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Abstract. Systemic sclerosis (SSc) is a complex autoim-
mune disease. The pathogenesis of SSc is currently unclear, 
although like other rheumatic diseases its pathogenesis is 
complicated. However, the ongoing development of bioinfor-
matics technology has enabled new approaches to research 
this disease using microarray technology to screen and 
identify differentially expressed genes (DEGs) in the skin 
of patients with SSc compared with individuals with healthy 
skin. Publicly available data were downloaded from the 
Gene Expression Omnibus (GEO) database and intra‑group 
data repeatability tests were conducted using Pearson’s 
correlation test and principal component analysis. DEGs 
were identified using an online tool, GEO2R. Functional 
annotation of DEGs was performed using Gene Ontology 
(GO) and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis. Finally, the construction and analysis of 
the protein‑protein interaction (PPI) network and identifica-
tion and analysis of hub genes was carried out. A total of 106 
DEGs were detected by the screening of SSc and healthy skin 
samples. A total of 10 genes [interleukin‑6, bone morphoge-
netic protein 4, calumenin (CALU), clusterin, cysteine rich 
angiogenic inducer 61, serine protease 23, secretogranin II, 
suppressor of cytokine signaling 3, Toll‑like receptor  4 
(TLR4), tenascin C] were identified as hub genes with 
degrees ≥10, and which could sensitively and specifically 
predict SSc based on receiver operator characteristic curve 
analysis. GO and KEGG analysis showed that variations 
in hub genes were mainly enriched in positive regulation 
of nitric oxide biosynthetic processes, negative regulation 

of apoptotic processes, extracellular regions, extracellular 
spaces, cytokine activity, chemo‑attractant activity, and 
the phosphoinositide 3 kinase‑protein kinase B signaling 
pathway. In summary, bioinformatics techniques proved 
useful for the screening and identification of biomarkers of 
disease. A total of 106 DEGs and 10 hub genes were linked 
to SSc, in particular the TLR4 and CALU genes.

Introduction

Systemic sclerosis (SSc), also called systemic scleroderma, is 
a complex autoimmune disease. Pathological features of SSc 
include skin and visceral fibrosis, vascular alterations and 
auto‑antibodies against various cellular antigens (1). The avail-
able data show the prevalence of SSc to be 50‑300 cases/per 
million population/per year, with the incidence of new cases 
being 2.3‑22.8  cases/per million population/per year  (2). 
Despite the rarity of the disease, the mortality rate of SSc is 
higher compared with other rheumatic diseases, especially 
diffuse cutaneous systemic sclerosis (dcSSc) (3,4).

The pathogenesis of SSc is currently unclear, although as 
with other rheumatic diseases its pathogenesis is complicated. 
SSc may be caused by genetic susceptibility or by environmental 
factors (1). Genetic association studies and sequencing analysis 
have identified factors that may lead to genetic susceptibility 
to SSc and its specific complications (5,6). Gene expression 
profiling of the whole transcriptome  is increasingly being 
used to explore disease‑related genes and enable disease clas-
sification and clinical prediction (5,6). Derrett‑Smith et al (7) 
conducted gene expression profiling analysis of unaffected 
skin obtained from patients with localized cutaneous systemic 
sclerosis (lcSSc). The results showed that the differentially 
expressed genes (DEGs) are related to cardiovascular system 
and mainly enriched in fibrotic signaling pathways. It may be 
helpful to explain the mechanisms of vascular complications in 
SSc. Gardner et al (8) found that biopsy samples from patients 
with SSc had a robust and unique gene expression profile. A 
total of ~1,800 candidate genes can be used to distinguish 
between lesioned skin and normal skin (P<0.05). Therefore, 
gene expression analysis of SSc provides a possible means to 
gain insights into its pathogenesis. Furthermore, it can also 
provide clues and ideas for exploring potential therapeutic 
targets.
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High‑throughput sequencing and microarray technology 
offer ideal tools for profiling large gene expression datasets in 
order to gain a comprehensive understanding of the mecha-
nisms underlying various diseases. For example, by microarray 
technology, the expression levels of microRNAs (miRNAs) 
can be evaluated in the tissue samples from patients and in 
the normal tissue. This analysis can reveal a group of differen-
tially expressed miRNAs. With further functional studies and 
downstream targeted genes and pathways recognition, specific 
miRNAs could be identified as candidate biomarkers related to 
disease pathogenesis or progression (9). The same can be done 
by computational approaches (10‑12). Through the integrated 
analysis of publicly available bioinformatics datasets can also 
reach the starting point of identifying effective markers for 
disease diagnosis and prognosis (13).

In recent years, with the continuous development of bioin-
formatics technology, a series of different analytical methods 
have been used for researching disease processes, based on 
differentially expressed genes (DEGs). For the present study 
two datasets, GSE95065 and GSE76885, were downloaded 
from the Gene Expression Omnibus (GEO) database, the 
sample sources of which were from SSc patients with affected 
skin tissue and healthy control (HC) skin tissue. GEO2R 
(http://www.ncbi.nlm.nih.gov/geo/geo2r/) is an interactive 
online tool that can be used to identify DEGs by comparing 
samples from GEO series (14). GEO2R was used to screen 
DEGs. Then, the biological processes (BP), cell components 
(CC), molecular functions (MF) and signal pathways the two 
groups of DEGs are involved in were investigated by Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis. Next, by framing the protein‑protein interac-
tion (PPI) network and filtering the significant modules of this 
network it was possible to define the top‑ten hub genes. The 
aims of the present study were to identify novel biomarkers 
and potential therapeutic targets for SSc.

Materials and methods

Access to public data. The GEO database (http://www.ncbi.
nlm.nih.gov/geo) is an open functional genomics database 
of high‑throughput resources, including microarrays, gene 
expression data and ChIP‑seq data (15). The selection criteria 
for this study were GEO datasets compilated of skin biopsy 
expression data obtained genome‑wide from patients with SSc 
and the exclusion criteria was samples from patients with lcSSc. 
The Search details were ‘Scleroderma, Systemic’[Mesh] AND 
‘Homo sapiens’[porgn] AND (‘gse’[Filter] AND ‘Expression 
profiling by array’[Filter] AND ‘attribute name tissue’[Filter]) 
and revealed 66 different results relative to SSc gene expres-
sion datasets. After having other tissues or diseases filtering 
out, two expression profiling datasets, GSE95065 [GPL23080 
(HG‑U133A_2) Affymetrix Human Genome U133A 2.0 
Array] (16) and GSE76885 (GPL6480 Agilent‑014850 Whole 
Human Genome Microarray 4x44K G4112F) (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76885), were 
downloaded from the GEO database. The probes were 
transformed into homologous gene symbols by means of the 
platform’s annotation information. The GSE95065 dataset was 
based on 15 control (Con) skin tissue samples from healthy 
individuals and 18 skin tissue samples from patients with SSc. 

The GSE76885 dataset was based on 18 Con skin tissue samples 
from healthy individuals and 59 skin tissue samples from 
patients with SSc. The samples were taken from an in silico 
approach. Although GSE76885 was not specific to dcSSc or 
lcSSc, there was a strong correlation among the samples in the 
SSc group according to the results of the present study, dcSSc 
is more common than lcSSc, as in clinical practice so this was 
taken into account. The overall design of GSE117928 was 
performed on peripheral blood mononuclear cells, GSE73674 
was on endothelial progenitor cell‑derived endothelial cells 
and GSE81292 on lung tissues. GSE76809 was a SuperSeries 
composed of SubSeries. Of these SubSeries, GSE9285 
contained gene expression profiling of diffuse scleroderma 
and limited scleroderma; GSE32413, GSE45485, GSE59785, 
GSE68698 were not genome‑wide datasets; samples of other 
series were from lcSSc or not from skin tissue.

Intra‑group data repeatability test. The Pearson’s correlation 
test was performed to verify intra‑group data repeatability 
in the per group. The R programming language was used to 
provide the software and operating environment for statistical 
analysis and drawing of graphs. Correlations between all 
samples from the same dataset were visualized using heat 
maps which were also drawn using R. Principal component 
analysis (PCA) is a commonly used method for sample clus-
tering and is often used for gene expression, diversity analysis, 
resequencing, and other sample clustering based on various 
variable information. The intra‑group data repeatability of the 
dataset was tested by sample clustering analysis.

Identification of DEGs. GEO2R is an interactive web tool 
that allows users to compare two or more groups of samples 
in a GEO series in order to identify genes that are differen-
tially expressed across experimental conditions. Results 
are presented as a table of genes ordered by significance. 
GEO2R performs comparisons on original submitter‑supplied 
processed data tables using the GEOquery and limma R pack-
ages from the Bioconductor project. Bioconductor is an open 
source software project (http://www.bioconductor.org/) based 
on the R programming language that provides tools for the 
analysis of high‑throughput genomic data. The GEO query 
R package parses GEO data into R data structures that can 
be used by other R packages. The limma (Linear Models for 
Microarray Analysis) R package, which could perform the 
paired‑samples T test, has emerged as one of the most widely 
used statistical tests for identifying differentially expressed 
genes (17). It handles a wide range of experimental designs 
and data types and applies multiple‑testing corrections on 
P‑values to help correct for the occurrence of false positives. 
Therefore, GEO2R provides a simple interface that allows 
users to perform R statistical analysis without command line 
expertise.

GEO2R was used to search for mRNAs (DEGs) that 
were differentially expressed between control tissue samples 
and SSc tissue samples. The cut‑off criterion was a P<0.05, 
whereas the fold‑change was ≥1.5 or ≤‑1.5. Venn diagrams 
were used to determine the intersection between the two data-
sets to obtain DEGs in common. Volcano maps were drawn 
using the volcano plotting tool (https://shengxin.ren). The 
DEGs were then screened by introducing the two datasets into 



INTERNATIONAL JOURNAL OF MOlecular medicine  44:  1753-1770,  2019 1755

the FunRich (functional enrichment analysis tool; http://www.
funrich.org/). Venn diagrams were delineated using an online 
Venn tool (http://bioinformatics.psb.ugent.be/webtools/Venn/), 
which could then be used to visualize common DEGs shared 
between the two datasets.

Functional annotation for DEGs using GO and KEGG 
analysis. DAVID (https://david.ncifcrf.gov/home.jsp; 
version 6.8) is an online analysis tool suite that includes the 
function of Integrated Discovery and Annotation (18). DAVID 
is an online analysis tool, which could perform GO and 
KEGG analysis. Gene Ontology (GO) is a widely used initia-
tive in bioinformatics and covers three key biological aspects, 
including BP, CC, and MF (19). The KEGG (https://www.kegg.
jp/) is one of the most commonly used biological information 
databases in the world. To perform GO and KEGG analysis of 
DEGs, the DAVID online tool was used. Results were consid-
ered statistically significant if P<0.05.

Construction and analysis of the PPI network. The Search 
Tool for the Retrieval of Interacting Genes (STRING) online 
database (http://string‑db.org) can be used to predict and trace 
the PPI network once common DEGs have been imported 
into it. The STRING database was used for the construc-
tion of the PPI network of the DEGs. The free visualization 
software tool, Cytoscape (version 2.8) (20), was used to visu-
alize PPI networks. Next, the Cytoscape plug‑in Molecular 
Complex Detection tool (MCODE; version 1.5.1) was used 
to identify the most important module on the network map. 
The criteria for the MCODE analysis were that the degree of 
cut‑off = 2, MCODE scores >5, maximum depth = 100, node 
score cut‑off = 0.2 and k‑score = 2 (21).

Identification and analysis of hub genes. Once the degrees 
were set (degrees ≥10), the hub genes were identified. 
Subsequently, following the GO and KEGG analysis using 
the DAVID database, functional annotation of the hub genes 
was performed. Correlation analysis between the hub genes 
was also carried out. A total of three hierarchical clustering 
heat‑maps of hub gene expression were visualized using R. 
Finally, receiver operator characteristic (ROC) curve analysis 
was performed to determine the usefulness of these hub genes 
for predicting SSc.

Statistical analyses. All statistical analyses were conducted 
using SPSS software (version 21.0; IBM Corps.). The Pearson’s 
correlation coefficient was used to validate the intra‑group 
data repeatability and to analyze correlation among hub genes. 
The two‑sample t‑test was used for comparing the mean values 
of two groups (SSc and control groups). ROC curve analysis 
was performed to determine the ability of the hub genes to 
predict SSc. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Validation of the datasets. To further validate the intra‑group 
data repeatability, the Pearson’s correlation test and PCA were 
employed. Based on the Pearson’s correlation test, it was found 
that in the GSE95065 dataset there were strong correlations 

among the samples in the control group and that there were 
also strong correlations among the samples in the SSc group 
(Fig. 1A). Based on the PCA the intra‑group data repeatability 
for GSE95065 was acceptable. The distances between the 
samples in the control group were close and the distances 
between samples in the SSc group were also close in the 
dimension of PC1 (Fig. 1B). Based on Pearson’s correlation 
test, it was found that for GSE76885 there was a strong corre-
lation among the samples in the control group and a strong 
correlation among the samples in the SSc group (Fig. 2A). The 
PCA showed the intra‑group data repeatability to be accept-
able in the GSE76885 dataset. The distances between per 
samples in the control group were close and distances between 
per samples in the SSc group were also close in the dimension 
of PC1 (Fig. 2B).

Identification of DEGs in SSc and control samples. The 
volcano plot analysis was performed to present the DEGs 
between the Con skin tissue samples and SSc tissue samples. 
In the volcano plot, all nodes present the DEGs between the 
Con and SSc group. When the DEGs conformed to the cut‑off 
criterion (P<0.05, whereas the fold‑change was ≥1.5 or ≤‑1.5), 
the nodes were significant and would be marked as green or 
red. The green nodes present the downregulated DEGs and 
the red nodes present the upregulated DEGs in the SSc group, 
compared with the Con group. A total of 2,041 and 880 DEGs 
were obtained from the GSE95065 and GSE76885 datasets, 
respectively. Volcano plots of GSE95065 and GSE76885 are 
shown in Fig. 3A and B. A Venn diagram showed that 106 
DEGs were common to both datasets (Fig. 3C).

Functional and pathway enrichment analysis of DEGs. GO 
analysis consists of three items: BP, CC and MF. The results of 
the GO analysis in the present study showed that variations in 
DEGS linked with BP were mainly enriched in extracellular 
matrix organization, positive regulation of gene expression, 
inflammatory responses, positive regulation of IL‑6 produc-
tion, actin cytoskeleton reorganization, responses to viruses 
and monocyte differentiation (Fig. 4A). Variations in DEGs 
linked with CC were significantly enriched in extracellular 
spaces, extracellular regions, extracellular matrix, extracellular 
exosomes, the perinuclear region of the cytoplasm, intracel-
lular spaces, Golgi cisternae membranes, Golgi apparatus, 
cell surfaces, cell‑cell junctions, host cells and COPI‑coated 
vesicles (P<0.05). Regarding MF, DEGs were significantly 
enriched in receptor binding, protein binding, integrin binding, 
oxidoreductase activity, transcription regulatory‑region DNA 
binding, GDP binding, actin filament binding and GTPase 
activity (P<0.05). Analysis of KEGG pathways indicated 
that the top canonical pathways associated with DEGs were 
salmonella infection, legionellosis, cytokine‑cytokine receptor 
interaction, TNF signaling pathways and insulin resistance.

PPI and module network construction and hub gene selection. 
Construction of the PPI network and the identification of signif-
icant modules was performed, with 101 edges and 66 nodes 
found to be in the PPI network in Fig. 5A and 21 edges and 7 
nodes found to be in the significant module in Fig. 5B. A total 
of ten genes [interleukin‑6 (IL6), bone morphogenetic protein 4 
(BMP4), calumenin (CALU), clusterin (CLU), cysteine rich 
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Figure 1. Intra‑group data repeatability test for GSE95065 through the Pearson's correlation analysis and PCA. (A) Pearson's correlation analysis of samples 
from the GSE95065 dataset. The color reflects the intensity of the correlation. When 0< correlation <1, there exists a positive correlation. When ‑1< correlation 
<0, there exists a negative correlation. The larger the absolute value of a number the stronger the correlation. (B) PCA of samples from the GSE95065 dataset. 
In the figure, PC1 and PC2 are used as the X‑axis and Y‑axis, respectively, to draw the scatter diagram, where each point represents a sample. In such a PCA 
diagram, the farther the two samples are from each other, the greater the difference is between the two samples in gene expression patterns. PC1, principal 
component 1; PC2, principal component 2; PCA, principal component analysis; SSc, Systemic sclerosis; Con, control.
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Figure 2. Intra‑group data repeatability test for GSE76885 through the Pearson's correlation analysis and PCA. (A) Pearson's correlation analysis of samples 
from the GSE76885 dataset. The color reflects the intensity of the correlation. When 0< correlation <1, there exists a positive correlation. When ‑1< correlation 
<0, there exists a negative correlation. The larger the absolute value of a number the stronger the correlation. (B) PCA of samples from the GSE76885 dataset. 
In the figure, PC1 and PC2 are used as the X‑axis and Y‑axis, respectively, to draw the scatter diagram, where each point represents a sample. In such a PCA 
diagram, the farther the two samples are from each other, the greater the difference is between the two samples in gene expression patterns. PC1, principal 
component 1; PC2, principal component 2; PCA, principal component analysis; SSc, systemic sclerosis.



XU et al:  IDENTIFICATION OF BIOMARKERS FOR SYSTEMIC SCLEROSIS1758

angiogenic inducer 61 (CYR61), serine protease 23 (PRSS23), 
secretogranin II (SCG2), suppressor of cytokine signaling 3 
(SOCS3), Toll-like receptor 4 (TLR4), tenascin C (TNC)] were 
identified as hub genes with degrees ≥10 (Fig. 5C).

Hub gene analysis. The names, abbreviations and functions 
for the hub genes are shown in Table I.

These hub genes were analyzed using DAVID, GO and 
KEGG analysis. The results of these analyses showed that 
variations in BP of hub genes were mainly enriched in posi-
tive regulation of nitric oxide biosynthetic processes, positive 

regulation of osteoblast differentiation, negative regulation of 
apoptotic processes, osteoblast differentiation, positive regulation 
of NF‑κB transcription factor activity, positive regulation of the 
extracellular signal regulated kinase (ERK)1 and ERK2 cascade, 
positive regulation of gene expression, positive regulation of 
cartilage development, and positive regulation of chemokine 
production (Fig. 6A). Variations in the CC of hub genes were 
significantly enriched in the extracellular region, extracellular 
space and extracellular matrix (P<0.01; Fig. 6B). Variations in 
the MF of hub genes were significantly enriched in cytokine 
activity, and chemo‑attractant activity, but were not significantly 

Figure 3. Identification of DEGs between skin samples from healthy control individuals and patients with SSc. (A) A volcano plot showing the difference 
between SSc and control skin samples after analysis of the GSE95065 dataset with GEO2R. The X‑axis represents the fold‑change (log‑scaled) and the 
Y‑axis represents the P‑value (log‑scaled). Each symbol represents a different gene. The red symbols represent upregulated genes; green symbols represent 
downregulated genes. (B) A volcano plot of the GSE76885 dataset. (C) A Venn diagram showing that 106 genes are shared by both the GSE95065 and the 
GSE76885 datasets. SSc, systemic sclerosis; DEG, differentially expressed genes. 
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Figure 4. Enrichment analysis of the DEGs using the DAVID tool. Detailed information relating to changes in the (A) biological processes, (B) cellular 
components in SSc and control skin samples.
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Figure 4. Continued. Enrichment analysis of the DEGs using the DAVID tool. Detailed information relating to changes in the (C) molecular functions of 
DEGs in SSc and control skin samples. (D) KEGG pathway analysis for DEGs. SSc, systemic sclerosis; DEGs, differentially expressed genes; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.



INTERNATIONAL JOURNAL OF MOlecular medicine  44:  1753-1770,  2019 1761

enriched in heparin binding and growth factor activity (Fig. 6C). 
Analysis of KEGG pathways showed that hub genes were 
mainly enriched in influenza A infection, the PI3K‑Akt signaling 
pathway, malaria, legionellosis, inflammatory bowel disease, 
pertussis infection, salmonella infection, rheumatoid arthritis, 
the HIF‑1 signaling pathway and Chagas disease (Fig. 6D).

Heat maps showed that there was correlation between hub 
genes in the GSE95065 (Fig. 7A) and GSE76885 (Fig. 7B) 
datasets. Hierarchical clustering allowed for simple differen-
tiation of SSc skin samples from the Con skin samples via the 
expression levels of hub genes in the GSE95065 (Fig. 8A) and 
GSE76885 (Fig. 8B) datasets.

ROC curve based on hub genes can be used to sensitively and 
specifically predict SSc. To identify accurate thresholds for 
hub genes to predict SSc ROC curves were constructed. The 
expression of all hub genes was associated with a diagnosis of 
SSc (0.7<AUC<1; P≤0.05; Table II; Fig. 8C). The ROC curves 
of per hub genes are shown in Fig. 9.

Discussion

Pathological fibrosis is the most common and prominent feature 
of SSc. Since there is no treatment strategy for significantly 
delaying fibrosis, current treatment for SSc mainly focuses 

Figure 5. PPI network, significant module network, and the hub genes. (A) The PPI network showing the intricate relationships between DEGs. (B) The 
significant module network selected based on the PPI network. (C) A total of 10 genes (CLU, SOCS3, PRSS23, BMP4, TLR4, CYR61, IL6, CALU, TNC and 
SCG2) were identified as hub genes with degrees ≥10. PPI, protein‑protein interaction; DEGs, differentially expressed genes. IL6, interleukin‑6; BMP4, bone 
morphogenetic protein 4; CALU, calumenin; CLU, clusterin; CYR61, cysteine rich angiogenic inducer 61; PRSS23, serine protease 23; SCG2, secretogranin II; 
SOCS3, suppressor of cytokine signaling 3; TLR4, Toll-like receptor 4; TNC, tenascin C.
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on mitigating symptoms and improving complications (22). 
Therefore, the exploration of the molecular mechanism that 
underlies SSc development and ways to identify patients at risk 
of severe organ involvement is of great importance to assist in 
the diagnosis, early treatment, and prognosis of SSc (23).

Gene expression profiling using microarray technology 
can provide information about the expression of thousands of 
genes in the human genome. For this study, several bioinfor-
matics techniques were integrated to investigate data to screen 
and identify hub genes related to SSc. Two datasets, GSE95065 
and GSE76885, were screened for DEGs and 106 DEGs were 
discovered that shared 10 hub genes in common: CLU, SOCS3, 
PRSS23, BMP4, TLR4, CYR61, IL6, CALU, TNC and SCG2. 
Among them, CLU, TLR4 and CALU were found to be differ-
entially expressed and displayed better homogeneity between 
samples of SSc or samples of the Con group. Then a literature 

search was performed in Pubmed and it was found that the 
role of TLR4 in SSc was inconsistent with former studies 
and might be a ‘bone of contention’ (24‑26). IL‑6 has been 
a research hotspot in recent years. However, unlike TLR4 or 
IL‑6, research into CALU has so far been limited. The results 
of the present study might represent a starting point for subse-
quent investigations into CALU. Therefore, the present study 
considered these three genes were significant and needed to 
be discussed.

TLR4 belongs to the family of pattern recognition recep-
tors. As the first line of defense against infections, such 
receptors recognize pathogen‑associated molecular patterns. 
TLR4 also binds to endogenous damage‑associated molecular 
patterns (DAMPs) produced as a result of tissue damage. 
TLR4‑mediated inflammation triggered by exogenous or 
endogenous ligands is involved in several diseases and plays a 

Table I. Summaries for the function of 10 hub genes.

	 Gene
No.	 symbol	 Full name	 UniProtKB ID	 Function

  1	 IL6	 Interleukin 6	 P05231 (IL6_HUMAN)	 It is a potent inducer of the acute phase response. It 
				    induces myeloma and plasmacytoma growth and induces 
				    nerve cells differentiation.
  2	 TLR4	 Toll-like receptor 4	 O00206 (TLR4_HUMAN)	 Toll‑like receptors are single transmembrane cell‑surface 
				    receptors, which have a key role in the innate immune 
				    system.
  3	C YR61	C ysteine rich angiogenic	 O00622 (CCN1_HUMAN)	 Promotes cell proliferation, chemotaxis, angiogenesis 
		  inducer 61		  and cell adhesion. Appears to play a role in wound healing 
				    by being upregulated in skin fibroblasts.
  4	 TNC	 Tenascin C	 P24821 (TENA_HUMAN)	 Extracellular matrix protein implicated in guidance of 
				    migrating neurons as well as axons during development, 
				    synaptic plasticity as well as neuronal regeneration. 
				    Promotes neurite outgrowth from cortical neurons grown 
				    on a monolayer of astrocytes.
  5	 SCG2	 Secretogranin II	 P13521 (SCG2_HUMAN)	 Secretogranin‑2 is a neuroendocrine secretory granule 
				    protein, which is the precursor for biologically active 
				    peptides.
  6	 SOCS3	 Suppressor of cytokine	 O14543 (SOCS3_HUMAN)	 Regulates IL‑6 signaling in vivo. Mediate the 
		  signaling 3		  ubiquitination and subsequent proteasomal degradation 
				    of target proteins.
  7	 BMP4	 Bone morphogenetic	 P12644 (BMP4_HUMAN)	 Induces cartilage and bone formation. Acts in concert 
		  protein 4		  with PTHLH/PTHRP to stimulate ductal outgrowth and 
				    to inhibit hair follicle induction.
  8	C ALU	C alumenin	 O43852 (CALU_HUMAN)	 Involved in regulation of vitamin K‑dependent 
				    carboxylation of multiple N‑terminal glutamate residues. 
				    Binds 7 calcium ions with a low affinity.
  9	 PRSS23	 Serine protease 23	 O95084 (PRS23_HUMAN)	 This gene encodes a conserved member of the trypsin 
				    family of serine proteases. Mouse experiments found a 
				    decrease of mRNA levels of this gene after ovulation was 
				    induced (49).
10	C LU	C lusterin	 P10909 (CLUS_HUMAN)	 Mitochondrial isoforms suppress BAX‑dependent release 
				    of cytochrome c into the cytoplasm and inhibit apoptosis. 
				    Plays a role in the regulation of cell proliferation.
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Figure 6. Enrichment analysis of the hub genes using the DAVID tool. Detailed information relating to changes in the (A) biological process, (B) cellular 
component among the hub genes.
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Figure 6. Continued. Enrichment analysis of the hub genes using the DAVID tool. Detailed information relating to changes in the (C) molecular function of 
differentially expressed genes among the hub genes. (D) KEGG pathway analysis for hub genes. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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pivotal role in the amplification and cascading of the inflam-
matory response  (27,28). Bhattacharyya  et  al  (25,30) and 
Bhattacharyya and Varga (29) suggested that repeated injuries 
caused by chemical, infectious, mechanical, or autoimmune 
factors in genetically susceptible individuals produce DAMPs 
such as fibronectin‑EDA and tenascin‑C. These dangerous 
signals can be recognized by TLR4, dramatically augmenting 
the intensity of downstream signaling. On one hand, the 
increased expression of multiple genes involved in tissue 
remodeling in mesenchymal cells and the differentiation of 
myofibroblasts was elicited and fibroblasts were sensitized. On 
the other hand, the synergetic transforming growth factor also 
produced a fibrogenic effect. The elevated levels of tenascin‑C 
in SSc skin biopsy samples are congruent with the ‘DAMP 
hypothesis’ (31). However, it is worth noting that the conclusion 
that numerous DAMPs are endogenous ligands of TLR4 was 

based on in vitro immunoprecipitation and in vivo functional 
cell‑based assays using TLR4 (‑/‑) mutant mice. Additionally 
there have been no reports relating to the complex crystal struc-
ture of DAMP‑TLR4 to confirm any direct interaction between 
DAMP and TLR4 (30). Furthermore, there are ‘contradictory’ 
observations on the expression of TNC according to the results 
of the present study.

Stifano et al (32) performed skin biopsies of the dorsal 
forearm from 24 patients with dcSSc and 11 HC patients and 
tested the samples using RNA isolation and quantitative PCR. 
The results revealed that the expression of TLR4 mRNA in 
patients with dcSSc was significantly increased compared 
with the control group. Bhattacharyya et al (25) performed 
immunohistochemistry on the forearm from 19 patients with 
dcSSc and 11 cases of HC. They drew a similar conclusion 
and semi‑quantitative analysis of TLR4 expression confirmed 
it. The present study, however, combined two different micro-
array datasets for analysis and showed that TLR4 expression 
was low in patients with SSc. This indicates that the expres-
sion of TLR4 in patients with SSc is not straightforward. 
This may be due to sampling being performed at different 
stages of the disease process or sites of the skin, but the role 
of TLR4 in the pathogenesis of SSc may also be investigated 
from other perspectives. Yang et al (33) found that genetic or 
pharmacological inhibition of TLR4 promoted the formation 
of a local immunosuppressive microenvironment and attenu-
ated autophagy‑associated degradation of collagen and cell 
death in the fibrotic lung tissues, and thus led to pulmonary 
inflammation, fibrosis, and dysfunction induced by bleomycin 
being aggravated, which eventually caused the death of the 
experimental animals. In contrast, activation of TLR4 rapidly 
ended acute inflammation, reversed any pulmonary fibrosis 

Figure 7. Correlation analysis among the hub genes. Heat maps showing the 
correlations between hub genes in the (A) GSE95065 and (B) GSE76885 
datasets. The color reflects the intensity of the correlation. When 0< correla-
tion <1, there exists a positive correlation. When ‑1< correlation <0, there 
exists a negative correlation. The larger the absolute value of a number the 
stronger the correlation. IL6, interleukin‑6; BMP4, bone morphogenetic 
protein 4; CALU, calumenin; CLU, clusterin; CYR61, cysteine rich angio-
genic inducer 61; PRSS23, serine protease 23; SCG2, secretogranin II; 
SOCS3, suppressor of cytokine signaling 3; TLR4, Toll-like receptor 4; TNC, 
tenascin C.

Table II. Receiver operator characteristic curve analysis of hub 
gene expression for SSc.

	 SSc
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ -‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Gene symbol	 AUC	 P‑value	 95% CI	 ODT

IL6	 0.970	 0.000c	 0.889‑1.000	 40.502
TLR4	 0.822	 0.002b	 0.733‑1.000	 69.185
CYR61	 0.878	 0.000c	 0.867‑0.889	 584.379
TNC	 0.852	 0.001b	 0.722‑0.933	 1128.397
SCG2	 0.856	 0.001b	 0.800‑0.833	 47.679
SOCS3	 0.759	 0.011a	 0.667‑0.833	 28.669
BMP4	 0.744	 0.017a	 0.533‑0.889	 112.929
CALU	 0.744	 0.017a	 0.733‑1.000	 510.164
PRSS23	 0.996	 0.000c	 0.944‑1.000	 910.976
CLU	 0.863	 0.000c	 0.733‑0.944	 1308.718

a‑cSignificant variables. aP<0.05, bP<0.01, cP<0.001. AUC, area under 
curve; max the maximum of AUC; ODT, optimal diagnostic threshold; 
SSc, systemic sclerosis; CI, confidence interval; IL6, interleukin‑6; 
BMP4, bone morphogenetic protein 4; CALU, calumenin; CLU, 
clusterin; CYR61, cysteine rich angiogenic inducer 61; PRSS23, 
serine protease 23; SCG2, secretogranin II; SOCS3, suppressor of 
cytokine signaling 3; TLR4, Toll-like receptor 4; TNC, tenascin C.
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that occurred and improved lung function. Similarly, blocking 
TLR4 can impair the resolution of silica‑induced chronic 
inflammation and fibrosis (33). Thus, as a crucial component 
of the innate immune system, the counter‑regulation of TLR4 
is likely to be a self‑protection mechanism initiated during 
defense reactions and both its over‑activation and deficiency 
may exacerbate inflammation and fibrosis. It might be of great 

significance to investigate which condition is predominant in 
SSc at its different stages and in SSc with pulmonary or other 
organ fibrosis.

IL‑6 is a pleiotropic cytokine that plays a crucial role 
in immune regulation and inflammation. Excessive IL‑6 
increases the secretion of immunoglobulin and the production 
of autoantibodies. In murine models, IL‑6 plays an key role in 

Figure 8. Expression analysis and ROC curves of all the hub genes. (A) A hierarchical clustering heat‑map of the hub genes from control and SSc skin tissue 
from the GSE95065 dataset. The X‑axis represents sample symbols (from left to right: Samples of the control skin tissue and samples of SSc skin tissue); 
the Y‑axis represents differentially expressed genes. Blue, low expression; white, medium expression; and red, high expression. (B) A hierarchical clustering 
heat‑map of the hub genes from control and SSc skin tissue from the GSE76885 dataset. The X‑axis represents sample symbols (from left to right: Samples of 
the control skin tissue and samples of SSc skin tissue); the Y‑axis represents differentially expressed genes. Green, low expression; black, medium expression; 
and red, high expression. (C) ROC curves indicating that all hub genes could sensitively and specifically predict SSc. ROC, receiver operator characteristic; 
SSc, systemic scelerosis. IL6, interleukin‑6; BMP4, bone morphogenetic protein 4; CALU, calumenin; CLU, clusterin; CYR61, cysteine rich angiogenic 
inducer 61; PRSS23, serine protease 23; SCG2, secretogranin II; SOCS3, suppressor of cytokine signaling 3; TLR4, Toll-like receptor 4; TNC, tenascin C.
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the differentiation of cytotoxic T cells and T helper 17 cells 
in addition to its B‑cell stimulatory effect (34,35). Although 
its role in SSc has not yet been determined, increased IL‑6 
expression in the skin has been observed in SSc, as was shown 
in the present study (36). Furthermore, anti‑IL‑6 antibody 

treatment suppressed procollagen production in SSc‑affected 
fibroblasts in vitro (37). In the bleomycin‑induced SSc models, 
genetic deletion of IL‑6 reduced myofibroblasts numbers and 
resulted in remission of the disease (38). Elevated serum IL‑6 
levels were also correlated with modified Rodnan total skin 

Figure 9. The respective receiver operator characteristic curves of per hub genes. (A) BMP4, (B) CALU, (C) CLU, (D) CYR61, (E) IL6, (F) PRSS23. AUC, area 
under the curve; BMP4, bone morphogenetic protein 4; CALU, calumenin; CLU, clusterin; CYR61, cysteine rich angiogenic inducer 61; IL6, interleukin‑6; 
PRSS23, serine protease 23.
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scores in SSc patients and elevated IL‑6 in bronchoalveolar 
lavage fluid of SSc patients is thought to relate to pulmonary 
fibrosis  (39,40). Most importantly, the faSScinate study, a 
phase II trial, demonstrated a significant improvement of 
skin sclerosis in progressive dcSSc patients with IL‑6‑related 
inflammatory signs after 24 weeks of administration of tocili-
zumab (41). Recent findings indicate that tocilizumab has the 
potential to modify SSc vasculopathy. To further validate 
tocilizumab efficacy, a global phase III trial is currently under 
way (42).

The present study also found that CALU expression was 
low in patients with SSc. The coding product of CALU is 
calumenin, which belongs to the CREC protein family, the 
EF‑hand calcium‑binding proteins localizes to multiple sites of 
the secretory pathway of mammalian cells (e.g., endoplasmic 
reticulum, Golgi apparatus and the extracellular matrix). Of 
these proteins, calumenin is the only member reported as 
likely to be exocytic  (43,44). Additionally calumenin was 
revealed to be associated with malignant cell transforma-
tion and metastasis (45‑47). Vorum et al (48) suggested that 

calumenin might play a role in the immune defense system 
because it interacted with the P component of serum amyloid 
protein. Further research is needed into the function of CALU 
in immune responses and its role in the set of SSc.

Although the work described here involved rigorous bioin-
formatics analysis, it has some limitations. First, the sample 
size was relatively small and analysis of a larger data sample 
is necessary to verify the results. Second, the results of this 
study are based on an in silico analysis and molecular and 
experimental validation is necessary.

In conclusion, using bioinformatics technologies two data-
sets from the GEO database were integrated for analysis and 
obtained 106 DEGs and 10 hub genes related to SSc (CLU, 
SOCS3, PRSS23, BMP4, TLR4, CYR61, IL6, CALU, TNC, 
and SCG2), with TLR4, IL6 and CALU being particularly 
prominent. There are several contradictions and ambiguities 
relating to the roles played by TLR4 in SSc, which are waiting 
for further explanation. Notably there have been no previous 
reports of CALU being associated with SSc. Therefore, the 
present study suggests that more studies should be conducted 

Figure 9. Continued. The respective receiver operator characteristic curves of per hub genes. (G) SCG2, (H) SOCS3, (I) TLR4, (J) TNC. AUC, area under the 
curve; SCG2, secretogranin II; SOCS3, suppressor of cytokine signaling 3; TLR4, Toll-like receptor 4; TNC, tenascin C.
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to explore and elucidate these areas, so as to provide new ideas 
and targets for the diagnosis and treatment of SSc.
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