathWorks Inc., Natick, MA, version R2021a,

RRID:SCR_001622) using the data from the two 3D

accelerometers placed on top of participants’ shoes.

Accelerometer data of each foot was processed independently.

First, data were imported at 250Hz. Second, they were

detrended and low pass filtered with a second order, zero-

phase, infinite impulse response Butterworth filter with a

cut-off of 30Hz. An interim dataset was low-pass filtered at

6Hz. Only data captured during walking bouts was used for

step detection. The interim data (low-pass filtered at 6Hz)

was only used to determine the number of steps in each

walking bout. To do so, peaks in the vertical acceleration

exceeding 0,6 g with a minimal distance of 500ms were

identified. This marks roughly mid-swing. This threshold

had to be adapted to 0,24 g for one subject. The 30Hz low-

pass filtered data was used to detect heel strike and toe-off.

The first peak exceeding 0,6 g following a step marker was

determined to be a heel-strike. Toe-off was determined as
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the mean of the two highest peaks in anterior-posterior

acceleration exceeding 0,2 g in the 500ms preceding a step

marker. All peaks were identified using the MATLAB function

findpeaks ().

This gait detection approach was validated with a motion

capture system (Vicon, Oxford, UK). An average temporal error

of around 2ms was observed and considered acceptable.

Only gait cycles in which (1) the order of gait events was

right heel strike (RHS), left toe-off, left heel strike, right toe-

off, RHS and (2) the next RHS occurred between 0.5 and

1.5 s after the previous one, were deemed plausible and were

analyzed further.

Stride times of all remaining strides were calculated as

the time from one RHS to the next (in seconds). Stride

time variability was calculated as the coefficient of variation

(in percent) by dividing the standard deviation of the stride

times by the mean stride time and multiplying the result with

100 (17).

EEG pre-processing

EEG data were processed in MATLAB (MathWorks

Inc., Natick, MA, version R2021a, RRID:SCR_001622) using

EEGLAB (51) (version 2020.0, RRID:SCR_007292), and

Brainstorm (52) (version Jan 2020, RRID:SCR_001761)

toolboxes, as well as custom code. The scripts are accessible via

GitHub (see Data Accessibility Statement).

First, data were downsampled to 250Hz and then

filtered between 0.2Hz (passband edge, order 4,126) and

60Hz (passband edge, order 56) with zero-phase, finite

impulse response (FIR) filters. Channels were rejected using

clean_rawdata (flatline channels for 5 s, channel correlation

below 0.8 and line noise above 4, other parameters disabled,

version 2.3). Artifact subspace reconstruction (53), was

calibrated with a standing baseline at the beginning of

the recordings and used to correct artifacts with a cut-off

of SD = 20, following the version’s default settings and

recommendations (54). Then line noise was corrected with

the zapline plus tool (55) (available at https://github.com/

MariusKlug/zapline-plus, retrieved 26.10.21, with noise

frequency 50Hz, highest Frequency 61Hz) an extension to

zapline (56). After spherical interpolation of the previously

rejected channels, channels were re-referenced to the full rank

common average (version 0.10, available at http://sccn.ucsd.edu/

eeglab/plugins/fullRankAveRef0.10.zip). To further attenuate

artifacts we combined two established methods of gait-artifact

attenuation, notably independent component analysis (ICA) to

attenuate eye artifacts and spectral principal component analysis

(sPCA) (57) to attenuate muscle artifacts. For an outline of the

EEG preprocessing see Figure 2. This approach was chosen after

carefully comparing different approaches, which are described

in detail in the Supplementary material.

Independent component analysis

For ICA decomposition, an interim dataset was high-pass

filtered at 1Hz (passband edge, order 415) and consecutive

1-s epochs were extracted. Epochs with samples exceeding a

threshold of 350 µV or a joint probability of three standard

deviations (jointprob) were rejected. The remaining data were

decomposed using adaptive mixture independent component

analysis (AMICA, 1 node, 2 threads, 1 model, 2000 iterations,

version 1.5.2) (58). The obtained weights were back-projected to

the original dataset. AMICA decomposition is often chosen for

gait EEG (5, 39, 40, 59–69) because it attenuates EMG artifacts

of treadmill walking better (70) and produces more near-dipolar

ICs and a greater mutual information reduction than other ICA

algorithms (71). Afterward, all ICs were automatically classified

using IClabel (72) (version 1.3), and components exceeding

a 90% probability of representing eye movement or blinking

artifacts were rejected.

Time-frequency decomposition

Gait ERSPs were calculated as follows: linearly spaced

(2Hz steps) Morlet-wavelets were used to time-frequency (TF)

decompose the data from 2 to 60Hz. Gait cycles or strides

were extracted (RHS to the next RHS). Only gait cycles with

plausible order and timing of gait events, as determined in the

gait analysis in which none of the samples exceeded 350 µV

were kept. Each gait cycle (RHS to RHS) was then linearly

resampled to an arbitrary, uniform length of 100 samples using

the resample function (38, 57) so that each sample corresponded

to one percent of the gait cycle. All gait cycles were averaged

resulting in one TF map per channel and participant. The power

of a standing baseline (4min) was computed with the same

wavelets used for the gait ERSPs and averaged across time. Power

change to the standing baseline (decibel, dB) was calculated. Gait

ERSPs were calculated for all conditions together and used for

the sPCA (see Spectral principal component analysis), as well as

for each condition (ST even, ST uneven, DT even, DT uneven)

alone. GPMs, are gait ERSPs with another baseline correction.

GPMs of each channel were calculated by subtracting the mean

gait ERSP power across time from each frequency (38).

Spectral principal component analysis

Seeber et al. (57) introduced an sPCA approach to attenuate

muscular artifacts in gait EEG. They assumed that the greatest

spectral variance of the TF decomposed signal is not of neural

origin and can be removed. We implemented the sPCA based

on scripts provided by Seeber et al. (57). The sPCA was

performed on single-subject gait ERSPs averaged over all gait

cycles and conditions and decomposed using a PCA. The

resulting eigenvectors were sorted by decreasing eigenvalue and

the component with the greatest eigenvalue was rejected. The

remaining components were back-projected using a weighting
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FIGURE 2

EEG preprocessing and artifact attenuation pipeline.

matrix. The same weighting matrix was used for the averaged

as well as condition-specific ERSPs, in order not to introduce

condition-specific variance by the artifact attenuation.

Source modeling

For illustrative purposes, the obtained results, i.e., group

averages with and without artifact attenuation, were projected

into the source domain. Sources were modeled using the

default anatomy provided by Brainstorm and a three-layer

boundary element model implemented in openMEEG (73).

The channel locations were projected on the scalp. The

inversion kernel was obtained following dynamical statistical

parametric mapping (74) with a minimum norm estimator,

constrained dipole orientations, and an identity matrix for noise

modeling. The attained kernel was used to project the group
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averaged TF maps of all channels with and without artifact

attenuation. If differences in condition-specific GPMs were

found, condition effects were projected as well (see Gait-phase

related power modulations).

Statistical analysis

Statistical analyses of behavioral data were performed in

JASP (75) (version 0.1, RRID:SCR_015823). Neurophysiological

data was tested in EEGLAB (51) (version 2020.0,

RRID:SCR_007292). Assumptions were checked and tests

were adapted if indicated. Appropriate effect sizes were

reported: Cohen’s d (t-test), R (Wilcoxon signed-rank), or

partial eta squared (repeated measures (rm)ANOVA). The alpha

level was kept at 0.05. P-values were corrected for multiple

comparisons using Bonferroni–Holm correction.

Behavioral analysis

Walking difficulty of the even and uneven terrain,

as assessed by subjects’ self-reports, were compared with

a dependent samples Student’s T-Test. If differences

deviated from normality (pShapiro−Wilk < 0.05), a non-

parametric alternative, i.e., the Wilcoxon signed-rank test

was chosen.

Gait performance within each condition was compared with

a 2 × 2 rmANOVA with the factors terrain (even, uneven) and

task (ST, DT) for the dependent variables stride time and stride

time variability respectively.

Neurophysiological analysis

EEG data quality

To assess the success of the artifact attenuation we compared

EEG data with and without (only filtered and downsampled

data, channel rejection, and interpolation, and re-referenced

to common average) artifact attenuation. Artifact reduction

was assessed quantitatively with a previously proposed gait

artifact footprint approach (48). The following footprint features

were assessed: (B) explained variance across frequencies, (C)

lateral to medial channel power ratio, (D) neck channel power

ratio, (E) double to single support power ratio, (F) standing to

walking power ratio. In contrast to the previous publication, we

calculated the features based on the dB power change (vs. power

ratio) to a standing baseline since this data will be used for the

remaining analyses and adapted the normalization procedures.

Furthermore, for two features (C, D) power decreases were

discarded. This was done because gait related-artifacts have

been associated with power increases compared to a standing

baseline, whereas power decreases are associated with neural

activity (e.g., alpha and beta band) (76) and the features aim to

quantify artifact extent. The code for the footprint calculation

has been updated accordingly1 The footprint was calculated

with and without artifact attenuation and the Euclidean distance

between each subject’s footprint feature vectors was calculated.

Whether this distance was greater than zero was assessed

with a one-sample T-Test or in case of a deviation from

normality (pShapiro−Wilk < 0.05), with a Wilcoxon signed-

rank test.

To assess the presence of neural signals and artifacts

associated with gait, we compared group average gait ERSP

and GPM with and without artifact attenuation qualitatively

at a channel regularly analyzed in gait EEG studies, i.e., Cz

(5, 7, 17, 41–45). After artifact attenuation, we expected to

recognize neural correlates of gait. For gait ERSPs, alpha and

beta power decreases compared to a standing baseline have

been observed (7, 57, 63). For GPMs, frequently reported power

modulations are beta power decreases during double support

and beta power increases during single support (5, 57, 77).

Topographies of averaged gait ERSP beta (here: 20–30Hz)

power and averaged absolute GPM beta power with and without

artifact attenuation are compared. We expect to reveal spatial

patterns associated with artifacts (e.g., increased absolute beta

power at lateral channels, associated with EMG activity) without

artifact attenuation and patterns linked to neural control of gait

(e.g., decreased beta power over central sensorimotor areas) with

artifact attenuation.

Gait-phase related power modulations

Three nonparametric cluster-based, dependent samples

permutation tests (78) were used to compare GPMs from 6

to 40Hz at Cz of all four conditions (ST even, ST uneven,

DT even, DT uneven). The main effects of task and terrain

were assessed by comparing the average GPM of each factor-

level with a nonparametric cluster-based, dependent samples

permutation test. For instance, the main effect of terrain was

assessed by comparing each subject’s mean of ST even and

DT even to the mean of ST uneven and DT uneven. To

test the interaction, the paired differences of the main effects

task and terrain were submitted to a non-parametric cluster-

based, dependent samples permutation test. Non-parametric

cluster-based permutation tests were chosen because their alpha

error correction is physiologically plausible. It favors larger

clusters extending over several TF duplets. Even local effects

may be smeared in time and/or frequency by the wavelet

decomposition (79).

In case of significant differences, each cluster’s effect size

was computed across the average of the cluster by extracting

all TF duplets of the condition differences that were part of a

cluster and averaging them for each participant separately. Then

Cohen’s d was calculated with this measure.

1 https://github.com/NadineJac/gaitEEGfootprint/releases/tag/v1.2
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Results

Seven datasets had to be excluded from the analysis due to

problems with the recording software (n = 5), synchronization

triggers (n = 1), and not meeting the inclusion criteria (n = 1)

(48). Data from n= 19 participants (age 25± 4 years, 13 females,

six males) were analyzed.

Behavioral

Terrain

Participants reported that the uneven terrain (lawn) was

more difficult to walk on (median, Mdn = 2) than the even

terrain (paved,Mdn= 1, T = 171, p < 0.001, R= 1).

Gait performance

Stride time. Statistical analysis with a 2 (terrain: even,

uneven) × 2 (task: ST, DT) rmANOVA identified main effects

of terrain (F (1.18) = 102.15.21, p < 0.001, ηp² = 0.85)

and task (F (1.18)= 27.10, p < 0.001, ηp² = 0.60) but no

interaction between terrain and task [F(1.18) = 2.48, p = 0.133,

ηp² = 0.12, see Figure 3A] for the dependent variable stride

time. Participants walked slower on uneven than even terrain

(d = −2.32) and during double compared to single-tasking

(d =−1.19).

Stride time variability. A 2 (terrain: even, uneven) × 2 (task:

ST, DT) rmANOVA exposed a main effect of terrain (F (1.18)

= 4.68, p < 0.001, ηp² = 0.47) but no effect of task (F (1.18) =

3.62, p = 0.073, ηp² = 0.17) and no interaction between terrain

and task were found (F (1.18) = 1.31, p = 0.160, ηp² = 0.11, see

Figure 3B) with the dependent variable stride time variability.

Participants’ stride time variability was smaller on even than on

uneven terrain (d =−0.95).

EEG preprocessing

On average two channels (range: 0 to 5) were removed

and 58 independent components (range: 54 to 61) were kept

per participant. On average 209 gait cycles were detected per

participant and condition (ST even: mean, M = 227, range:

202 to 281, DT even: M = 235, range: 206 to 285, ST uneven:

M = 189, range: 160 to 291, DT uneven: M = 188, range: 160

to 234). After excluding artifactual gait cycles, on average 193

gait cycles remained per participant and condition (ST even:

M = 211, range: 70 to 282, DT even:M = 225, range: 92 to 286,

ST uneven: M = 171, range: 52 to 247, DT uneven: M = 166,

range: 23 to 235).

FIGURE 3

Mean stride time (A) and stride time variability (B) across subjects. Error bars indicate the standard error of the mean.
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EEG data quality

Descriptively, all footprint features decreased due to artifact

attenuation. Distances of the footprint feature vectors were

greater than zero (Mdn = 2.94, T = 190.00, p < 0.001, R = 1,

see Figure 4).

Qualitatively, gait ERSPs and spectra looked similar with and

without artifact attenuation. Both gait ERSPs showed decreased

power from ∼8 to 12Hz, 18 to 32Hz, and around 50Hz.

Broadband activity during double support (∼0 to 15% and 50

to 65%) was reduced by artifact attenuation (see Figures 5A,B).

The power reduction around 50Hz persisted and may be due to

the remaining line noise in the standing baseline (see Figure 5C).

Gait ERSP topographies revealed increased power at lateral

electrode sites, most pronounced over the neck (see Figure 5D),

which disappeared with artifact attenuation uncovering a power

decrease at parietal electrode sites (see Figure 5E). This was also

reflected by the sourcemodeling showing activations at temporal

and occipital regions that were reduced with artifact attenuation

while a much smaller activation in the parietal cortex persisted

(see Figures 5D,E).

GPMs at Cz showed broadband power increases during

double supports (approx. 0 to 15% and 50 to 65%) and

power decreases during single support (see Figure 5F). After

artifact attenuation, this broadband activity was replaced by

alternating patterns of power changes: during double support,

power increased from approximately 4 to 16Hz and 42 to

60Hz and decreased from 18 to 40Hz (see Figure 5G). This

pattern was reversed during single support, i.e., power decreased

from ∼4 to 16Hz and 42 to 60Hz and increased from 18 to

40Hz. The spectra showed power reductions over 30Hz by

artifact attenuation, while the power reduction below 30Hz

was negligible (see Figure 5H). Topographies revealed that

power at electrodes located over the neck was reduced but

not fully diminished by artifact attenuation (see Figures 5I,J).

With artifact attenuation, activity slightly anterior to the

vertex emerged in the topography (see Figure 5I). The source

reconstruction revealed activity all over the cortex, especially

over occipital areas, which were reduced by artifact attenuation

Gait-phase related power modulations

GPMs at Cz showed patterns of alternating power

modulations from 6 to 40Hz across different frequency bands

in all conditions. Theta (6 to 8Hz) and alpha/mu (10 to 16Hz)

GPMs increased approximately during double support (0 to 16%

and 50 to 66%) and decreased during single support with the

theta modulation being slightly later. Beta (20 to 40Hz) GPMs

decreased during double support and increased during single

support. Descriptively, power modulations were greater while

walking over the uneven compared to the even terrain. Cluster-

based non-parametric permutation tests revealed an effect of

terrain but neither of the task nor an interaction. GPMs of

walking over an even compared to an uneven terrain were

significantly different. As non-parametric permutation tests do

not allow the interpretation of the location of the cluster (see

Figure 6, solid outline), we were not able to make any further

conclusions in this study but described the cluster to inform

future studies. Descriptively, a greater power decrease over

uneven than even terrain was observed in a cluster ranging from

18 to 34Hz at 2 to 15% of the gait cycle. The average cluster

effect was d = 1.22. The topography of the cluster showed the

greatest effect of terrain around the vertex. Source modeling

also indicated activity at central sensorimotor areas below these

electrode locations. Yet, the greatest activity was estimated to

originate from the lingual gyrus and isthmus (not visualized).

Discussion

We compared gait performance and the associated neural

correlates in young, healthy participants walking over two

different terrains outdoors (even: paved; uneven: lawn) with

and without performing a concurrent task (self-paced button

tapping). Participants perceived the uneven terrain as more

difficult to walk on than the even terrain. Gait performance,

i.e., stride time and stride time variability changed with terrain,

but only stride time also changed for single- compared to dual-

task walking. No interactions were observed. After ensuring that

sufficient EEG data quality was achieved by artifact attenuation,

we compared GPMs at Cz and observed a main effect of terrain.

First, the effects of terrain and task on gait characteristics will

be examined, followed by the EEG signal quality achieved with

artifact attenuation. Then the impact of terrain and task on gait-

related neural activity is discussed. Finally, the implications of

this study are summarized.

Gait performance

Following our hypothesis and previous studies, stride times

were shorter on even compared to uneven terrain (20, 21) and

in single- compared to dual-task conditions (8, 17, 18), but no

interaction was observed. Contrary to our expectations, no effect

of task on stride time variability was found.

As demonstrated in previous studies, stride times were

longer and more variable on uneven compared to even terrain

(20, 21, 46). These adaptations have been linked to increased

stability and higher metabolic cost (24). The gait changes

observed in this study go hand in handwith the greater perceived

difficulty of the uneven terrain, even when both terrains were

rated as easy to walk on by the young, healthy participants.

DTEs on gait performance have been reported already in

young, healthy adults [for a review see (8)]. We could replicate

longer stride times but did not observe a greater stride time
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FIGURE 4

(A) Gait artifact-related footprint without (dashed) and with (solid) artifact attenuation with the following features: (feature B) explained variance

across frequencies, (feature C) lateral to medial channel power ratio, (feature D) neck channel power ratio, (feature E) double support power

ratio, (feature F) standing/walking power ratio. (B) Raincloud plots (80) of euclidean distances of footprint feature vectors with and without

artifact attenuation. Single subjects represented by dots.
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FIGURE 5

ERSPs at Cz without (A) and with (B) artifact attenuation. (C) Comparison of ERSP spectral power at Cz without (orange) and with (blue) artifact

attenuation. Mean beta power (20 to 30Hz, across the gait cycle) topographies and source activity without (D) and with (E) artifact attenuation.

GPMs at Cz without (F) and with (G) artifact attenuation. (H) Comparison of GPM absolute spectral power at Cz without (orange) and with (blue)

artifact attenuation. Mean absolute beta power (20 to 30Hz, across the gait cycle) topographies and source activity without (I) and with (J)

artifact attenuation.

variability during dual- compared to single-task gait. This is

surprising as DTEs on stride time variability are estimated to

be greater than DTEs on stride time, at least for concurrent

cognitive tasks (8). The effect on stride time variability was

observed with complex motor tasks, and simple cognitive tasks

with a less demanding motor component, such as pressing a

button on target tones (17). Interestingly, DTEs depend on

walking modality. They have been observed during overground

walking while being absent in treadmill walking, although

participants did not report differences in the perceived task

difficulty (81, 82). This stresses the importance of investigating

more ecologically valid overground walking as well. Thus, we

hypothesize that altered stride time variability may have been

observed with a concurrent task placing a greater demand

on cognitive resources also needed to control gait resulting

in greater dual-task interference (13, 14, 16, 27). The lack

of interaction between stride time and stride time variability

may indicate that the chosen task and terrain affect gait

characteristics independently.

As we did not ask the participants to rate the perceived

difficulty of the button-pressing task or cognitive demands

[cf. (28, 29)], we could not evaluate task difficulty of all

conditions and relate it to the obtained measures.

Moreover, a more detailed kinesiological analysis was not

possible with our gait detection. We could only investigate

temporal gait parameters, but not spatial ones like step width

and length, toe clearance, the center of mass, or spatiotemporal

ones like speed which also change with uneven terrain

walking (20, 83). DTEs are particularly well-captured by gait

speed, especially in young, healthy adults (84). Moreover, gait

speed is a sensitive marker to discriminate between healthy

and neurological subgroups (8). Using more sophisticated

inertial measurement units, which also contain gyroscopes and

magnetometers, instead of just accelerometers, most of these

measures can be collected during overground walking, even

outdoors (24). Yet, this simple setup already shows changes in

some gait characteristics and showcases the possibility to detect

such changes with sparse setups that could be integrated into

clinical practice more easily (85–87).

EEG data quality

EEG data quality improved considerably with artifact

attenuation. Patterns previously associated with gait-

related artifacts were greatly diminished. The broadband
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FIGURE 6

Grand average GPM at Cz of all conditions from 6 to 40Hz across the whole gait cycle (0% initial contact right to 100% next initial contact right).

Cluster uncovered with nonparametric permutation tests marked with a solid outline. Topography and projected sources of the cluster mean on

the right side.

synchronization compared to a standing baseline during

double support at Cz disappeared with artifact attenuation (see

Figures 5A,F) (76). Moreover, power at lateral electrodes

decreased with artifact attenuation (see Figures 5D,I)

(48). Accordingly, the gait-artifact footprint decreased (see

Figures 5D,I).

Still, some residual artifacts remained. This is for

example highlighted by the high beta modulation depth

at electrodes located over neck muscles, which remained

after artifact processing (see Figure 5J). As previously

shown with this and other datasets (43, 48), the artifact

extent around the vertex was not as widespread as initially

observed (88). However, while motion artifacts typically

increase with gait speed (43, 67, 89) we found greater

modulation depth in conditions of slower gait. Hence, we

conclude that the observed condition difference did not

arise due to residual motion artifacts but represents altered

brain activity.

We compared several preprocessing pipelines (see

Supplemental materials) [for a review on possible artifact

attenuation strategies for mobile EEG data recorded during

motion see (69)] and opted for an sPCA following artifact

subspace reconstruction and ICA. This approach requires

no additional parameters beyond deciding on the TF

transformation. Moreover, it is computationally less expensive

and reproducible compared to, for instance, the k-means

clustering of independent components around a random

seed as implemented in EEGLAB. SPCA can be performed

on the sensor or in the source space (38, 57). It assumes

that the first principal component, explaining the greatest

spectral variance, is likely related to muscle artifacts, and can

be removed without affecting neural signals. This approach
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allows single-subject analysis since no data aggregation over

several subjects is necessary. In previous work, sPCA has

yielded promising results with treadmill walking and wired

EEG transmission (38, 57). In our study, the use of sPCA

contributed to good EEG signal quality in overground walking

and wireless EEG transmission. Future research may investigate

whether these findings generalize further. Because of these

advantages, we decided to use an sPCA, although repetitive

clustering of dipolar sources yielded very similar results (see

Supplemental materials). The repetitive clustering approach

allows finding a best-fitting cluster to an a-priory chosen MNI

coordinate by repeatedly clustering (and thus mitigating the

effect of random seeds in k-means clustering) and ranking the

obtained results with a composite score of various features (90).

It is implemented in the BeMoBIL pipeline (91) (available at

https://github.com/BeMoBIL/bemobil-pipeline). This approach

may be better suited for confirmatory analysis of group data

with effects located at an a priori known region.

We suppose that greater spatial coverage, as well as digitized

electrode locations and subject-specific structural MRI, would

improve artifact attenuation further. To understand neural

correlates of gait further, studies including these additional

measures will be of great significance, however, in line with

previous studies (6, 7, 92), our approach demonstrates that gait-

related neural activity can be investigated with small setups [for

system recommendation see e.g., (93)] with measurements from

few additional sensors. These studies using less equipment are

needed to investigate possible translations into clinical practice,

where less-costly and time-consuming setups are of relevance.

Gait-phase related power modulations

GPMs looked qualitatively similar across all conditions.

This may indicate that the underlying neural control

remained predominantly unchanged. Patterns of alternating

synchronization and desynchronization are linked to certain

motion phases of both the left and right sides. In gait, this is for

instance the beta ERD at the beginning of swing phases, both

directly before right and left toe-off. These patterns are distinct

for different frequency bands and have been linked to transition

phases, such as the switch from stance to swing phases during

walking, but also the switch from extension to flexion in other

periodic movements like finger-tapping or cycling (45, 94).

Especially for beta power, these ERDs may be linked to the

higher demands of cortical control during these transitional

phases (95–97).

Descriptively, modulation depth at Cz was greater for

uneven terrain than even ones. This is especially pronounced

in the alpha/mu and beta bands. As subjects rated the uneven

terrain to be more difficult to walk on, this may be linked

to greater cortical control for more difficult tasks. Greater

alpha/mu and beta ERDs may indicate increased activation

of underlying cortical networks as the physical requirements

and/or complexity of the task rise (6). Especially beta

desynchronization has been linked to sensorimotor integration

and error monitoring required to maintain performance (7, 17,

39, 40, 61, 68). Previous research has suggested that the right

heel strike may indicate a starting point of a gait cycle and

hence is more demanding than other gait events as reflected

by alpha and beta ERDs localized to sensorimotor areas (6).

Complex terrains may challenge gait stability (19). Similarly,

increased gait stability (by restricting participants’ medio-lateral

movements) resulted in reduced beta ERDs compared to normal

treadmill gait especially around right heel strikes (98) while

modulation depth increased for more complex terrain like

steps or ramps (6). Here, GPMs of even and uneven terrain

differed at Cz. Descriptively, the beta ERD following RHS

was greater on uneven terrain compared to even ones. A

greater beta modulation, i.e., greater desynchronization, during

walking over uneven compared to even terrains during double

support may indicate a greater need for cortical control during

this gait phase or as preparation for the following one. The

exact timing and involved frequencies of ERDs and event-

related synchronizations vary between studies. This may be

due to the demands of the walking task, such as treadmill

compared to overground walking (99), different gait speeds (67),

EEG recording setups (49), and/or analysis methods (67, 100).

Future studies may examine whether this effect is specific and

reliable and whether it may emerge following left heel strikes

with greater sample size or whether an association with leg

dominance can be found.

Unfortunately, we only have data on stride times, but not

gait speed. Alpha and beta power decreases across the gait

cycle at clusters located at central sensorimotor cortices have

been observed when increasing gait speeds (40, 67). If altered

stride times were associated with altered gait speed, i.e., if the

step length remained the same across conditions, the observed

condition differences may have been confounded.

No effect of the secondary task on GPMs was discovered,

although an effect of the task on stride time was observed.

If an effect of task on the GPMs was present but small, the

study may not have been sufficiently powered to reveal it, while

the size of the behavioral effect and the terrain effect on the

GPMs were sufficient. Moreover, we investigated GPMs with a

condition-specific baseline, whereas the majority of DTEs on

EEG power during walking were observed between conditions

[for a review see (33)] and would have been averaged out

by our approach. Still, task effects on GPMs were observed

while walking and talking compared to walking alone, whereas

walking while typing on a smartphone compared to walking

alone did not change GPMs (7). Comparing those two dual-task

conditions, a greater sustained beta desynchronization during

typing compared to talking while walking at electrodes located

over the left (pre-)motor cortex was found. This may either

suggest that the chosen button-pressing task was not well-suited
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to reveal effects on GPMs or that the performance of the

chosen task may result in sustained, condition-specific changes

or changes time-locked to the concurrent task and not GPMs.

This study used a medium number of channels (N = 64) and

statistical analysis on the sensor level. This may be translated to

future (clinical) studies with sparse setups and enables sensor-

level analysis of single-subject effects more relevant for clinical

application. As shown in Figure 5F, apart from electrodes

located over the subjects’ neck, likely capturing remaining neck

EMG, the greatest gait-related power modulations between 20

and 30Hz were captured at frontocentral electrodes (around

Cz and neighboring electrodes including C1, C2, FC1, FC2,

Fz) in all conditions. We hence conclude that by analyzing

Cz we managed to investigate a channel capturing much gait-

related beta activity. Yet, the greatest power modulation across

conditions is not necessarily linked to the differences also being

captured at this location. Moreover, this does not necessarily

relate to other frequency bands, as previous studies showed that

different frequency bands are modulated at different cortical

sources during gait (38, 39). These studies have revealed the

involvement of clusters localized to various brain regions, like

the central sensorimotor, frontal as well as parietal regions

(6, 39, 88, 101). Topographies of these clusters suggest that Cz

mainly captures the activity of central sensorimotor clusters.

In addition, investigating trial and subject averaged data might

hide some effects. Artifacts as well as cortical control of gait

vary across subjects (38). Previous studies of gait adaptation

to external stimuli have revealed neural activity time-locked to

these external cues and certain gait events (39). If data on events

likely linked to such adaptations would have been available,

investigating steps around adaptive events would have been

interesting. The goal of this study was to assess the influence

of terrain and the performance of a concurrent task on GPMs.

Investigating sustained power differences may provide further

insight into how networks subserving a certain “status quo”

(102) may be affected by concurrent tasks or complex terrain.

Finally, as we do not know the neurophysiological effect size, this

study might be underpowered.

Experimental manipulation

Terrain di�culty

Following previous findings, participants rated the lawn as

more difficult to walk on than the paved footpath but perceived

both terrains as rather easy to walk on altogether (103). Previous

studies have shown that participants’ ratings of difficulty align

with increased physical measures of walking complexity (103).

Hence, we conclude that the gait difficulty was successfully

manipulated with these two terrain choices.

The even and uneven terrain did not only differ in

evenness but pavement and lawn also have different

dampening characteristics which have been observed to

alter gait characteristics (104, 105). As previous studies

investigating the effect of uneven terrain altered evenness

and surface material at the same time (19–21, 106), these

effects cannot be disentangled yet. In the present study,

we provide additional evidence that GPMs are a measure

sensitive to terrain complexity in natural overground

walking, allowing us to study the impact of walking terrain

on gait characteristics as well as on cortical signatures of

gait systematically.

Concurrent task

The button pressing itself is a pure motor task, but since

participants were asked to surprise the experimenter with the

hand and time of the button press, subjects had to keep track

of which and when the last button was pressed. This might

have introduced a small cognitive component. To this end, it

is similar to the typing of an email that Pizzamiglio et al. (7)

investigated. Cognitive tasks requiring internal referencing (e.g.,

mental tracking) alter gait characteristics to a greater extent than

ones relying on external referencing (e.g., reaction time tasks)

(8). Internal referencing places a greater demand on networks

and/or regions also involved in the control of gait leading to

interference effects; tasks involving external referencing activate

lower-order networks, interfering less with gait control (107).

Choosing a concurrent task that allows performance assessment

(e.g., accuracy and reaction times) would have enabled us to

investigate both behavioral DTEs, discriminating the effects on

gait and task performance (27). Here, we only investigated

DTEs of terrain and task on gait parameters, but not on the

concurrent task, while complex walking tasks have been linked

to performance reduction of a concurrent cognitive task (28, 29).

Moreover, participants were asked to fixate their gaze to a

point at eye level, and not to look down at the laptop to maintain

a stable gait and successful navigation of the routes, as well

as to restrict artifacts introduced by head motion. This avoids

confounding the dual-task conditions with altered head motion

but impedes the ecological validity as well as the comparability to

previous studies (7) since the interaction with electronic devices,

such as smartphones, is usually accompanied by looking at their

screen. In addition, participants’ arm motion was restricted by

carrying the recording laptop and pressing the buttons. Thismay

result in a reduced ability to perform recovery movements to

maintain balance, for instance following perturbation but has

been shown to not impair gait stability in young healthy adults

(108). Yet, GPMs may be altered when restricting natural arm

swing (44). As arm motions were restricted in all conditions the

observed condition difference between even and uneven terrain

was likely not influenced by this. Future mobile EEG studies will

benefit from smaller hardware featuring higher device mobility

(109, 110), thereby enabling the study of brain activity recorded

during more natural movement patterns.
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Implications

It is feasible to study GPMs during overground walking

outdoors, using mobile EEG in combination with gait detection

procedures. Our sensor-level analysis yielded comparable results

to previous analyses in source space and could replicate

GPMs in a more ecologically valid setup. For this dataset, a

previously proposed method for reducing muscle artifacts (57)

outperformed other preprocessing strategies. GPMs could not

only be compared across different terrain but also with and

without the performance of a concurrent task. This highlights

that more than general power differences between conditions

or neural correlates of a concurrent task can be investigated.

Yet, different GPMs were only observed with altered terrain

but not with concurrent task performance. Hence, in this study,

we provide evidence that terrain complexity alters gait control

demands, and that the associated cortical processes can be

identified with mobile EEG.
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