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Abstract
Alterations in cognitive performance have been noted in nondemented subjects with elevated accumulation of amyloid-β
(Aβ) fibrils. However, it is not yet understood whether brain function is already influenced by Aβ deposition during the very
earliest stages of the disease. We therefore investigated associations between [18F]Flutemetamol PET, resting-state
functional connectivity, gray and white matter structure and cognitive performance in 133 cognitively normal elderly that
exhibited normal global Aβ PET levels. [18F]Flutemetamol uptake in regions known to accumulate Aβ fibrils early in
preclinical AD (i.e., mainly certain parts of the default-mode network) was positively associated with dynamic but not static
functional connectivity (r = 0.77). Dynamic functional connectivity was further related to better cognitive performance (r =
0.21–0.72). No significant associations were found for Aβ uptake with gray matter volume or white matter diffusivity. The
findings demonstrate that the earliest accumulation of Aβ fibrils is associated with increased functional connectivity, which
occurs before any structural alterations. The enhanced functional connectivity may reflect a compensatory mechanism to
maintain high cognitive performance in the presence of increasing amyloid accumulation during the earliest phases of AD.
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As one of the main causes of dementia, Alzheimer’s disease
(AD) is characterized by the accumulation of amyloid β (Aβ) and

hyperphosphorylated tau in the brain as major neuropathologi-
cal hallmarks (Sperling et al. 2011). This leads to neuronal
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dysfunction and ultimately cell death, which is clinically
accompanied by progressive cognitive decline such as memory
impairment and executive dysfunction (Buckner 2004; Braskie
and Thompson 2013).

Since the neuropathological changes occur many decades
before the manifestation of clinical symptoms (Sperling et al.
2014), early detection may offer an essential aspect in disease
prevention. Biomarkers obtained from cerebrospinal fluid (CSF)
and positron emission tomography (PET) imaging are often rou-
tinely used when classifying subjects as amyloid positive or
negative (Blennow et al. 2015; Palmqvist et al. 2015). Although
CSF markers detect amyloid abnormalities slightly earlier than
PET (Palmqvist et al. 2016a), CSF Aβ seems to plateau earlier
during the nondementia stage of AD where PET amyloid accu-
mulation still increases (Villemagne et al. 2013; Palmqvist et al.
2016b), possibly because they represent different aspects of the
pathology (Mattsson et al. 2015; Palmqvist et al. 2016a).
Furthermore, whole brain imaging has the advantage of
regional specificity, enabling PET imaging to grade the amount
of amyloid burden at a more detailed level than global CSF mar-
kers (Palmqvist et al. 2014).

In addition to Aβ PET, also other imaging modalities have pro-
vided great insight into the disease progress of AD. Previous work
focusing on AD patients has shown that brain metabolism
(Ossenkoppele et al. 2012), neuronal activation (Golby et al. 2005),
resting-state functional connectivity (Nuttall et al. 2016), and brain
structure (Jin et al. 2017) deteriorate across the AD spectrum. To fur-
ther investigate brain alterations in prodromal stages of AD, various
studies have been carried out in mild cognitive impairment and
healthy elderly subjects with mixed results. Interestingly, several
studies examining nondemented populations have observed asso-
ciations of Aβ accumulation with increases in brain function and
connectivity (Sperling et al. 2003; Mormino et al. 2011; Lim et al.
2014), which is often interpreted as a potential compensatory
mechanism. It is important to note that the vast majority of these
studies included subjects already exhibiting increased and wide-
spread neocortical Aβ pathology. Given that deposition of Aβ fibrils
is considered to represent one of the earliest changes in AD
(Sperling et al. 2011), which is believed to begin at least 1–2 decades
before dementia onset (Bateman et al. 2012; Buchhave et al. 2012;

Jansen et al. 2015), it is crucial to consider amyloid status when tar-
geting the early onset stage. Recent investigations of nondemented
individuals have identified the brain regions that are most prone to
exhibit increased Aβ accumulation in the earliest stages of AD, and
these regions mainly include certain parts of the default mode (DM)
network (Villeneuve et al. 2015; Gonneaud et al. 2017; Palmqvist
et al. 2017). However, further studies are needed to determine
whether this very early accumulation of Aβ fibrils affects brain con-
nectivity, structure and function.

To this end, we evaluated the associations of amyloid ([18F]
Flutemetamol) PET uptake in the brain regions with earliest Aβ
deposition with functional connectivity, gray matter volume,
white matter diffusivity and cognitive performance in nonde-
mented individuals with an overall negative amyloid PET scan
(i.e., they exhibited both a normal neocortical composite SUVR
and normal visual read). Considering that functional connectiv-
ity exhibits nonstationary characteristics over time (Hutchison
et al. 2013; Calhoun et al. 2014), this was further split into dif-
ferent dynamic states. Dynamic functional connectivity has
been demonstrated to represent behaviorally relevant informa-
tion (Jia et al. 2014) and to differ between various mental disor-
ders (Li et al. 2014; Yu et al. 2015), but its relation to amyloid
pathology has not yet been assessed.

Methods
Subjects

In the present study we included 133 nondemented elderly sub-
jects, consisting of 85 healthy subjects and 48 with subjective
cognitive decline (SCD) from the Swedish BioFINDER study
(http://biofinder.se). All cases were without clinically relevant
amyloid deposition (i.e., all were PET negative subjects, see defi-
nition below). See Table 1 for demographic details. Details about
study design, methods, and specific inclusion/exclusion criteria
of the BioFINDER study have previously been described (Janelidze
et al. 2016, 2017; Palmqvist et al. 2017). In the present study the
following cognitive tests were included: Mini Mental State
Examination (MMSE) as a measure of global cognition, the 10-
word delayed recall part of the Alzheimer’s Disease Assessment
Scale, cognitive subscale (ADAS-cog) as a measure of memory
performance, and A Quick Test of cognitive speed (AQT), color-
form version as a measure of cognitive speed and attention. All
participants provided written informed consent after detailed
explanation of the study protocol. The study was approved by
the Ethical Review Board of Lund University and all procedures
were performed according to the Declaration of Helsinki.

Positron Emission Tomography

To assess Aβ accumulation in the brain, PET imaging was car-
ried out as described previously (Palmqvist et al. 2014, 2017).
Briefly, all subjects underwent a PET examination with [18F]
Flutemetamol on a Philips Gemini TF 16 scanner (Philips
Healthcare). The radioligand represents an 18F-labeled analog
to [11C]PiB, where both bind specifically to Aβ (Vandenberghe
et al. 2010; Heurling et al. 2015). The mean injected dose was
185MBq and PET images were acquired 90–110min postinjec-
tion (5min per frame), followed by a CT scan for attenuation
correction. Image processing included movement correction,
averaging across time and spatial normalization to MNI-space
(Palmqvist et al. 2017). Standard uptake value ratio (SUVR)
images were computed using a combined reference region
(whole cerebellum, pons/brainstem, eroded subcortical white
matter) (Landau et al. 2015). Correction for partial volume

Table 1 Demographic details (mean ± sd). The sample comprised
healthy controls (HC) and those with subjective cognitive decline
(SCD)). All participants had an MMSE score ≥ 25 and did not exhibit
clinically relevant amyloid deposition (i.e., PET negative). [18F]
Flutemetamol SUVR, standard uptake value ratios of brain regions
prone to early amyloid uptake (Fig. 1); MMSE, mini mental state
examination score. Delayed recall, 10-word delayed recall part of
the Alzheimer’s disease assessment scale (number of errors out of
10); AQT, a quick test of cognitive speed color-form version (reaction
time in seconds); APOE ε4, carriers of 1 or 2 alleles; History, family
history of dementia in first degree relatives

HC SCD All
n 85 48 133

Sex (m/f) 32/53 20/28 52/81
Age (years) 73.7 ± 4.2 68.9 ± 5.5 72.0 ± 5.2
[18F] Flutemetamol SUVR 0.58 ± 0.06 0.61 ± 0.06 0.59 ± 0.06
MMSE 29.0 ± 1.0 28.9 ± 1.4 29.0 ± 1.2
Delayed recall (errors) 1.8 ± 1.9 2.7 ± 2.0 2.1 ± 2.0
AQT (s) 66.5 ± 12.6 72.3 ± 24.9 68.6 ± 18.1
Education (years) 11.8 ± 3.1 13.8 ± 3.1 12.5 ± 3.2
APOE e4 (%) 20.0 29.2 23.3
History (%) 30.6 47.9 36.8
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effects was carried out with the geometric transfer matrix
method (Rousset et al. 1998) by calculating and inverting the
transfer matrix between tissue regions extracted from
FreeSurfer segmentation. This correction step ensures that our
results are not driven by potential differences in gray matter
volume. All subjects showed normal Aβ accumulation, that is,
they were PET negative (PET−) according to a recently described
classification (Palmqvist et al. 2017). In short, SUVR values of a
neocortical composite region (frontal, lateral parietal, lateral
temporal, anterior cingulate, posterior cingulate, precuneus)
(Mormino et al. 2009) were required to be <0.759 as defined
with a mixture modeling analysis in a larger sample of the
BioFINDER study (n = 406). SUVR images were then masked
by a conservative gray matter template (Yeo et al. 2011).
Furthermore, all PET images were visually inspected by 3 expe-
rienced external physicians (at MNI, New Haven, USA), who
independently classified all PET images as positive or negative.
The physicians were blind to clinical data and the scans rated
here were part of a larger data collection which included many
positive cases as well. The final classification was obtained by
majority rule, where at least 2 of the 3 physicians rated a sub-
ject as negative.

To evaluate associations between Aβ accumulation and
MR imaging parameters, we extracted the average [18F]
Flutemetamol SUVR from brain regions that are most prone to
the earliest accumulation of Aβ (Fig. 1a in Palmqvist et al. 2017).
The regions comprised the posterior cingulate cortex and pre-
cuneus, the subgenual part of the anterior cingulate cortex and
to a lesser extent bilaterally the angular gyrus, posterior middle
temporal gyrus and middle frontal gyrus (Fig. 1, P < 0.05 FWE-
corrected voxel level, which is more stringent than previously
published (Palmqvist et al. 2017) to focus on regions with stron-
gest changes). The regions are similar to those observed as the
most affected early Aβ-positive regions in autosomal dominant
AD (Tang et al. 2016). Furthermore, the regions correspond to
those classified as early (stage 2) Aβ progression (Grothe et al.
2017) and show substantial overlap with another study asses-
sing early stages of Aβ deposition (Villeneuve et al. 2015). Since
these brain regions largely comprise the DM network we also
extracted SUVR values explicitly from the DM as defined in a
low (7 networks) and high resolution (17 networks) parcellation
of the brain (Yeo et al. 2011).

Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) was carried out with a 3 T
Siemens Tim Trio scanner (Siemens Medical Solutions,

Erlangen, Germany). This included acquisition of a T1-weighted
structural MRI (magnetization prepared rapid gradient echo
sequence, TE/TR = 3.37/1950ms, 1 × 1 × 1.2mm3), diffusion
weighted images (single-shot echo planar imaging sequence,
TE/TR = 86/8200ms, 64 diffusion encoding directions at b =
1000 s/mm2 and one image at b = 0 s/mm2, 2 × 2 × 2mm3) as
well as 6min functional MRI at resting-state with eyes closed
(gradient-recalled echo planar imaging, TE/TR = 30/2000ms, 3 ×
3 × 3mm3).

Voxel-Based Morphometry

T1-weighted images were segmented and spatially normalized
to MNI-space with the CAT12 toolbox (http://www.neuro.uni-
jena.de/cat/) for SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) using
default parameters. Gray matter segments were converted to
gray matter volume by multiplication with the Jacobian deter-
minants to adjust for effects of nonlinear deformations. The
final images were smoothed with an 8mm Gaussian kernel.

Diffusion Tensor Imaging

Diffusion weighted images were processed with FSL (https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/), which included correction for eddy
currents and movement, brain extraction and estimation of the
tensor. This resulted in images representing mean diffusivity
and fractional anisotropy (FA). Spatial normalization was car-
ried out using tract based spatial statistics (TBSS) (Smith et al.
2006) with default parameters. Here, the individual FA images
were nonlinearly registered to MNI-space and a white matter
skeleton was created where FA images were mapped to.
Images of mean diffusivity were normalized with the transfor-
mations obtained from the FA processing step.

Static Functional Connectivity

fMRI data processing was carried out as described recently
(Palmqvist et al. 2017) and included processing with FSL, AFNI
(https://afni.nimh.nih.gov/), ANTS (https://sourceforge.net/
projects/advants/), and Matlab (The Mathworks, Natick, MA).
Functional images were corrected for slice timing differences
and head motion. Confounding signals were removed by linear
regression against signals from CSF and white matter, 6 compo-
nents of physiological noise (Behzadi et al. 2007) and 24 motion
parameters (Friston et al. 1996). Finally, a band-pass filter was
applied (0.01 < f < 0.1 Hz). Processed images were then trans-
formed to MNI-space. Since subject motion is an essential issue

Figure 1. Brain regions which are most prone to earliest amyloid accumulation as identified in a recent analysis of the ADNI cohort (P < 0.05 FWE-corrected voxel

level) (Palmqvist et al. 2017). The average [18F]Flutemetamol SUVR across these regions was extracted for each subject and used for further analysis.
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in resting-state fMRI analyses, all subjects exceeding a frame-
wise displacement of 0.6mm on average and 3mm at maxi-
mum were removed (Power et al. 2012). Another precaution
was included in this elderly population by summing up the
voxel-to-voxel BOLD signal correlations across the entire brain.
Outliers in this metric most likely reflect motion-related global
signal confounds and where thus removed (He and Liu 2012).
The 133 subjects stated above already represent the final sam-
ple after applying these exclusion criteria. Finally, fMRI frames
were censored if they constituted outliers in the total signal
frame-to-frame variation (75% plus 1.5 times interquartile
range).

Static functional connectivity matrices were computed by
cross-correlation of the entire BOLD signal time courses
between each region of interest pair. Brain regions were
defined using a publicly available atlas of 840 regions based
on resting-state fMRI data (Craddock et al. 2012). This repre-
sents a detailed parcellation of the human brain close to a
voxel-wise analysis but with the advantage of processing a
computationally feasible amount of data. The resulting corre-
lation values were then z-transformed with Fisher’s r-to-z
transformation.

Dynamic Functional Connectivity

Data processing was identical as for the static analysis until the
calculation of connectivity matrices. Dynamic functional con-
nectivity was computed for the symmetric matrix defined by
the 840 × 840 region pairs using an exponentially tapered slid-
ing window approach (Zalesky et al. 2014). The weighting step
assigns highest weights to the most recent events and the
exponential smoothing avoids sudden changes in functional
connectivity, making it less susceptible to outlier values. The
time window for each dynamic connectivity matrix was N =
60 s (Zalesky et al. 2014) and the weight vector was defined as
an exponential function (Pozzi et al. 2012):

= ∗ θ( − )w w et
t N

0
/

with t = 1…N and w0 being

= ( − ) ( − )θ θ− −w e e1 / 1 N
0

1/ /

where the exponent θ was set to 1/3 of the window length
(Zalesky et al. 2014). Weighted Pearson’s correlation coefficients
were then computed from weighted means, standard deviation,
and covariances, followed by z-transformation. Dynamic func-
tional connectivity matrices across time were computed by
consecutively shifting the time window by 1 TR. The values for
the exponent (Pozzi et al. 2012) and window length (Hutchison
et al. 2013; Allen et al. 2014) were based on previous reports
(Zalesky et al. 2014) as it was demonstrated that these repre-
sent reasonable choices.

Identification of Dynamic Connectivity States

Dynamic functional connectivity is characterized by repeatedly
occurring states (Zalesky et al. 2014). To identify these different
connectivity states, k-means clustering was carried out with
Matlab using dynamic functional connectivity matrices of all
subjects as features and 1-correlation as similarity metric
(Hutchison et al. 2013; Allen et al. 2014). For the clustering, con-
nectivity matrices were thresholded at a network density of 20%
(i.e., only keeping the strongest 20% of connections) to avoid
influence of spurious correlations (Zalesky et al. 2014). Clustering

was repeated for a variable number of clusters (k = 2–10 and
10–20 with steps = 1 and 2, respectively). The optimal solution
across all clustering results was determined by the elbow crite-
rion (Allen et al. 2014), where the within sum of squares did not
show a marked improvement anymore for a higher number of
clusters. For each subject multiple occurrences of a certain state
were averaged for further statistical evaluation.

Due to previous concerns of clustering sliding window corre-
lations (Keogh and Lin 2005), the cluster centroids obtained
from dynamic functional connectivity were compared with
centroids of random connectivity matrices. For computational
reasons this procedure was carried out with a randomly
selected subset of the total sample (n = 43), for k = 6 clusters
and 3 repeats with random initial centroids. Since the similar-
ity metric was 1-correlation, we also used the correlation to
compute the within- and between-cluster distance.

Furthermore, sliding window correlations were also com-
puted with a window of N = 46 s as this represents the middle
of previously proposed window lengths of 30–60 s (Shirer et al.
2012; Hutchison et al. 2013). The resulting states were then
compared with those obtained with the N = 60 s window.

Statistical Analysis

Associations between [18F]Flutemetamol SUVR, MR imaging
parameters, cognitive test scores (MMSE, AQT, ADAS-cog),
years of education, and first degree family history of dementia
were calculated with linear regression analysis. For whole-
brain static and dynamic functional connectivity the Network
Based Statistics (NBS) toolbox (Zalesky et al. 2010) was used.
To control for false positives within whole-brain connectivity
matrices of 840 regions, the initial connection threshold was
set to P < 0.0001 uncorrected, followed by a network threshold
of P < 0.05 FWE corrected. Hence, all P-values provided in the
results are FWE corrected. Statistical testing was done with
5000 random permutations and intensity weighting (i.e.,
weighting by connection strength). In other words, the total
intensity (i.e., the sum of t-values of suprathreshold links) of
an observed network component was compared with a permu-
tation generated null distribution of component intensities,
thereby assigning an FWE-corrected P-value to the observed
network component. To calculate r-values for significant asso-
ciations, the functional connections of the significant network
components were weighted by t-values, averaged for each sub-
ject and correlated with the variable of interest. The extracted
network components which showed a significant association
with [18F]Flutemetamol SUVR, where also correlated with
cognitive test scores. SPM12 and FSL were used to compute
whole-brain regressions with gray matter volume (P < 0.05
FWE-corrected voxel level, cluster extent >10 voxels) and
white matter diffusion parameters (500 random permutations,
P < 0.05 FWE-corrected with threshold free cluster enhance-
ment), respectively. In order to obtain more generalizable
results of an elderly population independent of potential con-
founders and risk factors, all statistical analyses were cor-
rected for sex, age, clinical diagnosis (healthy, SCD), and APOE
ε4 status (noncarriers vs. carriers of 1 or 2 alleles).
Visualization of connectograms and brain networks was car-
ried out with Circos (Krzywinski et al. 2009) and BrainNet
Viewer (Xia et al. 2013), respectively. For the connectograms
each element of a 840 × 840 connectivity matrix was allocated
to 1 of 7 cortical resting-state networks (DA, dorsal attention;
DM, default mode; FP, frontoparietal; FT, frontotemporal; SM,
somatomotor; VA, ventral attention; VI, visual) (Yeo et al.
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2011), the basal ganglia (BG), the amygdala/hippocampus (HI),
or the cerebellum (CER) from the Harvard–Oxford atlas as
included in FSL.

Results
We have recently identified the cortical regions most prone to
accumulate Aβ fibrils during the earliest stages of AD
(Palmqvist et al. 2017) (Fig. 1). In the current study the average
[18F]Flutemetamol SUVR was extracted from these regions in
133 nondemented and Aβ PET negative cases from the
BioFINDER cohort.

Static Functional Connectivity

The [18F]Flutemetamol uptake in the early Aβ regions did not
show an association with static functional connectivity. This
was also not the case when extracting [18F]Flutemetamol SUVR
from the high or low resolution DM defined by Yeo et al. (2011)
or when using SUVRs from the neocortical composite score
(Mormino et al. 2011).

Dynamic Functional Connectivity

K-means clustering identified 6 dynamic connectivity states as
best solution, which is similar to previous studies (Allen et al.
2014; Yu et al. 2015). All states exhibited a common backbone
of links (calculated as the average across all subjects and
states), which was characterized by strong within network con-
nections as well as default mode, dorsal attention, ventral
attention, and somatomotor connections with other networks
(Fig. 2). The common backbone almost perfectly reflected the
average static functional connectivity pattern with r = 0.97
between the 840 × 840 matrices (both thresholded at a network
density of 20%, Fig. 2). Furthermore, each of the 6 states exhib-
ited connections, which were specific to itself (i.e., >2 SD stron-
ger than average). State 1 showed additional links of the
default mode, visual and cerebellar networks. State 2 exhibited
frontoparietal connections and default mode links with other
networks. In state 3, connections of the ventral attention net-
work were dominant. State 4 showed strong somatomotor
links. States 5 and 6 were mostly characterized by default mode
connections.

Detailed evaluation of sliding window correlations showed
good similarity of cluster centroids within functional connec-
tivity data (r = 0.82 ± 0.05), which was markedly different to
random matrices (r = 0.002 ± 0.0004). This indicates that clus-
tering obtained from sliding window correlations of dynamic
functional connectivity data is clearly different to that of ran-
dom data (Keogh and Lin 2005). Changing the sliding window
to N = 45 s also showed high reproducibility of the functional
connectivity states (r = 0.97 ± 0.02).

Of the 6 dynamic states, only functional connectivity of
state 1 was positively associated with [18F]Flutemetamol SUVR
in the early Aβ region (r = 0.77, Fig. 3). The correlation featured
strong default mode connections with the ventral attention
and somatomotor networks as well as between the ventral
attention and visual networks and comprised 122 regions (out
of 840) and 145 edges. Additionally correcting for individual
gray matter volume of the early Aβ region (r = 0.77), global
white matter hyperintensity volume (r = 0.77), Fazekas score
(r = 0.76) or Wahlund score (r = 0.76) did not affect this relation-
ship. The connections, which were associated with SUVR, were
also related to a better MMSE score (r = 0.21, Fig. 3). Extracting

SUVR from the DM (Yeo et al. 2011) showed a significant associ-
ation with functional connectivity of state 1 for the low (r =
0.70, 75 regions, 87 edges) and high resolution parcellations (r =
0.71, 71 regions, 82 edges). No significant correlation was
observed for SUVRs from the neocortical composite score.
Further exploratory whole-brain correlations with cognitive
test scores were found for state 3 (r = 0.51, VI–SM connections)
and 6 with higher MMSE scores (r = 0.50, CER–VA, and CER–SM
connections) and for state 3 with ADAS error rate (r = −0.72, FT–
VA, and FT–SM connections).

Structural MRI

No significant associations were found between [18F]Flutemeta-
mol uptake in the early Aβ region and any regional gray matter
volumes or any of the regional white matter diffusion para-
meters (mean diffusivity, FA).

Discussion
Proceeding from brain regions previously identified as the most
susceptible to the earliest amyloid deposition (Palmqvist et al.
2017), we here demonstrated robust positive associations of
[18F]Flutemetamol amyloid uptake in these regions with
resting-state fMRI functional connectivity in a large sample of
nondemented elderly subjects of the BioFINDER study.
Importantly, the sample comprised only PET negative subjects,
that is, those without clinically relevant global amyloid deposi-
tion and a negative visual read, and the observed associations
were independent of confounding factors such as age, sex,
APOE ε4 status, presence of SCD, and structural alterations.
These findings suggest that the very earliest accumulation of
Aβ fibrils are biologically relevant and indeed affect brain
function.

Interestingly, only dynamic but not static functional connec-
tivity was associated with Aβ uptake. This indicates that static
functional connectivity analysis exhibits decreased sensitivity
when capturing the association in the earliest stages of Aβ
accumulation. Hence, separating the different dynamic func-
tional states may offer increased ability to detect alterations in
brain connectivity as compared with the commonly used
approach of temporally static connectivity, since the latter may
simply represent an average of the different dynamic states (Jin
et al. 2017). This is confirmed by the remarkable match between
static functional connectivity and average dynamic connectiv-
ity observed here (r = 0.97). Accordingly, dynamic functional
connectivity has been shown to outperform static one with
respect to patient classification in post-traumatic stress disor-
der (Jin et al. 2017).

Most studies of functional connectivity in AD focused on the
DM, due to the large overlap with Aβ accumulation (Buckner
et al. 2009). A recent study identified the posterior DM as ini-
tially failing region and its connectivity with other hubs being
associated with Aβ accumulation (Jones et al. 2016). However,
the earliest deposition of Aβ also comprises other networks
such as the frontoparietal, dorsal and ventral attention.
(Palmqvist et al. 2017). In line with this, the neocortical com-
posite score did not yield significant correlations and extraction
of [18F]Flutemetamol SUVR from the entire DM resulted in a
substantially smaller network, which emphasizes the relevance
of regional specificity (Palmqvist et al. 2016b). The overlap of
early Aβ deposition and the DM is characterized in further
detail by the current work. We indeed confirm that mainly DM
connections are involved, but it seems that links to other
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Figure 2. Dynamic functional connectivity states and number of subjects exhibiting each state (total sample n = 133). Average static (and dynamic) connections across

all subjects (and states) showed strong overlap (r = 0.97). For each of the 6 states only those connections are shown, which are stronger than the common ones (i.e.,

>2 standard deviations stronger than the average). Line thickness is proportional to connectivity strength (z-score). Line thickness of average connections is down-

scaled by 200 for visualization and only the strongest 20% of connections are shown. See Figure 3 for abbreviations and color code.

Figure 3. Associations between [18F]Flutemetamol SUVR extracted from regions shown in Fig. 1 and dynamic resting-state functional connectivity, adjusted for the

covariates sex, age, APOE ε4 status and presence of SCD (P < 0.05 FWE corrected). Functional connectivity further showed a positive correlation with MMSE scores.

Line thickness in connectogram is proportional to association strength (t-values). The r-values denote Pearson correlation coefficients after correction for covariates

using regression. After correction the original mean values were added to the residuals to approximate the raw values, thus calculated values are relative and may

exceed the maximum of the MMSE. BG, basal ganglia; CER, cerebellum; DA, dorsal attention; DM, default mode (red); FP, frontoparietal (green); FT, frontotemporal; HI,

amygdala-hippocampus; SM: somatomotor (blue); VA, ventral attention; VI, visual.
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networks rather than within-network connections are predomi-
nantly affected by the earliest Aβ fibril burden (Brier et al. 2012;
Elman et al. 2016). This indicates that global network coordination
appears to be more important than local circuit functioning in the
pathophysiology of AD.

Similar to the topology of earliest Aβ deposition (Palmqvist
et al. 2017), the positively associated functional connections
were also characterized by links of the DM with the ventral
attention network. These findings are in line with previously
reported increases of neuronal activation (Elman et al. 2014)
and functional connectivity (Mormino et al. 2011; Elman et al.
2016) in healthy elderly subjects with increased amyloid bind-
ing. More importantly, the regions and networks involved in
the earliest stages also match those, that are affected as the
disease progresses eventually into Alzheimer’s dementia (Brier
et al. 2014; Elman et al. 2016), despite the fact that all subjects
studied here were nondemented and yet without clinically rele-
vant Aβ uptake. Furthermore, the increases in functional con-
nectivity were independent of any structural alterations since
no comparable relationships were observed for Aβ uptake with
any regional gray or white matter changes. It therefore seems
that changes in functional connectivity occur before structural
deteriorations in the early stages of pathology of AD.

Increased functional connectivity is usually related to better
cognitive performance (Hampson et al. 2006; Zhang et al. 2014).
Accordingly, the higher dynamic functional connectivity, which
were correlated with early Aβ accumulation, were also associ-
ated with better global cognitive function (i.e., higher MMSE
scores). The trimodal relationships between amyloid uptake (in
the early Aβ region), functional connectivity and cognitive per-
formance could reflect a potential compensatory mechanism, a
commonly observed manifestation of cognitive reserve in early
stages of dementia (Buckner 2004; Stern 2012; Amieva et al.
2014; Ossenkoppele et al. 2014), where enhanced brain function
compensates for amyloid-induced neuronal damage and struc-
tural deterioration later in the disease. The phenomenon has
been observed across a wide range of imaging modalities,
including neuronal activation (Sole-Padulles et al. 2009; Elman
et al. 2014), functional (Palmqvist et al. 2017; Serra et al. 2017),
and metabolic connectivity (Perani et al. 2017) and even for
gray matter volume (van Loenhoud et al. 2017). Hence, there is
great amount of work suggesting that subjects with better cog-
nitive performance also exhibit an increased ability to recruit
neuronal networks in order to counterbalance the increased
amyloid burden. In line with this, our data might indicate that
the increased functional connectivity is more common in indi-
viduals with a greater cognitive reserve. As the main novel
finding, we demonstrate that these mechanisms are already at
play when global Aβ uptake is still within the normal range,
thereby possibly capturing the earliest manifestations of cogni-
tive reserve as a response to emerging pathological processes.
The importance to assess early Aβ accumulation has also
recently been confirmed, as this can be detected in cognitively
normal subjects (Gonneaud et al. 2017; Grothe et al. 2017;
Hanseeuw et al. 2018), it is associated with increased tau depo-
sition (Leal et al. 2018) and with subsequent memory decline
(Farrell et al. 2018; Landau et al. 2018).

On the other hand, the recruitment of additional networks
could also imply that these subjects are more affected by AD
pathology. The increased connectivity would then allow sub-
jects in the early disease stages to tolerate a higher amount of
amyloid deposition while maintaining high cognitive function
(Stern 2012) as it was also shown with the current findings.
These compensatory mechanisms may however fail with

further disease progression and when pathology overwhelms
function. The view of initially high cognitive performance but
rapid decrease afterwards is supported by several studies, par-
ticularly with respect to functional connectivity, suggesting an
inverted U-shape of cognitive function. That is, functional con-
nectivity of different brain networks has been shown to first
increase with increasing yet normal brain amyloid accumula-
tion while maintaining high cognitive function, but then again
decreases as amyloid reaches abnormal levels (Damoiseaux
et al. 2012; Brier et al. 2014; Palmqvist et al. 2017; Schultz et al.
2017). Hence, a key aspect of future research will be to identify
the individual time point of this deterioration and to establish
potentially preventive interventions.

Finally, we would like to add an alternative explanation, as
increased connectivity may also reflect hyperintense synchro-
nous activity, which in turn regulates Aβ accumulation (Bero
et al. 2011; Ovsepian and O’Leary 2016). Longitudinal studies
are however required to clarify the exact underlying causes of
the observed alterations.

The strength of the present study is the collection of a wide
variety of imaging and cognitive measures in a large sample of
Aβ-negative nondemented individuals. A limitation is that
6min of resting state fMRI is on the lower boundary to assess
dynamic functional connectivity (but similar (Jin et al. 2017) or
even shorter durations have been used previously (Allen et al.
2014; Braun et al. 2015; Yu et al. 2015)). Hence, it is possible that
the scan time was simply too short since not all subjects expe-
rienced every state. However, there was no difference for sub-
jects who did or did not exhibit state 1 regarding amyloid SUVR
or cognitive test scores. Furthermore, it has been shown that
60 s windows (Hutchison et al. 2013) (or even 30 s (Braun et al.
2015)) are sufficiently long to evaluate dynamic connectivity,
which yields up to 150 states per subject and on average 25
occurrences of each state.

Although the MMSE is not a particularly sensitive test in
normal subjects, it is highly reliable and represents a standard
assessment to test cognitive function. As such it is also part of
a test battery that is widely used in preclinical AD including
clinically normal elderly individuals (Donohue et al. 2014).

Conclusion
We demonstrate that amyloid-related effects on dynamic func-
tional connectivity already occur at the earliest stage of the dis-
ease, namely, in nondemented elderly subjects without clinically
relevant global amyloid deposition and these effects are inde-
pendent of structural alterations in gray and white matter. The
enhanced functional connectivity may represent a compensa-
tory mechanism to maintain cognitive function despite increas-
ing amyloid pathology. Future research is needed to examine
whether changes in functional connectivity may be clinically rel-
evant to predict individual decline in cognitive function and dis-
ease progression.
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