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Almost 75% of renal cancers are renal clear cell carcinomas (KIRC). Accumulative evidence
indicates that epigenetic dysregulations are closely related to the development of KIRC.
Cancer immunotherapy is an effective treatment for cancers. The aim of this study was to
identify immune-related differentially expressed genes (IR-DEGs) associated with aberrant
methylations and construct a risk assessment model using these IR-DEGs to predict the
prognosis of KIRC. Two IR-DEGs (SLC11A1 and TNFSF14) were identified by differential
expression, correlation analysis, and Cox regression analysis, and risk assessment models
were established. The area under the receiver operating characteristic (ROC) curve (AUC)
was 0.6907. In addition, we found that risk scores were significantly associated with 31
immune cells and factors. Our present study not only shows that two IR-DEGs can be used
as prognosis signatures for KIRC, but also provides a strategy for the screening of suitable
prognosis signatures associated with aberrant methylation in other cancers.
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INTRODUCTION

The incidence and mortality rates of cancer are increasing rapidly worldwide. In 2020, there were
about 19.3 million new cancer cases and 10 million cancer deaths (Sung et al., 2021). Renal cancer
is one of the most common malignancies, accounting for 2.2% of all new cancer cases (431,288)
and 1.8% of all cancer deaths (179,368) (Sung et al., 2021). Renal clear cell carcinoma (KIRC) is the
most common subtype, accounting for 75% of all renal cancer cases (Turajlic et al., 2018). So far,
KIRC is still difficult to diagnose at the early stage (Alt et al., 2011). Metastases usually appear
before the primary tumors are discovered (Alt et al., 2011). Surgical resection is the best treatment
for KIRC. However, almost 40% of patients with KIRC who undergo resection will eventually
develop distant metastases (Gupta et al., 2008; Porta et al., 2019). Previous studies have also shown
that patients with metastatic KIRC have a poor prognosis, with about 10% of patients living for
5 years (Turajlic et al., 2018). Therefore, it is necessary to identify suitable prognosis signatures for
patients with KIRC.

Previous studies have shown that renal cancer is believed to arise from cancer stem cells in
proximal convoluted tubules, a complex multistep phenomenon involving the accumulation of
genetic and epigenetic changes (Prasad et al., 2007; Khan et al., 2019). Epigenetic dysregulations are
closely related to the development of renal cancer, such as DNA methylations (Morris and Maher,
2010; Cancer Genome Atlas Research, 2013; Cancer Genome Atlas Research et al., 2016; Morris and
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Latif, 2017). Nearly 20% of KIRC have a high rate of CpG islands
methylations (Cancer Genome Atlas Research, 2013; Hughes
et al., 2013; Morris and Latif, 2017). These cancers tissues
show high aggressiveness and glycolytic activity (Morris and
Latif, 2017). Additionally, previous studies have also shown
that several genes are closely related to the cancerogenesis of
KIRC and regulated by DNA methylations, such as IDH1/2,
CDO1, CTNNB1, CDH1, and COL1A1 (Ibanez De Caceres et al.,
2006; Morris and Maher, 2010; Deckers et al., 2015; Morris and
Latif, 2017; Chang et al., 2019).

Cancer immunotherapy is an effective and vital option for
cancers patients, such as lung cancer, breast cancer, and

pancreatic cancer (Steven et al., 2016; Morrison et al., 2018;
Sugie, 2018). Targeted immunotherapy is emerging as a new
cornerstone (Deleuze et al., 2020). Cancer immunotherapy can
overcome some of the side effects of radiotherapy and
chemotherapy. Therefore, it is quite important to identify
appropriate signatures to better classify patients and determine
the optimal treatment manner and sequence to overcome the
drug resistance in patients with KIRC (Deleuze et al., 2020).
Therefore, this study aimed to identify immune-related
differentially expressed genes associated with aberrant
methylations and use them to construct a risk assessment
model to predict the prognosis of KIRC.

FIGURE 1 | Identification of IR-DEGs associated with aberrant methylations. (A), Volcano plot of DNAmethylations status. (B), Distribution of the DNAmethylations
sites for DMPs. (C), Volcano plot of DNA methylations status for the DMPs in promoter region. (D), Distribution of the DNA methylations sites for the DMPs in promoter
region. e-f, Volcano plot of DEGs (E) and IR-DEGs (F) status. (G), Correlation of 29 DMPs and 26 IR-DEGs. (H), Protein interaction of 26 IR-DEGs. i-j, Heatmap of 29
DMPs (I) and 26 IR-DEGs (J).
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MATERIAL AND METHODS

Data Source and Processing
RNAseq data for 602 samples (72 controls and 530 cancers)
and 450K methylations Chip data for 484 samples used in this
study were obtained from the cancer genome atlas (TCGA)
database. Clinical data for 530 patients with KIRC were
downloaded from TCGA database. Identified immune-
related genes were downloaded from the ImmPort database
(http://www.immport.org). The infiltration data of immune
cells and factors were downloaded from Tumor IMmune
Estimation Resource (TIMER) (https://cistrome.shinyapps.
io/timer/).

DESeq2 in R software (3.6.2) was used to screen the
differential expression genes (DEGs) by these criteria:
baseMean ≥50, |logFC| ≥ 0.5, adj p-value < 0.05. ChAMP in R
software (3.6.2) was used to screen the differential methylations
probes (DMPs) by these criteria: |logFC| ≥ 0.3, adj p-value < 0.05.
Spearman correlation analysis was used to determine the
relationship of immune related DEGs (IR-DEGs) and DMPs
by these criteria: R-value ≤ −0.3, p-value < 0.05.

Survival Analysis
According to the median values, patients with KIRC were divided
into a low expression group and a high expression group.
Kaplan–Meier (KM) analysis and univariate Cox regression

analysis were used to screen the candidate prognosis
signatures, followed by least absolute shrinkage and selection
operator (LASSO) analysis. Multivariate Cox regression analysis
was performed on these IR-DEGs screened by K-M, and
univariate Cox regression analysis to obtain the candidate
prognostic signatures.

Risk Assessment Model Construction and
Principal Component Analysis
The prognosis signatures determined by multivariate Cox
regression analysis were used to construct the risk model. Risk
Score � Exp(SLC11A1) *0.4668 + Exp(TNFSF14)*0.4458 (Fan et al.,
2018; Yao et al., 2020). Principal component analysis (PCA) was
used to reduce the dimension and visualize the distribution of
patients with KIRC with different risk scores.

Proteins Interaction and Functional
Enrichment Analysis
STRING 11 (https://string-db.org/) and Cytoscape 3.7.2 were
used to evaluate and visualize the proteins interactions
respectively. DAVID 6.8 was used to carry out the Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis (https://david.
ncifcrf.gov/).

FIGURE 2 | Construction of risk assessment model. (A,B), K-M analysis and LASSO analysis illustrated 8 IR-DEGs. (C,D), Univariate Cox regression analysis and
LASSO analysis illustrated 5 IR-DEGs. (E), Multivariate Cox regression illustrated two IR-DEGs (SLC11A1 and TNFSF14). (F), The expression of these two IR-DEGs
(SLC11A1 and TNFSF14) in the normal and KIRC cancer patients. (G,H), K-M curve of these two IR-DEGs (SLC11A1 and TNFSF14). (I), Risk scores and survival status
for each KIRC. (J), Cutoff value for the risk model. (K), The expression of these two IR-DEGs (SLC11A1 and TNFSF14) in different risk groups. (L), K-M curve of the
risk model. (M), ROC curve of different clinical characteristic and the risk model. *p < 0.05, **p < 0.01, ***p < 0.001.
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Statistic Analysis
Unpaired two-tailed Student’s t-test was used to investigate the
relationship of the risk scores with the clinical characteristics of
KIRC. All results are expressed as mean ± SEM.

RESULTS

Identification of IR-DEGs Associated With
Aberrant Methylations
Through differentially expressed analysis by ChAMP, 3490
DMPs were identified, including 2646 hypermethylation DMPs
and 844 hypomethylation DMPs (Figure 1A). Of which, 850
DMPs (618 hypermethylation DMPs and 232 hypomethylation
DMPs) were located in the promoter region (5′UTR, TSS200, and
TSS1500) (Figure 1C). The distributions of 3490 DMPs and 850
DMPs in the promoter region were displayed in Figures 1B,D,
respectively.

Through differentially expressed analysis by DEseq2, 8750
DEGs were identified, including 5319 upregulated DEGs and
3431 downregulated DEGs (Figure 1E). By overlapping with the
identified immune-related genes, we obtained 569 upregulated
IR-DEGs and 177 downregulated IR-DEGs (Figure 1F).

To know which IR-DEGs were correlated with aberrant
methylations, we introduced Spearman correlations analysis
for 850 DMPs and 746 IR-DEGs, and found 26 IR-DEGs were
negatively correlated with 29 DMPs (Figure 1G). We conducted
proteins interaction for these 26 IR-DEGs, and the result was
displayed in Figure 1H. The expressions levels of these 26 IR-
DEGs and 29 DMPs were displayed in Figures 1I,J.

Identification of IR-DEGs as Candidate
Prognosis Signatures
To know the relationships between these 26 IR-DEGs and overall
survival (OS) in patients with KIRC, we firstly performed K-M
analysis on 26 IR-DEGs followed LASSO analysis, and
determined 8 IR-DEGs were associated with the OS in
patients with KIRC (Figures 2A,B). We then performed
univariate Cox regression analysis on 26 IR-DEGs followed
LASSO analysis, and determined 4 IR-DEGs were associated
with the OS in patients with KIRC (Figures 2C,D). The
overlapping determined IR-DEGs were SLC11A1, VIM,
TNFSF14, and NOD2. Subsequently, we performed
multivariate Cox regression analysis on these 4 IR-DEGs, and
found SLC11A1 and TNFSF14 were associated with the OS in

FIGURE 3 | Independent prognosis factors and correlation analysis. (A), K-M analysis of prognosis factors. (B), Multivariate Cox regression analysis of prognosis
factors. (C), The 1-year, 3-year, 5-year, and 10-year ROCof the riskmodel show that all AUC valueswere over 0.60. (D–G), Correlation of risk values (left) and these two FR-
DELs (right) expressions with the pathologic T (D), pathologic N (E), pathologic N (F), pathologic stage (G), age (H), and gender (I). *p < 0.05, **p < 0.01, ***p < 0.001.
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patients with KIRC independently (Figure 2E). The expressions
of these two IR-DEGs were significantly increased in patients
with KIRC (Figure 2F). Patients with high expressions of
SLC11A1 or TNFSF14 had poor OS (Figures 2G,H).

Construction of Risk Assessment Model
We constructed a risk assessment model using SLC11A1 and
TNFSF14. The risk score and survival status of each KIRC patient
were displayed in Figure 2I. We used the optimal cutoff value to
regroup the patients with KIRC into low-risk and high-risk
groups (Figure 2J). The expressions of these two IR-DEGs
were also significantly increased in the patients with KIRC
with high-risk scores (Figure 2K). Patients with KIRC with
high-risk scores had poor OS (Figure 2L). Then the ROC
curve was plotted and the AUC value was calculated, as
shown in Figure 2M.

Correlation Analysis of Risk Scores With
Clinical Characteristics
We performed the K-M and multivariate Cox regression analysis
on the clinical characteristics and risk models of patients with
KIRC, and found that age, pathologic TNM, pathologic stage, and
risk model were correlated with the OS of patients with KIRC, as
measured by K-M analysis (Figure 3A). Age, pathologic TM, and
risk model were correlated with the OS of patients with KIRC
independently, as measured by multivariate Cox regression
analysis (Figure 3B). By retrospective examination, we found
that the AUC values of risk models were comparable to
pathologic T and slightly higher than that of pathologic M

and age (Figure 2M). The AUC value of the risk model at 1,
3, 5, and 10 years was over 0.60 (Figure 3C).

Subsequently, we also investigated the relationship between
the risk scores and different clinical characteristics. The results
suggested that the risk scores of patients with KIRC with
pathological stage T3+4, N1, M1, III + IV patients were higher
than these of patients with KIRC with pathological stage T1+2,
N0, M0, I + II patients, and the risk scores of patients with KIRC
with different age and sex were comparable (Figures 3D–I left).
SLC11A1 was significantly increased in patients with KIRC with
pathologic T3+4, N1, M1, and III + IV. TNFSF14 was
significantly increased in patients with KIRC with pathologic
T3+4, M1, and III + IV. There was no significant difference for
TNFSF14 in different pathologic N (Figures 3D–I right).

PCA and Functional Enrichment Analysis
PCA analysis was used to reduce the dimension and visualize the
distribution of patients with KIRC with different risk scores. We
could well distinguish patients with KIRC with high-risk scores
from the patients with KIRC with low-risk scores using these four
IR-DEGs (SLC11A1, VIM, TNFSF14, and NOD2) filtered by KM
analysis and univariate Cox regression analysis (Figure 4C) and
these two IR-DEGs (SLC11A1 and TNFSF14) filtered by
multivariate Cox regression analysis (Figure 4D). We could
not use these 746 ID-EGs filtered by differentially expressed
analysis (Figure 4A) and these 26 IR-DEGs filtered by
Spearman correlation to distinguish between high-risk and
low-risk patients (Figure 4B).

We then re-performed the differential expression analysis for
these patients with KIRC with different risk scores, and identified

FIGURE 4 | PCA analysis for KIRC with different risk scores. PCA plots displayed the distribution of patients with renal cancer with high risk scores and low risk
scores based on 746 FR-DEGs filterer by differentially expressed analysis (A), 26 FR-DEGs filtered by Spearman correlation analysis (B), 4 FR-DEGs filtered by K-M
analysis and univariate Cox regression analysis (C), two FR-DEGs filtered by multivariate Cox regression analysis (D).
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3333 DEGs (2220 upregulated DEGs and 1113 downregulated
DEGs) (Supplementary Figure S1). GO analysis indicated that
there were 73 BP, 24 CC, and 20 MF that were enriched
significantly with p value <0.05 and FRD <0.05
(Supplementary Table S1). The BB, CC, and MF with the
number of genes ranked in the top 10 are shown in Figures
5A–C. KEGG analysis indicated that 41 signaling pathways were
enriched with p value <0.05 and FRD <0.05 (Supplementary
Table S2). The signaling pathways with the number of genes
ranked in the top 10 are shown in Figure 5D. Of these 3333
DEGs, 436 were immune-related DEGs. We also performed the
proteins interaction analysis for these 436 IR-DEGs. In general,
the more a gene interacts with other genes, the more important its
function is. We obtained 136 IR-DEGs, which were higher than
the average (32.1). The interactions of these 136 IR-DEGs were
shown in Figure 5E.

Correlation Analysis of Risk Scores With
Immune Infiltration
In the present study, we aimed to identify IR-DEGs associated
with aberrant methylations as prognosis signatures. We firstly
investigated the relationships of immune cell infiltration with
KIRC, and found 67 and 21 immune cells and factors were
significantly increased and decreased in patients with KIRC
respectively (Supplementary Table S3). Of these, there were
77 different immune cells and factors that were significantly
different between low-risk and high-risk patients (Figures
6A–G). We then introduced Spearman correlation analysis for
the risk model with these 77 immune cells and factors, and found
that 26 and 5 immune cells and factors were positively and
negatively correlated with the risk scores respectively
(Figure 6H).

FIGURE 5 | Functional enrichment analysis and protein interaction analysis. (A–C), The significantly enriched GO term (top 10). BP, Biological Process (A). CC,
Cellular Component (B). MF, Molecular Functions (C). (D), The significantly enriched KEGG pathway (top 10). (E), The protein interaction for these FR-DEGs with their
degree ≥average (32.1).
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DISCUSSIONS

Renal cancer is one of the most common malignancies.
Accumulative studies indicated that aberrant DNA
methylations are involved in the development of cancers
(Morris and Maher, 2010; Cancer Genome Atlas Research,
2013; Cancer Genome Atlas Research et al., 2016; Morris and
Latif, 2017). Radiotherapy and chemotherapy are common
strategies for cancers accompanied by surgery. Cancer
immunotherapy is a new alternative option for cancers that
could overcome the nonspecific problems of radiotherapy and
chemotherapy. It is fairly important to identify IR-DEGs as
prognosis signatures to predict the outcome for KIRC. In the
present study, we found that two IR-DEGs (SLC11A1 and
TNFSF14) were significantly increased in the patients with
KIRC and patients with KIRC with high-risk scores. High
expression of these two IR-DEGs (SLC11A1 and TNFSF14)
displayed worse OS. These two IR-DEGs could used to be
prognosis signatures for KIRC.

SLC11A1 is a member of the solute carrier family 11 (proton-
coupled divalent metal ion transporters) family. It is associated
with susceptibility to various autoimmune and infectious

diseases. However, several studies have demonstrated that
SLC11A1 is also closely related to cancers. Zaahl et al. (2005)
found that genetic variations in both the promoter region and
intron 1 of the SLC11A1 were associated with esophageal cancer.
Takashima et al. (2018) found that glioblastoma multiforme
(GBM) patients with high expression of SLC11A1 displayed
worse OS. SLC11A1 could be a promising predictor of the
prognoses of GBM patients and used to develop effective
GBM treatment strategies (Takashima et al., 2018). The results
of our present study were consistent with previous results, and
further suggested that SLC11A1 was closely related to cancers and
may be used as their prognosis biomarker.

TNFSF14 (TNF superfamily member 14) is a member of the
tumor necrosis factor (TNF) ligand family, encodes by
TNFSF14. The expression of TNFSF14 within tumors has
profound effects on host immune responses against tumors
and the remodeling of the tumor microenvironment (Skeate
et al., 2020). He et al. (2018) found TNFSF14–CGKRK could
induce high endothelial venules formation and lymphocyte
accumulation in murine glioblastoma (He et al., 2018).
Brunetti et al. (2020) found that the expression of TNFSF14
in serum was higher in patients with bone metastases than in

FIGURE 6 |Correlations analysis of risk scores with immune infiltration. (A–G), The expression of the immune cells and factors with the risk model [(A), XCELL. (B),
CIBERSORT. (C), CIBERSORT-ABS. (D), MCPCOUNTER. (E), TIMER. (F), QUANTISEQ. (G), EPIC). (H), Correlation of the risk models with 31 immune cells and factors
(|R| > 0.3, p < 0.05). * means p < 0.05, ** means p < 0.01, *** means p < 0.001.
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controls (Brunetti et al., 2020). TNFSF14 could promote
osteolytic bone metastases in non-small cell lung cancer
patients (Brunetti et al., 2020). In the present study, we
found the expression of TNFSF14 was increased significantly
in patients with KIRC and patients with KIRC with high-risk
scores. Patients with KIRC with high expression of TNFSF14
exhibited worse OS. Our present studies further reinforce the
relationship of TNFSF14 with cancer, immune characteristic,
and survival status.

Although the risk model constructed by using these two
signatures (SLC11A1 and TNFSF14) could better predict the
prognosis of patients with KIRC, there are still some
limitations in our present study, such as a small sample size
and a lack of cross-validation. However, since we did not find
other suitable data information of KIRC, we will collect a large
number of clinical samples of KIRC to confirm the model. These
will be our next focus of investigation.

CONCLUSION

Epigenetic dysregulations are clearly associated with the
development of renal cancer. In the present study, we not only
identified two IR-DEGs may be the prognosis signatures for KIRC,
but also provided a strategy for the screening of suitable prognosis
signatures correlated with aberrant methylations for other cancers,
even though the results require further validation.
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