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Abstract: A class of models for non-Gaussian spatial random fields is explored for spatial field
reconstruction in environmental and sensor network monitoring. The family of models explored
utilises a class of transformation functions known as Tukey g-and-h transformations to create a
family of warped spatial Gaussian process models which can support various desirable features
such as flexible marginal distributions, which can be skewed, leptokurtic and/or heavy-tailed. The
resulting model is widely applicable in a range of spatial field reconstruction applications. To utilise
the model in applications in practice, it is important to carefully characterise the statistical properties
of the Tukey g-and-h random fields. In this work, we study both the properties of the resulting
warped Gaussian processes as well as using the characterising statistical properties of the warped
processes to obtain flexible spatial field reconstructions. In this regard we derive five different
estimators for various important quantities often considered in spatial field reconstruction problems.
These include the multi-point Minimum Mean Squared Error (MMSE) estimators, the multi-point
Maximum A-Posteriori (MAP) estimators, an efficient class of multi-point linear estimators based on
the Spatial-Best Linear Unbiased (S-BLUE) estimators, and two multi-point threshold exceedance
based estimators, namely the Spatial Regional and Level Exceedance estimators. Simulation results
and real data examples show the benefits of using the Tukey g-and-h transformation as opposed to
standard Gaussian spatial random fields in a real data application for environmental monitoring.

Keywords: random fields; warped Gaussian process; spatial field reconstruction

1. Introduction

Spatial monitoring of physical phenomena has been at the center of many different
spatial statistics and signal processing innovations in recent decades. Specific applica-
tions in which environmental processes are monitored and spatial field reconstruction is
performed include environmental monitoring [1] and weather monitoring [2–4], natural
phenomena such as temperature [5], precipitation [6], wind speed [7–10], pollution [11]
and signal processing [12,13] to name a few.

In this work, we explore warping maps of Gaussian process models such as those
developed in [7] for spatial field reconstruction. It is most commonly the case that spatial
field modelling is undertaken with a variation of a Gaussian Process (GP) model due to its
direct interpretation and mathematical tractability [14]. GP models are readily characterized
by a mean structure and a valid covariance function [14]. Such models have been applied
in many different domains for spatial and temporal modelling: [15–17] and the classic texts
on such Gaussian process models for spatial statistics [18,19]. The warping extensions
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studied in this work are designed to specifically accommodate a flexible range of non-
Gaussian skew and kurtosis attributes in order to demonstrate how to undertake accurate
and efficient spatial field reconstruction in a more general class of spatial process models,
whilst still maintaining much of the practical interpretation offered by Gaussian process
modelling settings.

The significance of adding such warping structure arises since increasingly spatial
modellers and data scientists are observing that many types of physical phenomena may
have finite dimensional distributions which are not adequately captured by symmetric light
tailed Gaussian distributions as is mandated by such classical GP spatial field modelling
approaches. The reality is that the skew and kurtosis can play a significant role in spatial
field modelling, see discussion in [4,20,21]. As noted in these works, there are many real
world settings where the physical process being modelled in the spatial field reconstruction
may exhibit features which cannot be captured accurately via GP modelling, as the process
may display spatial features at different locations that include excess skewness (asymmetry
about the mode), kurtosis and perhaps heavy tails. Hence, the GP will not provide such
flexible features if used as the basis upon which to undertake development of estimators
for spatial field reconstruction, therefore we wish to extend this class of models. This will
in turn influence the accuracy of any spatial field reconstruction estimator built from such
statistical model assumptions.

Therefore, when one finds a setting in which GP structure will not adequately capture
the spatial field statistical structure, there are numerous approaches that one may proceed
with when seeking to perform spatial field reconstruction. The first involves seeking a
transformation that will induce properties in the transformed observations of the process
more akin to a GP model, see examples in [22,23] for a detailed overview of the subject.
Examples include the log-transform, proposed by Galton, which resulted in the nowadays
well-known log-normal distribution [24]. The first systematic attempt to fit asymmetric
distributions to non-normal data was made by Edgeworth [25]. Karl Pearson defined
several probability distributions as solutions to a particular differential equation, which
formed the basis for the Pearson family of distributions [26]. Further development was the
two-piece distributions, proposed by Fechner, which were developed by binding together
two halves of normal curves, each having a different scaling [27]. A more recent work
which had a great impact was by Azzalini [28] who provided a rigorous treatment to the
analysis of Skew-Normal distributions.

An alternative, recent class of approaches in the statistical machine learning literature
has involved the converse of these methods, where one rather warps or “transforms” a GP
model to produce an additional structure such as skewness or kurtosis and then works with
estimation and spatial field reconstruction of the resultant transformed process. This method
has two components—the specification of the sufficient statistical functions for the input GP
model and the specification of the functional characteristic of the transformation map.

In this work, we explore the second approach based on warping a GP model. One may
consider our approach as exploring a generalised class of processes that act as extensions
of the GP family to a much larger family of processes that incorporate parameterised
features of skewness and kurtosis that arises directly from the class of warping functions
adopted. In this family of models we develop, just like the GP case, we wish to be able to
state useful information about the resulting processes finite dimensional distributions: i.e.,
the marginal and conditional distributions of the process at different locations in space.
This can be done by modifying an existing known parametric distribution (Gaussian)
by applying a transformation of the random variables pointwise. This concept was first
proposed by Tukey in 1977, and further developed in [29–31] and in the time series setting
by [32]. In this paper, we demonstrate that when one selects the family of Tukey g-and-h
model distortion functions, one can derive tractable solutions to spatial field reconstruction
estimators that will out-perform classical GP solutions when spatial processes exhibit
excess spatial skewness and spatial kurtosis features.
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Contributions and Outline

The main contributions developed in this work are twofold: formulating a class
of spatial warped GP models based on Tukey g-and-h warping functions. This involves
deriving important key properties of the Tukey g-and-h transformation and resulting family
of spatial warped GP (Sections 2 and 3); and using those results to develop new estimation
algorithms for efficient spatial field reconstructions (Section 4). Our contributions may be
summarised as follows:

(1) In Section 2, we derive mathematical properties of the proposed warped GP models
warping function known as the Tukey g-and-h transformation function. This is actu-
ally a class of warping functions with sub-classes related to skewness and kurtosis
transformations. Since this transformation is not widely known, it is valuable for
practitioners to see the basic properties of this class of functions in order to better
understand the resulting properties of the warped GP that arise when using this
transform. In this regard we explore the transformation and its limiting behaviour
(Proposition 2), the existence of the inverse transform (Proposition 1), and its deriva-
tives (Lemma 1). This set of results is instrumental for the analysis of the properties
of the Tukey g-and-h process and for the construction of spatial field approximations
that form the key application in this paper.

(2) In Section 3, we derive important statistical properties of the warped GP process
which include properties of the finite dimensional distributions such as raw and
central moments, the multivariate moments (Corollary 1), the population mean
and variance (Corollaries 3–4), its higher order multivariate cross moments of any
order (Proposition 3), and the index of regular variation (Lemma 2), to determine
conditions in terms of the parameters of the g-and-h transform for the existence of all
higher order mixed moments. In particular, the cross moments are directly relevant
to the construction of efficient spatial field reconstructions for multiple locations in
space that are performed in the application section. The tail behaviour of the finite
dimensional distributions is captured by the tail index analysis and is relevant to
understand models with excess kurtosis relative to a GP model, which is induced by
our class of warping function.

(3) In Section 4, we derive the spatial field reconstruction estimators of the Tukey g-
and-h random field under five different metrics, most of which are based on the
predictive posterior density (Lemma 4).

(4) In Section 5, a detailed set of numerical experiments are provided. This includes
both real data cases studies as well as synthetic case studies which were developed
to demonstrate key properties of the spatial field reconstruction methods and their
accuracy and performance relative to a baseline GP model. In regards to the real data
case studies, a sequence of experiments was developed which was based on data
obtained from the National Climatic Data Center (NCDC) which included spatial
observations of precipitation obtained from ground monitoring stations in the regions
of interest. In particular, we took one month of hourly precipitation measurements to
fit our warped GP model to obtain a spatial field reconstruction which was compared
to a baseline GP model with no warping in order to demonstrate the benefits of a
spatial warping framework.

2. Constructing a Flexible Warping Function for Spatial Gaussian Processes

Many families of warping function can be developed for extending the class of GP
spatial process models. In this work, we particularly focus on the study of the family of
Tukey g-and-h warping functions. When developing the new warped GP class of flexible
models, the following list of desirable properties was considered desirable for the resulting
warped GP model to posses (see [22]):

(1) Parsimonious and finite number of well interpreted parameters;
(2) Well-separated roles for skewness, kurtosis and the tail behaviour parameters;
(3) Accurate and computationally efficient parameter estimation and tractability;
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(4) Derivable and interpretable stochastic properties;
(5) Flexible structures in the marginal, conditional and joint density shapes;
(6) Good inferential properties;
(7) Exact and computationally efficient data generating mechanisms.

Some of these aforementioned properties have been studied before in the context of
the class of warping functions we consider, namely the Tukey g-and-h transformed random
GP fields, see for example [31–36] and the textbook overview in [37].

In this paper, we re-explore these properties and extend them for the purposes of
spatial field reconstruction. Therefore, in this section, we first define the fundamental
building blocks for deriving the non-Gaussian warped GP fields. As such, we define the
basic set of non-linear transformations of univariate and multivariate Gaussian random
variables and the resulting Tukey g-and-h univariate and multivariate distributions. We
also derive some fundamental properties such as the existence of the inverse transform as
well as the derivatives of the distribution that will be important for future results.

Definition 1 (Tukey Transformation [38]). Consider a Gaussian random variable W ∼
N (µ, σ) and transformation Y := T (W; ı) with parameter vector ı :=

[
m0, m1, µ, σ2, η, θ

]
,

where m0 ∈ R, m1 ∈ R+, η ∈ Rd and θ ∈ R. Then the resultant transformed random variable Y
will be from a Tukey law if the corresponding transformation T (W; ζ) is given by

Y := T (W; ζ) = m0 + m1(F (W; η))θW, (1)

where the transformation F (W; η) is positive, symmetric, and strictly monotonically increasing for
positive values of W ≥ 0.

We note that, as a default, we will consider the base transformed random variable
W to be Gaussian with µ = 0 and σ = 1 unless otherwise stated. Furthermore, in
general the transformation F (W; η) can have many forms, see discussions in [32]. In
this manuscript we concentrate on two specific types of transformation directly related
to inducing skewness in the warped GP model or inducing kurtosis in the warped GP
model. Note that standard GP models can have flexible covariance functions (second
order flexibility) but there is no flexibility in the higher order structure relating to third co-
moments (co-skewness) and fourth co-moments (co-kurtosis) that can often be observed in
real spatial field observation data. Therefore, the use of the Tukey sub-families of warping
functions that specifically produce parameterization of such structure in the warped GP
model is of practical relevance in flexible reconstruction methods for spatial fields.

Definition 2 (Tukey Family of Transformations).
The Tukey g (skewness) and Tukey h (kurtosis) transformations form two classes of sub-transformations
in the Tukey family which are characterised by warping functions given by:

(1) Skew transform:

G(W; g) =
exp(gW)− 1

gW
. (2)

(2) Kurtosis transform:

H(W; h) = exp
(

hW2

2

)
, (3)

(3) Skew-Kurtosis product transform:

F (W; η) = G(W; g)H(W; h), (4)

for g ∈ R− {0}, h ∈ R+ and η = [g, h].
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These set of Tukey transformations modify the tail behaviour and the skewness
relative to the base distribution, in this case the GP model which has finite dimensional
Gaussian distributions point-wise in space. As such, the warped GP model will be able
to produce a class of processes which, point-wise in space, will have distributions that
are less symmetric around the mode. In particular they can accommodate left or right
skewness, depending on the sign of g in the warping transform G. Furthermore, they can
be heavier tailed than a Gaussian probability distribution, via leptokurtic transform H,
and the strength of kurtosis relative to the Gaussian at each spatial point is controlled by
parameter h. The Tukey g-and-h transformation is known to encompass a large range
of distributions and this is further explained in [31,32]. This is one of the most desirable
properties of this transformation.

Before proceeding in using this family of warping functions to define a warped GP
spatial process, it will be useful to provide a few basic properties of this class of transform,
that whilst are simple to mathematically verify, are also highly useful in developing further
the specification of the properties of the resulting warped processes.

When working with warped GPs it is valuable to be able to evaluate the transformed
finite dimensional density at a single location in space point-wise when performing tasks
such as hyper-parameter estimation via the likelihood and also for spatial field reconstruc-
tion. Therefore, it is of relevance to ask if the warping function is invertible, as such a
property leads one to obtaining a tractable expression for the finite dimensional distribu-
tions. We show in Proposition 1 the conditions under which the inverse of the warping
function exists. Consequently, we can be sure that should we satisfy these conditions for
the warping function, then in the case of the Tukey g-and-h transformation, it does accom-
modate a closed form distribution representation which will be tractable up to performing
a simple univariate root search, as we will see later in Proposition 5.

Proposition 1 (Inverse of the Tukey g-and-h transformation).
The inverse of the Tukey g-and-h transformation Tgh

(
W; ζgh

)
exists if g ∈ R− {0} and h ∈ R+

Proof. See Appendix A.

Remark 1. The result in Proposition 1 affirms the existence of the inverse of this transformation but
does not provide an analytical expression for the inverse. In practice, one needs to find the inverse
using simple univariate root search computational methods in order to facilitate evaluation of the
warped distributions or densities point-wise. The existence of the inverse is still critical to verify for
the warping transform of the GP, as it will be used to facilitate expression of the spatial processes
finite dimensional distributions, which will in turn be used for specification of the likelihood for use
in calibration and spatial field estimation and reconstruction.

It will also be useful to provide simple characterisations of the derivatives of the
warping functions up to third order, as these will be used numerous times in the warped
GP spatial field reconstruction estimation frameworks to capture the moments, mode and
curvature approximations (covariance) point-wise. The derivatives of the Tukey g-and-h
transform are given in Lemma 1 by simple algebra.

Lemma 1 (Derivatives of Tukey g-and-h transform).
The first three derivatives of the Tukey g-h transform are given by:
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T ′gh
(
W; ζgh

)
= hWTgh

(
W; ζgh

)
+ exp

(
gW +

hW2

2

)
, (5)

T ′′gh
(
W; ζgh

)
= hTgh

(
W; ζgh

)
+ hWT ′gh

(
W; ζgh

)
+ exp

(
gW +

hW2

2

)
(hW + g), (6)

T ′′′gh
(
W; ζgh

)
= hWT ′′gh

(
W; ζgh

)
+ 2hT ′gh

(
W; ζgh

)
+ exp

(
gW +

hW2

2

)(
(hW + g)2 + h

)
. (7)

Tukey Warped Spatial Gaussian Process

One may now proceed to developing a characterisation of a warped GP spatial process
based around the Tukey family of skewness and kurtosis transformations. We begin by
providing a definition of the GP that will set the notation we will use to specify the spatial
trend and spatial covariance operator for the input GP spatial model. This GP model will
serve as our base distribution (process) to generate non-Gaussian fields, i.e., warped GP
processes. Then we will show how one can construct the warped GP model based on the
Tukey g-and-h random field transform.

Definition 3. Gaussian Process (GP) [14]:
Denote by W(x) : X 7→ R a stochastic process parameterised by {x} ∈ X , where X ⊆ Rd.
Then, the random functionW(x) is a Gaussian process if all its finite dimensional distributions
are Gaussian, where for any m ∈ N, the random vector (W(x1), W(x2), . . . , W(xm)) is jointly
normally distributed [14].

We can therefore interpret a GP as formally defined by the following class of ran-
dom functions:

W := {W(·) : X 7→ R
s.t.W(·) ∼ GP(µ(·; θ), C(·, ·; Ψ)), with

µ(·; θ) := E[W(·)] : X 7→ R,

C(·, ·; Ψ) := E[(W(·)− µ(·; θ))(W(·)− µ(·; θ))] : X ×X 7→ R+
}

.

At each point the function valued process is characterised by the mean function µ(·; θ),
parameterised by θ, and the spatial dependence between any two points is given by the
covariance function (Mercer kernel) C(·, ·; Ψ), parameterised by Ψ, see detailed discussion
in [14].

It will be useful to make the following notational definitions for the prior mean vector,
cross correlation vector and auto-correlation matrix, respectively:

[µ(x1; θ), µ(x2; θ), . . . , µ(xm; θ)] = [a1, a2, . . . , am]

k(x∗, x1:m ) := [C(x∗, x1), C(x∗, x2), . . . , C(x∗, xm)] ∈ R1×m

K(x1:m , x1:m ) :=

 C(x1, x1) · · · C(x1, xm)
...

. . .
...

C(xm, x1) · · · C(xm, xm)

 ∈ X+(Rm),

with X+(Rm) is the manifold of symmetric positive definite matrices. C
(
xi, xj

)
is the

covariance function.
We now provide a formal definition of the Tukey g-and-h process.

Definition 4. Spatial Tukey Warped Gaussian Process:
Denote by Y(x) : X 7→ R a warped spatial stochastic process parameterised by points in space
{x} ∈ X ⊆ R2. Then, Y(x) is a Tukey warped Gaussian Process if all its m-point finite dimen-
sional distributions, for any m ∈ N, are jointly distributed according to the random vector obtained
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by an elementwise Tukey transformation of the underlying spatial Gaussian process on points
{x1, . . . , xm} with xi ∈ X , given by (Y(x1), . . . , Y(xm)) := (T (W(x1); ζ), . . . , T (W(xm); ζ))
for any m ∈ N, where (W(x1), . . . , W(xm)) are jointly normally distributed from a spatial Gaus-
sian ProcessW .

3. Properties of the Spatial Tukey Warped Gaussian Process

Having developed a basic definition of the warped GP model based on a Tukey family
of warping functions, we can now study the basic properties of this spatial process by first
exploring its finite dimensional distributions. Such basic finite dimensional multi-point
characterisations are useful for preparing spatial field reconstruction estimators for these
warped GP models. This starts with the model for a single point in space (univariate
marginal warped GP model in Section 3.1), followed by specification of the properties of
multiple-points in space (multivariate finite dimensional marginal warped GP model in
Section 3.3).

3.1. Spatial Tukey Warped Gaussian Characterisation at a Single Point in Space

At any point in space x ∈ X ⊆ R2 one may consider the properties of the single
location warped GP model and its properties. In this case, at one location we may consider
as input a standard GP with zero spatial mean and spatial covariance function k giving
a Gaussian random variable W(x) ∼ N (µ, C(x, x)). Then the baseline reference Tukey
g-and-h warped random variable is obtained by setting ζgh := [m0, m1, µ, C, g, h, θ = 1]
where g ∈ R− {0} and h ∈ R+ to give:

Y(x) := Tgh
(
W(x); ζgh

)
= m0 + m1

exp(gW(x))− 1
g

exp
(

hW(x)2

2

)
. (8)

In the next proposition, we demonstrate that the warped Gaussian model will include
the classical Gaussian model as a limiting case. This result is most readily proven for the
setting of a single point in space, where we show that Y(x) has a Gaussian law under some
special specification of the warping function or its parameters.

Proposition 2 (Limiting case: Gaussian distribution as a special case).
The random variable Y(x) := Tgh

(
W(x); ζgh

)
, where ζgh := [m0, m1, µ, C, g, h, θ = 1], in the

limit g→ 0 and h→ 0, reduces to

Y(x) ∼ N
(

m0 + µ, m2
1C(x, x)

)
. (9)

By setting m0 = 0, m1 = 1 we recover Y(x) ∼ N (µ, C(x, x)), i.e., Y(x) d
= W(x).

Proof. See Appendix B.

Remark 2. The parameter g ∈ R modifies the skewness relative the base distribution, in this case
the Gaussian. A positive value of g indicates a positive skew in the transformed distribution and a
negative value of g indicates a negative skew. The parameter h indicates a transformation in the
kurtosis relative to the base distribution and to guarantee existence of moments, one may consider a
restricted range such as 0 ≤ h ≤ 1.

We can also easily characterise the tail behaviour of the propose g-and-h warping
transform to demonstrate how the h parameter in the H transform is able to produce
leptokurtic behaviour in the resulting warped Gaussian density. One way to understand
this is to demonstrate that the resulting warped distribution function has a property of
regular variation, in other words it can be expressed as a power law tail decay and a slowly
varying function.

Therefore, we briefly study regular variation of a distribution of the Tukey g-and-h
distribution, which is a measure of the heaviness of tails of a distribution. Later, we connect
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this to the existence of the n-th moment. The index of the regular variation for the Tukey g-
and-h distribution has been studied in [32,39], we summarise this result below for a generic
base Gaussian distribution with W ∼ N (µ, C(x, x)). It is important to understand under
what conditions one has finite first and second order moments for a model with a specific
kurtosis transform if one is to develop classes of linear spatial field reconstruction based
on first and second moment local approximations. An advantage of the Tukey g-and-h
warping function is that one can set conditions of the warping functions through simple
parameter space restrictions to ensure existence of appropriate moments for use in spatial
field reconstructions. The following result in Lemma 2 is meaningful to accommodate
this analysis.

Lemma 2. Consider a location x ∈ X and input GP random variable W(x) ∼ N (µ, C(x, x)) then
the Tukey g-and-h random variable Y(x) := Tgh

(
W(x); ζgh

)
with parameters ζgh := [m0 = 0, m1 =

1, µ,C(x, x), g, h, θ = 1] has an index of regular variation for its survival function FY(x)(y) :=
1− FY(x)(y) given by:

λ =
1

h C(x, x)
. (10)

Proof. See Appendix C.

3.2. Spatial Tukey Warped Gaussian Characterisation at Multiple Points in Space

One then readily extends the model development from the univariate Tukey g-and-h
random variable, that characterises the warped GP model at a single location x ∈ X , to a
multiple-location specification at points x1, . . . , xm ∈ X which requires specification of a
multivariate Tukey g-and-h random vector Y = [Y(x1), . . . , Y(xm)]. Such extensions have
for instance been specified in constructions in [4,31,35] where the single point to multiple
point extension is obtained by applying an element-wise Tukey g-and-h transformation
to a Multivariate Normal distribution, W1:m ∼ MVN (w; µ, Σ) with mean vector µ and
covariance matrix Σ such that Σij = C(xi, xj) based on the GP covariance kernel k at two
points in space xi, xj. This gives for the j-th location xj the transformed random variable

Yj := Tgh

(
Wj; ıgh

)
, j ∈ {1, · · · , m}. (11)

In understanding the basic properties of the resulting multivariate warped random vector
for the Tukey g-and-h model at multiple spatial locations, we can study the exponential
moments (Lemma 3) which will be instrumental in deriving many of the properties of the
warped GP models spatial field reconstruction estimators.

Although the Tukey g-and-h multivariate random vector and the Tukey g-and-h
processes have been defined previously in the aforementioned works. They have not been
carefully studied from the perspective of deriving closed form results for their higher order
cross moments or spatial moments of any order, including cross covariance, cross skewness
and cross kurtosis. In this section, our goal is therefore to derive certain desirable properties
which help to characterize the Tukey g-and-h processes further than just their definition.

To achieve these spatial cross moment characterisations it will be useful to first state
a result for the quadratic exponential moments of a multivariate normal random vector.
This form of moment structure will arise naturally when expressing the cross moments
of the class of warped GP model developed under Tukey transforms. Furthermore, these
closed form results will be useful for developing computationally efficient and interpretable
spatial field reconstructions based on a spatial Tukey warped GP model class.

Lemma 3 (Exponential Moments of a Gaussian Random Vector).
Consider a m-variate random vector W := [W1, . . . , Wm]

T distributed as W ∼MVN (w; µ, Σ),
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with diagonal matrix Σv such that [Σv]i,i = vi, i ∈ {1, . . . , m} and u ∈ Rm, then the quadratic
exponential moments of W are given by:

E
[

exp
(

1
2

W TΣvW + uTW
)]

=
|Σ̃| 12
|Σ| 12

exp
(
−1

2

(
µTΣ−1µ− µ̃TΣ̃−1µ̃

))
, (12)

where,

Σ̃ =
(

Σ−1 − Σv

)−1
, (13)

µ̃ = Σ̃
(

u + Σ−1µ
)

. (14)

Proof. See Appendix D.

This result can now be developed into a core component, to characterise the raw
cross moments and cross central moments, for the warped GP model. We again consider
m-points in space in a vector x1:m := [x1, . . . , xm]. Let us first describe the generic equation
for an m-variate raw cross moment of a spatial Tukey warped GP model.

Proposition 3 (Spatial Tukey Warped GP Raw Moments for m Points in Space).
Consider the m-point spatial Tukey warped GP model with random vector Y = [Y(x1), . . . , Y(xm)].
Assume w.l.o.g. a standardised transform with location and scale parameters given by m0 = 0,
m1 = 1 pointwise and ζgh := [0, 1, g, h] selected such that existence of finite cross moments of
orders (n1, . . . , nm) for ni ∈ N holds. Then the raw spatial m-point cross moments of orders
(n1, . . . , nm) are given by:

µ̌
(n1,...,nm)
gh : = E

[
m

∏
j=1

(
Y
(
xj
))nj

]

= E
[

m

∏
j=1

(
Tgh
(
W
(
xj
)
; ζgh

))nj

]

=
1

g(n1+n2+...+nm)

n1

∑
i1=0

. . .
nm

∑
im=0

(−1)(i1+i2+...+im) |Σ̃|
1
2

|Σ| 12
exp

(
−1

2

(
µTΣ−1µ−

(
µ̃(i)
)T

Σ̃−1µ̃(i)
))

,

(15)

where

Σ̃ =
(

Σ−1 − Σv

)−1
(16)

µ̃(i) = Σ̃
(

u(i) + Σ−1µ
)

, (17)

u(i) = g[(n1 − i1), (n2 − i2), . . . , (nm − im)]
T (18)

and Σv is a diagonal matrix with known elements [Σv]i,i = hni, i ∈ {1, . . . , m}.

Proof. See Appendix E.

This general result is then instrumental in producing practical examples of raw m-
location cross moments of the spatial Tukey warped GP model of orders (n1, . . . , nm)

denoted by µ̌
(n1,...,nm)
gh as well as the centralised cross moments denoted by µ

(n1,...,nm)
gh , which

are obtained by this same identity coupled with a binomial sum expansion to accommodate
the centering transform at each of the locations x1 to xm.

This result generalises the previous results in the literature for moments of a Tukey
g-and-h process which previously only explored pairwise (m = 2 points) second and first
order moments, where as this result obviously provides generalised m ≥ 1 point cross
moment expressions of any orders. This is a significant extension in characterising this
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family of warped GP models, which no-longer have sufficient statistics (functions) given
solely by mean and covariance functions.

3.3. Practical cross Moment Special Cases for Spatial Field Reconstruction of Tukey Warped
GP Models

The result in Proposition 3, whilst very general, can be used to readily express a few
core identities of relevance to spatial field reconstruction estimators at multiple locations
in space, when one assumes to have observations consistent with a class of spatial Tukey
warped GP models.

In particular, we will state the moments and conditions for their existence in terms of
the Tukey h parameter in the warping functionH as well as the two-point cross moments.

Corollary 1 (Single Location Central Moments of Spatial Tukey Warped Gaussian Process).
The ni-th central moment at location xi is given by:

µ
(0,...,0,ni ,0,...,0)
gh =

1
gni
√

1− nihC(xi, xi)

ni

∑
i=0

(−1)i
(

ni
i

)
exp

(
niha2

i + 2aig(ni − i) + (ni − i)2g2C(xi, xi)

2(1− nihC(xi, xi))

)
(19)

As stated in Proposition 4 below, the results that allow one to connect the idea of
regular variation to the existence of moments of a certain power are provided. One should
then understand that as the tails of the distribution become heavier (as measured by the
index of regular variation), the integrals involved in the calculation of moments may cease
to converge to a finite value. As such, one can formally state the relationship between the
moment existence and the regular variation index as follows in Proposition 4.

Proposition 4 (Existence of Moments of Single Location Spatial Tukey Warped GP).
For the ni-th moment to exist in Corollary 1 we have to ensure that the following inequality holds:

h <
1

niC(xi, xi)
(20)

Proof. The existence proof is based on the fact that the for the n-th moment to exist for a
random variable, the index of regular variation of the random variable must be strictly
greater than n. Thus, from Lemma 2, we get:

λ > n,

=⇒ 1
hσ2 > n,

=⇒ h <
1

nσ2 .

(21)

where σ2 = C(xi, xi), for the Tukey g-and-h process at the location xi.

Next we can express, as a special case for two points xi, xj in space (m = 2), the cross
moments of order (ni, nj) as follows.

Corollary 2 (Two Location Cross Central Moments of Spatial Tukey Warped Gaussian Pro-
cess).
The ni-th and the nj-th order cross moment between two locations xi and xj is given by:
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µ
(0,...,0,ni ,0,...,0,nj ,0,...,0)
gh =

1
gni+nj

√
DΣ

ni

∑
ii=0

nj

∑
ij=0

(−1)ii+ij

(
ni
ii

)(
nj

ij

)
exp

C
(
xj, xj

)((
µ̃
(i)
1

)2
− |Σ|2D2

Σa2
i

)
|Σ|3DΣ



× exp

C(xi, xi)

((
µ̃
(i)
2

)2
− |Σ|2D2

Σa2
j

)
−
(
C
(
xi, xj

)
+ C

(
xj, xi

))(
µ̃
(i)
1 µ̃

(i)
2 − |Σ|2D2

Σaiaj

)
|Σ|3DΣ

,

(22)

where:

|Σ| = C(xi, xi)C
(
xj, xj

)
− C

(
xi, xj

)
C
(
xj, xi

)
,

µ̃
(i)
1 = |Σ|

(
ai
(
1− hnjC

(
xj, xj

))
+ ajhnjC

(
xi, xj

)
+ g
((
C(xi, xi)− hnj|Σ|

)
(ni − ii) + C

(
xi, xj

)(
nj − ij

)))
,

µ̃
(i)
2 = |Σ|

(
aj(1− hniC(xi, xi)) + aihniC

(
xj, xi

)
+ g
((
C
(
xj, xj

)
− hni|Σ|

)(
nj − ij

)
+ C

(
xj, xi

)
(ni − ii)

))
,

DΣ = h2ninj|Σ| − h
(
niC(xi, xi) + njC

(
xj, xj

))
+ 1.

(23)

Proof. This is direct application for points xi, xj of Proposition 3.

We note that with these results one may simply recover the mean at location xi with
ni = 1 giving:

E[Y(xi)] = µ
(0,...,0,1,0,...,0)
gh =

1
g
√

1− hC(xi, xi)

[
exp

(
ha2

i + g2C(xi, xi) + 2aig
2(1− hC(xi, xi))

)
− exp

(
ha2

i
2(1− hC(xi, xi))

)]
. (24)

and the variance at location xi with ni = 2 as follows:

Var[Y(xi)] = κ
(0,...,0,2,0...,0)
gh =

1
g2
√

1− 2hC(xi, xi)

(
exp

(
ha2

i + 2aig + 2g2C(xi, xi)

1− 2hC(xi, xi)

)

− 2 exp

(
2ha2

i + 2aig + g2C(xi, xi)

2(1− 2hC(xi, xi))

)
+ exp

(
ha2

i
1− 2hC(xi, xi)

))

−
(

µ
(0,...,0,1,0,...,0)
gh

)2
.

(25)

It will also be practically useful for the spatial field reconstructions to state the cross
spatial covariance between the spatial field at new location x∗ and existing observed
points x1:N . These cross spatial covariance results will be critical for derivation of the
multiple point Spatial-Best Linear Unbiased Estimator class we term the (S-BLUE) spatial
field reconstruction. Consider the joint description of a location x∗ and the locations of
the observations Y1:N by the set {x1, x2, . . . , xN , x∗}. We also define κ

(0,...,0,1,0,...,0,1,0,...,0)
gh =

µ
(0,...,0,1,0,...,0,1,0,...,0)
gh − µ

(0,...,0,1,0,...,0,0,0,...,0)
gh µ

(0,...,0,0,0,...,0,1,0,...,0)
gh as the covariance at any two

locations xi and xj. Then we obtain the following quantities using the aforementioned
derivations applied to obtain these cross moments:

µp∗ = a∗ + k(x∗, x1:N )K−1(x1:N , x1:N )
(
T −1

gh (Y1:N −E[Y1:N ])
)

Cov(Y∗, Y1:N) :=
[
κ
(1,0,...,0,1)
gh , κ

(0,1,...,0,1)
gh , . . . , κ

(0,0,...,1,1)
gh

]
∈ R1×N

Cov(Y1:N , Y1:N) :=


κ
(1,0,...,0,0)
gh · · · κ

(1,0,...,1,0)
gh

...
. . .

...
κ
(1,0,...,1,0)
gh · · · κ

(0,0,...,1,0)
gh

 ∈ X+
(
RN
)

,
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Having derived these properties of the Tukey g-and-h random field we are now ready
to derive the results for various field reconstruction metrics.

4. Field Reconstruction for Spatial Tukey Warped Gaussian Processes

In many real world settings, for spatial field modelling and analysis, the spatial fields
finite dimensional distributions or process may not be used explicitly in modelling and
instead a selection of relevant point estimators will be used to characterise a statistical
summary of the warped Gaussian process, in our case the Tukey g-and-h warped spatial
processes. In this section, we propose estimators and show how to solve, for a variety of
practically relevant spatial field point estimators, often called in spatial statistics “spatial
field reconstruction” or “spatial field approximation/estimation” [7,8]. In our case, we
tailored the spatial field reconstructions to three classes of estimator with varying efficacy
and computational cost in construction.

We have formulated this spatial field reconstruction context in terms of classical risk
minimization through a loss function formulating the class of estimator which is resolved
with respect to the spatial process, namely the warped GP model. We are assuming
the warped GP model is calibrated and here the exercise is not in calibration of this
models hyper parameters for the spatial covariance kernel and warping skew and kurtosis
parameters, namely g and h, respectively, but rather in regards to approximating efficiently
point estimators for the spatial field at any collection of target locations.

In this regard we derive five different estimators for various important quantities
often considered in spatial field reconstruction problems. The multi-point Minimum
Mean Squared Error (MMSE) estimators, the multiple point Maximum A-Posteriori (MAP)
estimators, an efficient class of multiple-point linear estimators based on the Spatial-Best
Linear Unbiased (S-BLUE) estimators, and two multi-point threshold exceedance based
estimators, namely the Spatial Regional and Level Exceedance estimators.

Throughout the remainder of the manuscript, in order to simplify the notation, we
will denote process Y(xi) at location xi simply by Yi. To perform spatial field reconstruction,
under the assumption that the data generating process for the spatial observations is a
spatial Tukey warped GP, one may approach the problem under a Bayesian paradigm. One
may then develop field reconstruction estimators, at an arbitrary location x∗, at which one
has not observed the process, based on the predictive posterior density at any location in
space, x∗ ∈ X , denoted p(Y∗|Y1:N). Here we denote Y1:N as the measurements obtained
from the sensors that observe the process at N locations x1:N ∈ X . This approach is widely
used and is the standard in many applications in sensor networks [1–4,6–10]

To proceed with development of the conditional probability of prediction of the
distribution of the spatial field, at unobserved location x∗, we need to specify the warped
spatial GP’s density, given in Lemma 4. This result shows how to predict the spatial
field at the new unobserved location x∗ conditional on the observations of the warped
GP spatial field Y1:N at observed locations x1:N . Due to the structure of the warping
spatial process developed, we are able to analytically express the first two moments for
the predictive condition mean and covariance in close form. This is critical for efficient
development of point estimators for the spatial field reconstructions that will be developed
in following sections.

Lemma 4 (Predictive Posterior Density at Location x∗).
The predictive posterior density p(Y∗|Y1:N , x1:N , x∗) is given by:

Y∗|Y1:N , x1:N , x∗ ∼ GH
(

y∗; ıgh

)
, (26)
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where ıgh :=
[
m0 = 0, m1 = 1, µp∗ , σ2

p∗ , g, h, θ = 1
]

and

µp∗ = a∗ + k(x∗, x1:N )K−1(x1:N , x1:N )
(
T −1

gh (Y1:N −E[Y1:N ])
)

,

σ2
p∗ = k(x∗, x∗)− k(x∗, x1:N )K−1(x1:N , x1:N )k(x1:N , x∗).

(27)

Note that E[Y1:N ] here denotes the prior mean of all the observations Y1:N and T −1
gh (.) denotes a

pointwise application of the inverse.

Proof. A derivation of this conditional predictive density for a general g-and-h density
with Guassian input process is given in [31].

Furthermore, we may derive based on this predictive density the first two predictive
conditional moments which we state in the following corollaries describing the poste-
rior mean and posterior variance of the Tukey g-h process at some arbitrary location x∗.
There are obtained explicitly using results derived in Proposition 3 and the distribution
characteristics specified in Section 3.

Corollary 3 (Posterior Predictive Mean at an Arbitrary Location x∗).

E[Y(x∗)|Y1:N , x1:N , x∗] =
1

g
√

1− hσ2
p∗

[
exp

(
hµ2

p∗ + g2σ2
p∗ + 2µp∗g

2(1− hσ2
p∗)

)
− exp

(
hµ2

p∗

2(1− hσ2
p∗)

)]
. (28)

Corollary 4 (Posterior Predictive Variance at an Arbitrary Location x∗).

Var[Y(x∗)|Y1:N , x1:N , x∗] =
1

g2
√

1− 2hσ2
p∗

(
exp

(
hµ2

p∗ + 2µp∗g + 2g2σ2
p∗

1− 2hσ2
p∗

)

− 2 exp

2hµ2
p∗ + 2µp∗g + g2σ2

p∗

2
(

1− 2hσ2
p∗

)
+ exp

(
hµ2

p∗

1− 2hσ2
p∗

))

− (E[Y(x∗)|Y1:N , x1:N , x∗])
2.

(29)

4.1. Spatial Field Reconstruction Risk Functionals and Loss Functions

In developing estimators formally for the spatial field reconstruction we introduce a
set of different loss functions. These will characterise the risk functionals to be minimized
with respect to the warped GP model in order to represent the spatial field reconstructions
of different estimator types. We have developed five different spatial field reconstruction es-
timators that we formalise below based on the conditional predictive posterior distribution.

Based on the predictive posterior density, various point estimators, like the MMSE
and the MAP estimators can be derived. These estimators provide a pointwise estimator of
the intensity of the spatial filed, Ŷ∗ at location x∗. This enables us to reconstruct the whole
spatial field by evaluating Ŷ∗ on a fine grid of points.

We first define a set of objective functions that covers different aspects of spatial regres-
sion and hence we calculate different estimators, each one having its special characteristic.
We then derive explicitly each of the estimators in closed form expressions.

(1) Minimum Mean Squared Estimator (MMSE) estimator
The MMSE estimator minimises the MSE by utilising a squared loss function:

L
(

Y∗, Ŷ∗
)

:=
(

Y∗ − Ŷ∗
)2

. (30)
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Then, the MMSE spatial field reconstruction estimator is given by

ŶMMSE
∗ = arg min

y
E
[

L
(

Y∗, Ŷ∗
)
|Y1:N , x1:N , x∗

]
= arg min

y
E
[(

Y∗ − Ŷ∗
)2
|Y1:N , x1:N , x∗

]
= E[Y∗|Y1:N , x1:N , x∗]

=
∫ ∞

−∞
Y∗p(Y∗|Y1:N , x1:N , x∗)d Y∗.

(31)

The conditional expectation is the estimate that minimises the conditional MMSE
and the minimum value is given by the conditional variance shown below:

σ2
Y∗|Y1:N

= E
[
(Y∗ −E[Y∗|Y1:N , x1:N , x∗])

2|Y1:N , x1:N , x∗
]
. (32)

(2) Maximum A-Posteriori (MAP) estimator:
The MAP estimator is the mode of the predictive posterior density and utilizes the
0/1 loss function:

L
(

Y∗, Ŷ∗
)

:=

{
0 , If Y∗ = Ŷ∗
1 , Otherwise

(33)

Then, the MAP spatial field reconstruction estimator is given by

ŶMAP
∗ = arg max

y∗
p(Y∗|Y1:N , x1:N , x∗). (34)

(3) Spatial-Best Linear Unbiased Estimator (S-BLUE):
The S-BLUE utilises the same loss function as the MMSE estimator, but is restricted
to the linear family of estimators, given by:

ŶS-BLUE
∗ = arg min

a∗ ,B∗
E
[(

Y∗ − a∗ + BT
∗Y1:N

)2
|Y1:N , x1:N , x∗

]
, (35)

where a∗ ∈ R and BT
∗ ∈ R1×N

(4) Spatial Regional and Level Exceedance estimators:
There are a few ways of characterizing the spatial exceedance of these processes,
either through the region or the location of the spatial exceedance given a user
defined threshold and the tolerance. The other characteristic is the level at which
the random process exceeds the given threshold at a given location. We define these
characterizations mathematically as follows:

(a) Spatial-Regional Right Tail Exceedance (S-RTE):

Dx(x∗; Y1:N , x1:N , T, α) = {x∗ : P(Y∗ > T|Y1:N , x1:N , x∗) ≥ 1− α}, (36)

(b) Spatial-Regional Left Tail Exceedance (S-LTE):

Dx(x∗; Y1:N , x1:N , T, α) = {x∗ : P(Y∗ < T|Y1:N , x1:N , x∗) ≥ 1− α}, (37)

where T is the pre-defined threshold and α is the user defined tolerance.
Here we are interested in the locations at which the above exceedance is
observed. The function Dx(x∗; Y1:N , x1:N , T, α) : X 7→ {0, 1}, i.e., it is a binary
map in space indicating the locations x∗ at which the process exceeds a pre-
defined threshold with a specified probability α. These locations may form
points, lines or surfaces in X ⊆ R2. It is useful to define exceedances on
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both tails due to the presence of skewness and kurtosis which affects the tail
behaviour asymmetrically.

(c) Spatial-Level Exceedance (S-LE):

Dα = inf{α : P(Y∗ > T|Y1:N , x1:N , x∗) ≥ 1− α}. (38)

Here we are interested to find the minimum quantile level α at which the
process exceeds the given threshold T at a given location x∗. The function
Dα(x∗; Y1:N , x1:N , T) : X 7→ (0, 1), i.e.,

Now that we have specified various metrics by which the field reconstruction can be
carried out, we detail each of the estimators.

4.2. Spatial Field Reconstruction Estimator Derivations

All the aforementioned objective functions except for the S-BLUE require the knowl-
edge of the predictive posterior distribution conditioned on the observations and the sensor
locations, given in Lemma 4. We begin by deriving the classical predictive spatial field
estimator based on the minimum mean square error for the warped spatial GP.

Lemma 5 (MMSE spatial field reconstruction estimator [31]).
The MMSE spatial field reconstruction function is given by the mean of the predictive posterior

which is of the form similar to the one described in Corollary 3 and is given by:

ŶMMSE
∗|Y1:N

=
1

g
√

1− hσ2
p∗

[
exp

(
hµ2

p∗ + g2σ2
p∗ + 2µp∗g

2(1− hσ2
p∗)

)
− exp

(
hµ2

p∗

2(1− hσ2
p∗)

)]
. (39)

The Mean Squared Error (MSE) is given by the variance of the predictive posterior which is of the
form similar to the one described in Corollary 4 and is given by:

SMSE(x∗) = σ2
Y∗|Y1:N

=
1

g2
√

1− 2hσ2
p∗

[
exp

(
hµ2

p∗ + 2µp∗g + 2g2σ2
p∗

1− 2hσ2
p∗

)

−2 exp

2hµ2
p∗ + 2µp∗g + g2σ2

p∗

2
(

1− 2hσ2
p∗

)
+ exp

(
hµ2

p∗

1− 2hσ2
p∗

)]
− (ŶMMSE

∗ )2.

(40)

Remark 3. The expression for the uncertainty associated with the MMSE estimate is shown in
Equation (40). We can see that the expression depends on the predictive posterior density parameter
µp∗ , which in turn depends on the observations Y1:N as seen from Lemma 4. This is significantly
different from the GP, where the uncertainty does no depend on the observations and only depends on
the covariances between the locations at which the data were observed. This influences applications
that involve experimental design problems like sensor placement, sensor selection, etc, in that just
knowing the information of the locations alone is no longer sufficient for the Tukey g-h process
and repeated experiments may need to be performed for evaluating the characteristics of just one
location set.

Remark 4. Note that the existence of the MMSE at a location x∗ is given by, h < 1
nσ2

p∗
. We also

know that σ2
p∗ ≤ k(x∗, x∗). This means that for a given value of the parameter h, there may arise a

case when the Tukey g-and-h population mean at a location does not exist but the conditional mean
can exist. This is because as we gather observations around the location of interest, we reduce σ2

p∗
and hence the effect of the kurtosis parameter on the conditional MMSE.
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Proposition 5 (MAP spatial field reconstruction estimator:).
The spatial MAP estimator is obtained from the solution to the following optimisation problem:

ŶMAP
∗ = Tgh

(
wo
∗; ıgh

)
(41)

where wo
∗ is the solution to the following optimsation problem.

wo
∗ = arg max

w∗

exp
(
− (w∗−µp∗)

2

2σ2
p∗

)
hw∗

exp(gw∗)−1
g exp

(
hw2∗

2

)
+ exp

(
gw∗ + hw2∗

2

) (42)

Proof. See Appendix F.

Remark 5. The optimisation problem in specified in Proposition 5, to obtain the MAP estimate
of the Tukey g-and-h process at a location x∗ does not admit analytical solutions and hence has to
be dealt with numerically. To this end, one can solve this one-dimensional optimisation through
standard techniques such as Newton methods adopting a simple gradient descent (since we can
obtain the derivatives of this expression at all values of w∗).

Proposition 6 (MAP spatial variance:).
The variance of the spatial MAP estimator is given by the hessian of the posterior GH distribution
at a location x∗, evaluated at the optimum value wo

∗ obtained from Proposition 5. It is represented
as follows:

σ2
∗MAP =

(
T ′gh(w

o
∗)
)2

f ′′W(wo
∗) + 2 f ′W(wo

∗)T ′′gh(w
o
∗)
(
T ′′gh(w

o
∗)− T ′gh(w

o
∗)
)
− fW(wo

∗)T ′′′gh (w
o
∗)T ′gh(w

o
∗)(

T ′gh(w
o∗)
)3 (43)

where wo
∗ is the mode of the GH distribution at x∗ and fW(.) is the Gaussian pdf with mean and

variance as derived in Lemma 4.

Proof. See Appendix G.

We now state a few corollaries for finding the solution to the optimisation problem
posed for finding the MAP estimate at any arbitrary location. These are the cases when the
parameters g→ 0 and h→ 0.

Proposition 7 (S-BLUE spatial field reconstruction estimator:).
The Spatial-Best Linear Unbiased Estimator (S-BLUE) at any location x∗ is given by:

ŶS-BLUE
∗ = â∗ + B̂T

∗ (Y1:N −E[Y1:N ]) (44)

where â∗ = µp∗ and B̂ = Cov−1(Y1:N , Y1:N)Cov(Y∗, Y1:N). In addition, E[Y1:N ] is just the prior
mean of the observations Y1:N .

The exceedance problem of the Tukey g-and-h process, as described in the objective
functions, given by Equations (36) and (37) are reduced to the problem of obtaining the
multivariate quantile level sets of the process at d locations. First we look at univariate
description of the quantile function at just one location. Then we will see that the existence
of a tractable quantile Tukey g-and-h function enables us to reduce the exceedance problems
to the description of these quantile function along with the user given parameters.

To proceed with these results it will be useful to state the following Lemma 6 that
provides expressions for the marginal and conditional quantile functions of the Tukey
g-and-h process.
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Lemma 6 (Marginal and Conditional Quantile functions of the Tukey g-and-h process).

(1) Marginal Quantile Function:
The univariate marginal quantile function of the Tukey g-and-h process at any arbitrary
location xk is described as follows:

QYk (α) = Tgh

(
qk(α); ıgh

)
(45)

where qk(α) = ak +
√
C(xk, xk)Φ−1(α), and Φ−1(α) denotes the inverse cdf of the standard

normal distribution.
(2) Conditional Quantile Function:

The univariate conditional quantile function of the Tukey g-and-h process at any arbitrary
location x∗ is described as follows:

QY∗ |Y1:N
(α) = Tgh

(
q∗(α); ıgh

)
(46)

where q∗(α) = µp∗ + σp∗Φ
−1(α). Furthermore, Φ−1(α) is the inverse cdf of the standard

normal distribution.

Proof. See Appendix H.

Proposition 8 (Spatial region of right tail exceedance estimator).
The region of right tail exceedance described in Equation (36) is reduced to finding the quantile

level sets at the user given tolerance to see if it exceeds the given threshold. This is a binary estimate
at location x∗, that is characterized by:

ŶS-RTE
∗ =

{
1, if q∗(α) > T −1

gh

(
T; ıgh

)
,

0, Otherwise
(47)

where q∗(α) = µp∗ + σp∗Φ
−1(α) is the quantile as seen from Lemma 6. The region is created by

accumulating all the locations that produce 1 in the binary estimate.

Remark 6. We note that derivation of the left tail exceedance spatial field reconstruction estimator
follows analogously the result obtained in Proposition 8 with a reversal of the inequality and a
quantile level (1− α) ∈ [0, 1].

Proposition 9 (Spatial level of exceedance estimator).
The region of exceedance described in Equation (38) is reduced to finding the quantile level sets at

the user given tolerance to see if it exceeds the given threshold. This is a binary estimate at location
x∗, that is characterized by:

ŶS-LE
∗ = inf

{
α : w∗(α) > T −1

gh

(
T; ıgh

)}
(48)

where w∗(α) = µp∗ + σp∗Φ
−1(α)) as seen in Lemma 6.

Note that in Propositions 8 and 9, we used x∗ to denote the unobserved spatial field
location. In these cases the quantile function is essentially the conditional quantile function
from the conditional predictive posterior distribution obtained in Lemma 4.

5. Experimental Results: Warped Gaussian Process Spatial Field Reconstructions

In this section, we look at results concerning spatial field reconstruction based on
a warped GP model of the Tukey g-and-h family of spatial processes. We consider both
central estimators of spatial field as well as exceedance spatial maps. We compare the
warped GP reconstructions of the Tukey g-and-h processes to those one would obtain had
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one miss-specified the model and applied a classical standard GP field reconstruction. It is
of interest to assess the ability of the Tukey g-and-h process to detect attributes of spatial
skewness and kurtosis, compared to the GP in a range of different settings. We consider
both synthetic as well as real data studies to illustrate the Tukey g-and-h model developed.

5.1. Simulation Setup

In these case studies we model the physical phenomenon or spatial process that is
partially observed by a Tukey transformation of an underlying GP over a spatial grid
where x ∈ [−5, 5] and y ∈ [−5, 5]. We work with the well known squared exponential
kernel, with a known unit variance and known length-scale. We also subtract the mean to
obtain a zero mean GP. Furthermore, the parameters g, h are assumed to be known and
are set to different values within the allowable range, to test various cases. This allows
us to demonstrate, on a synthetic case study, the importance of developing spatial field
reconstructions that accommodate warped spatial GP structures for spatial skewness and
kurtosis by comparing the loss in accuracy if one applies just a standard GP model.

Moreover, we have N sensors with known locations, spread uniformly over the spatial
grid region of interest. We vary N to study the effect of the number of sensors on different
regression estimators. To this end, we use the normalised spatial mean squared error
(N-MSE) to characterize the performance of the different estimators and we define it
as follows:

N-MSE =
1

J × T

J

∑
j=1

T

∑
i=1

(
Ŷ
(

x(ij)∗
)
−Y

(
x(ij)

))2

maxY−minY

where J is the number of spatial locations to regress and T is the number of trials of the
Tukey g-and-h process simulation. In addition, maxY = maxi,j x(ij) is the maximum value
of the simulated process across all locations and trials and similarly minY = mini,j x(ij) is
the minimum value of the simulated process.

We outline the following test scenarios studied in this setting.

(1) Scenario 1: We compare the performance of the different estimators such as, MMSE
(Equation (39)), S-MAP (Equation (41)), S-BLUE (Equation (35)) to the Gaussian Pro-
cess estimate in various scenarios such as, small g and h with low spatial correlation,
high spatial correlation and other such combinations of g, h and l.

(2) Scenario 2: We characterize the exceedance estimation ability of the Tukey g-and-h
process as shown in Proposition 8 (g,h), through spatial ROC curves compared to a
Gaussian process.

(3) Scenario 3: We adopt real data case studies for the US and we apply our estimators
on the noisy observed US precipitation data sets [40]. We consider a spatial field
reconstruction that involves latitudes between 34 and 43 degrees and longitudes
between −110 and −100 degrees and we compare the different spatial field recon-
struction estimators and their performance on real data versus a classical Gaussian
process model.

Before we look at the simulation results, we show the actual differences in the dis-
tribution of the Tukey g-and-h finite dimensional distribution, with the parameters that
are used in the simulation case studies, in order to compare to the Gaussian distribution,
see Figure 1. This allows us to demonstrate clearly that at each spatial field location one
would expect that skewness and kurtosis will be meaningful to consider in constructing
the spatial field reconstruction estimators.
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Figure 1. Comparison of the standard Gaussian distribution to the Tukey g-and-h distributions with values from{
g = 1.2, h = 0.2, µ = 0, σ2 = 1

}
.

5.2. Scenario 1: Spatial Field Reconstruction on Synthetic Data

In this section, we present the estimation performance of the Spatial-BLUE estimator,
GP estimator, Spatial-MAP estimator and the Spatial MMSE estimator. The results here
are shown for a synthetic data set constructed with given parameter values for g, h and l,
using a squared exponential kernel. The study utilised 50 realisations of the Tukey g-and-h
random field and the average spatial Mean Squared Error reported below is the average
across the 50 realisations and all the locations in space where the field was reconstructed.
To study the variation across the number of sensors, we used N = {9, 16, 25, 36, 49, 64, 81}
and spread it uniformly across the field.

As we can see in the first top sub-figure in Figure 2, this is the situation in which the
true spatial field process is very close to Gaussian as the g ≈ h ≈ 0 settings was used
and therefore with both l values only two curves are seen for the different spatial field
reconstructions and they are basically almost indistinguishable. The difference reflects the
very slight skew and kurtosis still present in the target warped spatial Gaussian process
since g and h were not set exactly to 0. Basically in this scenario we see that the curve
associated with the S-BLUE and the S-MAP coincide, as is the case with the S-MMSE and
the GP curves. Furthermore all the estimators perform better as the number of sensors
increase. Overall the difference in the reconstruction accuracy is negligible between the
four estimators as is expected since the values of g and h are very close to 0 as is to be
expected. This is simply a case study to illustrate that our spatial field reconstructions for
the warped spatial GP model can recover a classical GP reconstruction if the target spatial
field truly has this characterisation.

In the bottom subplot of Figure 2, we see that with some significant increase in g and
h values that adds to the warped spatial GP skewness and kurtosis, then in this case the
standard GP spatial field reconstructions degrade in accuracy. The classical GP estimate
is unable to account for the significant non-linearities in the transform that induce the
skewness and kurtosis in the spatial field, while the other estimators that we have derived
for spatial field reconstruction specifically in the setting of warped spatial GP significantly
outperform the classical GP reconstructions of comparative loss functional type, especially
as the number of sensors increase. We also observe that the linearisation of the spatial field
reconstruction provides an efficient estimator computationally compared to the MMSE
estimator but the cost of this computational efficiency is a loss in accuracy due to the
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attempt to linearise locally the highly non-linear spatial field warping transforms. We
see that it becomes particularly effective to use an efficient linear S-BLUE estimator in
settings in which observation coverage is sparse and sensors are placed sparsely in the
spatial region of interest. In these cases we show that the S-BLUE estimator performs
comparatively with the more computationally expensive MMSE estimators.
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Figure 2. Plots of comparison of the N-MSE as a function of number of sensors (N). Top Subplot: g = 0.001, h = 0.001,
l = 0.5. Bottom Subplot: g = 1.2, h = 0.2, l = 0.5.

5.3. Scenario 2: Spatial Exceedance on Synthetic Data

In the exceedance examples, we characterize the spatial region of exceedance estimator
(Proposition 8) and its left tail equivalent, and the region of exceedance (Proposition 9). We
treat these problems as a detection problem, since we obtain a binary estimate at each loca-
tion. We characterize such performance via plots of the Receiver Operating Characteristic
(ROC) curves associated with different values of N. In these illustrations we use α = 0.1
and the threshold λ is varied from the minimum value of the realisations of the Tukey
g-and-h field to the maximum value of the realisations. Once the predictive distribution
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is obtained at the target locations, we calculate the binary estimate of exceedance at each
target location and finally to obtain the required probabilities of detection and false alarms,
we collate the proportion of false alarms and correct detection at all locations and get the
probabilities of false alarms and detection.

From the ROC curves in Figure 3 we see that the Tukey g-and-h distribution in
different cases outperforms the Gaussian process in all the scenarios created, with closest
performance, in Figure 3 subplot a, corresponding to cases when the generated synthetic
data is from settings of g and h parameters in which the data generating mechanism is
closest to no skewness or kurtosis effects. The case of a distinct model with regard to a
Gaussian model, where skewness and kurtosis is non-negligible, is then shown in Figure 3
subplot b.
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Figure 3. Plots of ROC curves comparing the Tukey g-and-h distribution to the Gaussian process for different values of g
and h.

Now Figure 4 contains the ROC curve corresponding to g = 1.2, h = 0.001 and l = 1.
In subfigure a of Figure 4 one can see a scenario case that is close again to the Gaussian
setting, with the difference between the case in Figure 3 subplot a being purely the scale
parameter of the covariance kernel function, l. Therefore, as expected we see very close
performance in the ROC curve in this setting when comparing the Gaussian and Tukey
g-and-h models. In Figure 4 subplot b, we see the case with high positive skew and almost
zero kurtosis. We notice that the false alarm rate for the quantile exceedance is extremely
low and specifically we defined the exceedance as the right tail exceedance. This may be
due to the fact that the estimation of the Tukey g-and-h posterior, at all the target locations,
depend on the data from the sensors which tend to be considerably positively skewed
(g = 1.2), without heavy tails. Since, the GP estimation involves the actual observations
(without any transformation), the predictive distribution tends to have a mean with a high
positive value and since there is the asymmetry and the lack of heavy tails, the GP also
exhibits a reasonably low false alarm rate for the right tail exceedance that is comparable
to the Tukey g-and-h process. However, for the same case if we calculate the left tail
exceedance as characterized in Proposition 9, we notice that these ROC curves exhibit a
higher range of false alarms and detection rate and we obtain the following figure.

In addition, we observed that when we considered the case g = −1.2, h = 0.001, l = 1
which is negatively skewed with 0 kurtosis, we noticed that the above trend is reversed,
i.e., the right tail exceedance exhibited a larger false alarm rate and the left tail exceedance
exhibited a very small rate of false alarms.
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Figure 4. Plots of ROC curves comparing the Tukey g-and-h distribution to the Gaussian process for different values of g
and h.

5.4. Scenario 3: Spatial Field Reconstruction on Real Spatial Sensor Data for Hourly Precipitation

In this section, we show results of spatial field reconstruction on the US precipitation
dataset, available at https://www.ngdc.noaa.gov (accessed on 1 January 2020). This shows
the hourly precipitation in digital data set DSI-3240, archived at the National Climatic Data
Center (NCDC). It is obtained from US National Weather Service (NWS), Federal Aviation
Administration (FAA), and cooperative observer stations in the United States of America,
Puerto Rico, the US Virgin Islands, and various Pacific Islands. We extract data for one
month (November 1994) from the sensors within the area shown in the map in Figure 5.

Here, to evaluate the performance of our estimators, we estimate the parameters from
the US precipitation dataset corresponding to the data from the above locations. For both
the Tukey g-and-h and the GP we use an underlying GP with zero mean and a squared
exponential kernel where the length-scale and the variance are estimated appropriately. In
addition, the Tukey g-and-h requires estimation of two additional parameters namely the
skew parameter g and the kurtosis parameter h. After a maximum likelihood estimation in
both cases, we obtain the estimates of the Tukey g-and-h to be lgh = 0.2, σ2

gh = 1, g = 0.001

and h = 0.2 and the estimates for the GP are lgp = 0.1 and σ2
gp = 2.5.

Additionally, we define a normalised version of the median of absolute deviations for
the comparison of our estimates on the real data. It is defined as follows:

N-MAD = medianj∈J,i∈T

∣∣∣Ŷ(x(ij)∗
)
−Y

(
x(ij)

)∣∣∣
maxY−minY

where J is the number of spatial locations to regress and T is the number of trials of the
Tukey g-and-h process simulation. In addition, maxY = maxi,j x(ij) is the maximum value
of the simulated process across all locations and trials and similarly minY = mini,j x(ij) is
the minimum value of the simulated process.

https://www.ngdc.noaa.gov
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Figure 5. USA map with sensor locations measuring precipitation in 4 states showing the average
precipitation for the month of November 1994 at 850 locations. The values (in mm) are colour coded
according to the ranges shown.

In Figures 6 and 7 we show results for a real data spatial field reconstructions for the
S-Blue, GP, S-MAP and S-MMSE results. In Figure 7, we see that the ratio

R∗ =
N −MSE o f the BLUE estimate at ∗

N −MSE o f the GP estimate at ∗ ,

in the majority (80%) of the test locations is less than or equal to 1, which means that the
S-BLUE estimator performs better than the GP at those locations. The light blue markers
indicated the locations where this ratio is between 1 and 5, which is around 11% of the
test data. Similarly the dark blue markers and the black markers represent the small
percentage of the locations where the GP performs better than the S-BLUE. We notice
that these locations are generally concentrated in the corners of the grid, which might
explain the presence of a few outliers as the main factor that affects the estimates is the
covariance between the test location and the sensor locations. We can see from Figure 6,
any estimator of the Tukey g-and-h process performs much better than the GP. Particularly
in both cases the S-BLUE estimate performs the best in this case and this maybe because in
the real data we do not have multiple realisations of the data, thus to get a good estimate
we should exploit the spatial information well and the S-BLUE estimate does that precisely,
as it requires the spatial Tukey g-and-h covariance, which enables it to produce better
estimates and these estimates improve as the number of sensor locations having data
increase. Moreover, we notice that the N-MSE of the GP increases as the number of sensors
increases and this shows that we are fitting the data with a model that is biased.
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Figure 6. The N-MAD comparison between the various Tukey g-and-h estimators and the Gaus-
sian process.
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Figure 7. The ratio R of the N-MSE of the S-BLUE estimate and the GP estimate at each of the test
locations when N = 500, i.e., 500 locations were used as the training set.

6. Conclusions

We study in detail various aspects regarding Tukey g-and-h processes from its construc-
tion and derivation of n-variate cross moments, which helped us develop three different
estimators for spatial regression, the MMSE, S-BLUE and the S-MAP. We discuss their
derivation through the predictive posterior distribution. In addition, we define the right
tail and the left tail exceedance estimators using the quantile level sets of these processes.
Finally, we test the performance of our estimators on a simulated data setting and the US
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precipitation dataset. We find that although the Gaussian process is a useful model, we
show that it suffers when the data exhibits heavy-tailedness and/or skewness, where the
Tukey g-and-h process is better suited and is also practically applicable. The flexibility of
the construction and the estimation of the Tukey g-and-h process can enable us to incorpo-
rate even more complex spatial and temporal patterns through different kernels much like
the Gaussian process whilst enabling a way to account for non-Gaussian behaviour which
arises in many real world applications.
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Appendix A. Proof of Proposition 1

To prove that the inverse of the transformation Tgh
(
W; ζgh

)
exists we prove that it is

a bijection.
Firstly, we notice that the transformation is continuous in R, since it is essentially the

difference of two exponential functions. The Intermediate Value Theorem states that if a
function f is continuous in an interval [a, b] and min( f (a), f (b)) < L < max( f (a), f (b)),
then there exists c ∈ [a, b] such that f (c) = L. We apply a version of this theorem to a
function f that is continuous in an open interval(a, b).

Now Tgh
(
W; ζgh

)
: R 7→ R, where this function is continuous in (−∞, ∞). Let

L1 := lim
W→−∞

Tgh
(
W; ζgh

)
= −∞ and L2 := lim

W→∞
Tgh
(
W; ζgh

)
= ∞. Since L1 < L < L2 for

any arbitrary L ∈ (−∞, ∞) and since Tgh
(
W; ζgh

)
is continuous in this interval then there

exists a c ∈ (−∞, ∞) such that Tgh
(
c; ζgh

)
= L. Hence this function is surjective.

To prove that it is injective, we use the derivative information presented in Lemma 1.
The first derivative of the Tukey g-and-h transform is given by:

T ′gh
(
W; ζgh

)
= hWTgh

(
W; ζgh

)
+ exp

(
gW +

hw2

2

)
.

We know that the kurtosis parameter is always non-negative and hence we need to find
the sign of WTgh

(
W; ζgh

)
, since exp

(
gW + hW2

2

)
is always positive.

Consider M := WTgh
(
W; ζgh

)
, we then have that

M = WTgh
(
W; ζgh

)
= Wg

exp(gW)− 1
g2 exp

(
hW2

2

)
.

(A1)

From the above expression to determine the sign of M, we just have to consider the sign
of Wg(exp(gW)− 1). We know that when Wg > 0, exp(gW) > 1 and when Wg < 0,
exp(gW) < 1, and therefore M > 0.

Hence the derivative is positive and this means that the transform Tgh
(
W; ζgh

)
is

strictly increasing and as a result it is injective. Since it is surjective and injective, we show
that this Tukey g-and-h transformation has an inverse.



Entropy 2021, 23, 1323 26 of 31

Appendix B. Proof of Proposition 2

We have the random variable Y := Tgh
(
W; ζgh

)
, where ζgh := [m0, m1, µ, σ2, g, h, θ = 1].

Then we have that

P(Y ≤ y) = P
(
Tgh
(
W; ζgh

)
≤ y

)
. (A2)

The limit of the function Tgh
(
W; ζgh

)
as g→ 0 and h→ 0 is given by:

L = lim
(g,h)→(0,0)

Tgh
(
W; ζgh

)
= m0 + m1 lim

g→0

W(exp(gW)− 1)
gW

lim
h→0

exp
(

hW2

2

)
.

(A3)

Let, L1 =
W exp(gW)−1

gW and L2 = exp
(

hW2

2

)
. Now the functions are separable in g and h,

and the limit exists and can be evaluated separately if and only if the limits in g and h exist
independently. We know that:

L1 = lim
g→0

W(exp(gW)− 1)
gW

= W,

L2 = lim
h→0

exp
(

hW2

2

)
= 1.

(A4)

Both the limits exist independently in g and h. Hence, L = m0 + m1L1L2 = m0 + m1W.
Furthermore, we know that W ∼ N

(
µ, σ2). Then L ∼ N

(
m0 + µ, m2

1σ2) Finally,

P(Y ≤ y) = P(L ≤ y)

=⇒ Y d
= L

(A5)

As a corollary, the special case when, m0 = 0 and m1 = 1, we get Y d
= W

Appendix C. Proof of Proposition 2

The index of regular variation for the survival function FY(y) associated with random
variable Y is λ where:

lim
y→∞

y f (y)
1− F(y)

= λ (A6)

For a generic transformationTgh
(
W; ζgh

)
with parameters ζgh := [m0 = 0, m1 = 1, µ, σ2, g, h, θ =

1], let fW(.) be the Gaussian pdf of the underlying distribution and FW(.) be the Gaussian cdf
and let u = T −1

gh (.). Then, to find the limit we do as follows:

L = lim
y→∞

y fY(y)
1− FY(y)

=
fW(u)

u(1− FW(u))

(
g

u
(

1− 1
exp(gu)

) + h

) (A7)

Let L1 = fW (u)
u(1−FW (u)) and L2 = 1 g

u
(

1− 1
exp(gu)

)+h

 . We get L1 = 1
σ2 by repeatedly applying

L-Hospitals rule and L2 = 1
h . Hence L = L1L2 = 1

hσ2 .
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Appendix D. Proof of Lemma 3

We begin by writing an explicit expression for the expectation:

E
[

exp
(

1
2

wTΣvw + uTw
)]

=
1√

2π|Σ|0.5

∫ ∞

−∞
. . .
∫ ∞

−∞
exp

(
1
2

wTΣvw + uTw
)

× exp
(
−1

2

(
(w− µ)TΣ−1(w− µ)

))
dw.

(A8)

Now consider the integrand of the high-dimensional integral shown above. We would like
to complete the squares of this term, in order to get an unnormalised multivariate normal
pdf, such that we can evaluate this integral with ease. In this regard, we do the following:

exp
(

1
2

wTΣvw + uTw
)

exp
(
−1

2

(
(w− µ)TΣ−1(w− µ)

))
= exp

(
− 1

2

(
wTΣ̃−1w−wTΣ̃−1Σ̃

(
u + Σ−1µ

)
−
(

uT + µTΣ−1
)

Σ̃Σ̃−1w + µTΣ−1µ
))

= exp

(
− 1

2

(
wTΣ̃−1w−wTΣ̃−1µ̃− µ̃TΣ̃−1w + µTΣ−1µ + µ̃TΣ̃−1µ̃− µ̃TΣ̃−1µ̃

))

= exp
(
−1

2

(
(w− µ̃)TΣ̃−1(w− µ̃)

))
exp

(
−1

2

(
µTΣ−1µ− µ̃TΣ̃−1µ̃

))
.

(A9)

Now substituting this results into the integral we obtain that:

E
[

exp
(

1
2

wTΣvw + uTw
)]

=
|Σ̃| 12
|Σ| 12

exp
(
−1

2

[
µTΣ−1µ− µ̃TΣ̃−1µ̃

])
, (A10)

where

Σ̃ =
(

Σ−1 − Σv

)−1

µ̃ = Σ̃
(

u + Σ−1µ
)

.
(A11)

Appendix E. Proof of Proposition 3

We begin by using Equation (3)

µ
(n1,...,nm)
gh = E

 m

∏
j=1

(
Tgh

(
W
(

sj

)
; ζ
))nj


=

1
g(n1+...+nm)

∫ ∞

−∞
. . .
∫ ∞

−∞

(
exp

(
gw1 +

hw2
1

2

)
− exp

(
hw2

1
2

))n1

. . .

(
exp

(
gwm +

hw2
m

2

)
− exp

(
hw2

m
2

))nm

dw

=
1

g(n1+...+nm)

∫ ∞

−∞
. . .
∫ ∞

−∞

n1

∑
i1=0

(−1)i1

(
n1
i1

)(
exp

(
gw1 +

hw2
1

2

))n1−i1
(

exp

(
hw2

1
2

))i1

. . .

nm

∑
im=0

(−1)im

(
nm

im

)(
exp

(
gwm +

hw2
m

2

))nm−im(
exp

(
hw2

m
2

))im

dw

=
1

g(n1+...+nm)

n1

∑
i1=0

. . .
nm

∑
im=0

(−1)(i1+...+im)
(

n1
i1

)
. . .
(

nm

im

)
E
[

exp
(
(n1 − i1)gw1 + . . . + (nm − im)gwm +

n1h
2

w2
1 + . . . +

nmh
2

w2
m

)]

(A12)
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The last line can be obtained from Lemma 3, using the following substitution

u(i) = [g(n1 − i1), g(n2 − i2), . . . , g(nm − im)]
T (A13)

Σv =


hn1 0 · · · 0

0 hn2 · · · 0
...

...
. . .

...
0 0 · · · hnm

 (A14)

Which gives us the following result:

µ
(n1,...,nm)
gh = E

[
m

∏
j=1

(
Tgh
(
W
(
sj
)
; ζ
))nj

]

=
1

g(n1+n2+...+nm)

n1

∑
i1=0

. . .
nm

∑
im=0

(−1)(i1+i2+...+im) |Σ̃|
1
2

|Σ| 12
exp

(
−1

2

[
µTΣ−1

s µ−
(

µ̃(i)
)T

Σ̃−1µ̃(i)
]) (A15)

where

Σ̃ =
(

Σ−1 − Σv

)−1
(A16)

µ̃(i) = Σ̃
(

u(i) + Σ−1µ
)

(A17)

Appendix F. Proof of Proposition 5

ŶMAP
∗ = arg max

y∗
p(Y∗|Y1:N , x1:N , x∗)

From Lemma 4, we understand that the predictive posterior density p(Y∗|Y1:N , x1:N , x∗) is
given by:

Y∗|Y1:N , x1:N , x∗ ∼ GH
(

y∗, ıgh

)
, (A18)

where ıgh :=
[
µp, σ2

p , g, h, 1
]
. Now the MAP estimate boils down to finding the maximum

of this GH distribution given by the g,h transformation of the underlying normal distri-
bution with mean µp and σ2

p . We denote the Gaussian pdf and cdf by fW(w) and FW(w),

respectively. Furthermore, Y = Tgh

(
W; ıgh

)
, where ıgh :=

[
m0 = 0, m1 = 1µp, σ2

p , g, h, 1
]
.

Let the transformed pdf and cdf be represented by fY(y) and FY(y). As a shorthand we are
going to refer to the transformation as Tgh(w).

ŶMAP
∗ = arg max

y∗
fY∗(y∗)

= arg max
y∗

d
dy∗

FY∗(y∗)

= arg max
y∗

d
dy∗

FW∗

(
T −1

gh (y∗)
)

= arg max
y∗

fW∗

(
T −1

gh (y∗)
) d

dy∗
T −1

gh (y∗)

(A19)
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We know that Tgh

(
T −1

gh (y∗)
)
= y∗. Using this property and differentiating on both sides

we get:

d
dy∗
T −1

gh (y∗) =
1

T ′gh

(
T −1

gh (y∗)
)

Substituting this back in Equation (A19), we get:

ŶMAP
∗ = arg max

y∗

fW∗

(
T −1

gh (y∗)
)

T ′gh

(
T −1

gh (y∗)
) (A20)

= arg max
w∗

exp
(
−(w∗−µp∗)

2

2σ2
p∗

)
hw∗

exp(gw∗)−1
g exp

(
hw2∗

2

)
+ exp

(
gw∗ + hw2∗

2

) (A21)

where w∗ = T −1
gh (y∗), since T −1

gh is a strictly increasing transformation, maximising it in

w∗ is equivalent to maximising
fW∗

(
T −1

gh (y∗)
)

T ′gh

(
T −1

gh (y∗)
) .

Appendix G. Proof of Proposition 6

The uncertainty is given by the second derivative of the GH distribution at location s∗
evaluated at the mode of the distribution wo

∗, which is obtained by solving the optimisation
problem in Proposition 5. Our goal is to get the following quantity:

σ2
∗MAP =

d2

dw2∗

(
fW(w∗)
T ′gh(w∗)

)∣∣∣∣
wo∗

(A22)

d
dw∗

(
fW(w∗)
T ′gh(w∗)

)
=
T ′gh(w∗) f ′W(w∗)− fW(w∗)T ′′gh(w∗)(

T ′gh(w∗)
)2

d2

dw2∗

(
fW(w∗)
T ′gh(w∗)

)
=

d
dw∗

(
f ′W(w∗)
T ′gh(w∗)

)
− d

dw∗

 fW(w∗)T ′′gh(w∗)(
T ′gh(w∗)

)2


=

(
T ′gh(w∗)

)3
f ′′W(w∗)− 2 f ′W(w∗)T ′′gh(w∗)

(
T ′gh(w∗)

)2
+ 2 f ′W(w∗)

(
T ′′gh(w∗)

)2
T ′gh(w∗)(

T ′gh(w∗)
)4

−
f ′W(w∗)T ′′′gh (w∗)

(
T ′gh(w∗)

)2

(
T ′gh(w∗)

)4

=

(
T ′gh(w∗)

)2
f ′′W(w∗) + 2 f ′W(w∗)T ′′gh(w∗)

[
T ′′gh(w∗)− T

′
gh(w∗)

]
− fW(w∗)T ′′′gh (w∗)T

′
gh(w∗)(

T ′gh(w∗)
)3

(A23)

Hence evaluating at wo
∗, we get:

σ2
∗MAP =

(
T ′gh(w

o
∗)
)2

f ′′W(wo
∗) + 2 f ′W(wo

∗)T ′′gh(w
o
∗)
[
T ′′gh(w

o
∗)− T ′gh(w

o
∗)
]
− fW(wo

∗)T ′′′gh (w
o
∗)T ′gh(w

o
∗)(

T ′gh(w
o∗)
)3 (A24)
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Appendix H. Proof of Lemma 6

Let us consider the Tukey g-h process at a location xk, then Yk := Tgh

(
Wk; ıgh

)
, where

Wk ∼ N (ak, C(xk, xk)).

FYk (y) = P(Yk ≤ y)

= P
(
Tgh

(
Wk; ıgh

)
≤ y

)
= P

(
Wk ≤ T −1

gh

(
y; ıgh

))
=⇒ α = FWk

(
T −1

gh

(
y; ıgh

))
(A25)

Rewriting the above equation in terms of the quantile function we get:

QWk (α) = T
−1

gh

(
y; ıgh

)
y = Tgh

(
QWk (α); ıgh

)
QYk (α) = Tgh

(
QWk (α); ıgh

)
= Tgh

(
ak +

√
C(xk, xk)Φ

−1(α); ıgh

)
= Tgh

(
wk(α); ıgh

)
(A26)

We can apply the same proof to the Tukey g-h process at location x∗, where we replace
W∗ ∼ N

(
µp∗ , σ2

p∗

)
, by the predictive posterior parameters, which gives us the conditional

quantile function.
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