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ABSTRACT

The Salas y Gémez and Nazca ridges are two adjacent seamount chains off the west
coast of South America that collectively contain more than 110 seamounts.

The ridges support an exceptionally rich diversity of benthic and pelagic
communities, with the highest level of endemism found in any marine environment.
Despite some historical fishing in the region, the seamounts are relatively pristine
and represent an excellent conservation opportunity to protect a global biodiversity
hotspot before it is degraded. One obstacle to effective spatial management of the
ridges is the scarcity of direct observations in deeper waters throughout the region
and an accompanying understanding of the distribution of key taxa. Species
distribution models are increasingly used tools to quantify the distributions of species
in data-poor environments. Here, we focused on modeling the distribution of
demosponges, glass sponges, and stony corals, three foundation taxa that support
large assemblages of associated fauna through the creation of complex habitat
structures. Models were constructed at a 1 km” resolution using presence and
pseudoabsence data, dissolved oxygen, nitrate, phosphate, silicate, aragonite
saturation state, and several measures of seafloor topography. Highly suitable habitat
for each taxa was predicted to occur throughout the Salas y Gomez and Nazca ridges,
with the most suitable habitat occurring in small patches on large terrain features
such as seamounts, guyots, ridges, and escarpments. Determining the spatial
distribution of these three taxa is a critical first step towards supporting the improved
spatial management of the region. While the total area of highly suitable habitat was
small, our results showed that nearly all of the seamounts in this region provide
suitable habitats for deep-water corals and sponges and should therefore be protected
from exploitation using the best available conservation measures.

Subjects Conservation Biology, Ecology, Ecosystem Science, Marine Biology, Environmental
Impacts

Keywords Cold-water corals, Sponge, Deep sea, Species distribution modeling, Habitat suitability,
Conservation, Areas beyond national jurisdiction

INTRODUCTION

The Salas y Gémez and Nazca ridges are two adjacent seamount chains stretching more
than 2,900 km off the coasts of Peru and Chile (Fig. 1) (reviewed in Wagner et al., 2021).
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Figure 1 Map of the study area. The map shows the modeling extent, distribution of occurrence records
for demosponges, glass sponges, and stony corals, national exclusive economic zones (EEZs), and Eco-
logically or Biologically Significant Marine Area (EBSA) designation.

Full-size K&l DOI: 10.7717/peerj.11972/fig-1

Combined, the ridges contain more than 110 seamounts that were created between
2-27 million years ago by a geological hotspot located on the western edge of the Salas y
Gomez Ridge (Parin, Mironov & Nesis, 1997; Steinberger, 2002). The limited exploration
that has been accomplished along the ridges has revealed exceptionally high biodiversity
as well as unusually high endemism, due in part to its isolation from South America by the
Humboldt Current System and the Atacama Trench (Parin, 1991; Comité Oceanogrdfico
Nacional de Chile, 2017). More than 40% of known fish and invertebrate species are endemic
to the region, the highest level of marine endemism in the world (Parin, Mironov ¢ Nesis,
1997; Friedlander et al., 2016). New species have frequently and recently been discovered
on the ridges (e.g., Andrade, Hormazdbal ¢ Correa-Ramirez, 2014; Sellanes et al., 2019;
Shepherd et al., 2020; Diaz-Diaz et al., 2020), indicating that many new species remain to be
discovered. The waters surrounding the Salas y Gomez and Nazca ridges provide important
feeding grounds and migratory pathways for an array of important species, including billfish,
sharks, sea turtles, seabirds and marine mammals (Weichler et al., 2004; Shillinger et al.,
2008; Yanez et al., 2009; Hucke-Gaete et al., 2014; CBD, 2017; Serratosa et al., 2020). On the
seamounts and neighboring island habitats, diverse benthic communities form around
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shallow-water, mesophotic (Easton et al., 2019), and deep-water coral and sponge reefs
(Hubbard & Garcia, 2003; Easton et al., 2019; Friedlander et al., 2021).

Deep-water corals and sponges are critical foundation species found in every ocean
basin. The complex, three-dimensional habitat structures they produce support thousands
of associated species including other invertebrates and commercially important fish
(Rogers, 1999; Costello et al., 2005; Cordes et al., 2008; Kenchington, Power ¢ Koen-Alonso,
2013). In addition to habitat creation, corals and sponges provide other critical ecosystem
services including the alteration of local current regimes (Dorschel et al., 2007; Mienis
et al., 2009), carbon cycling and long-term sequestration (Oevelen et al., 2009; Kahn et al.,
2015), and nutrient cycling (Wild et al., 2008; Tian et al., 2016). Deep-water corals and
sponges are also being increasingly used as avenues for research purposes ranging from
biomedical research (e.g., Hill, 2003; Miiller et al., 2004) to reconstructing paleoclimate
archives of climate change, pollution, and nutrients (Smith et al., 2000; Williams et al.,
2006; Cao et al., 2007). The slow growth rates (Prouty et al., 2011), extreme longevity
(Roark et al., 2009; Fallon et al., 2010), and life history strategies (e.g., low recruitment;
Doughty, Quattrini & Cordes, 2014) make these taxa extremely sensitive to anthropogenic
disturbance, and the recovery of damaged communities may take many decades,
centuries, or even longer (see Ramirez-Llodra et al., 2011; Baco, Roark & Morgan, 2019).
Considering the extreme logistical difficulties and costs associated with restoration efforts
in these remote habitats (Van Dover et al., 2014), improved conservation measures are
urgently needed to protect these fragile ecosystems before long-term damage occurs.

Like most marine biodiversity hotspots, the Salas y Gémez and Nazca ridges are
threatened by a variety of ongoing or imminent anthropogenic disturbances, including
commercial fishing, marine debris and plastic pollution, seabed mining, and climate
change (reviewed in Wagner et al., 2021). Despite these threats and the clear biological
value of the ridges, protecting their sensitive benthic communities from anthropogenic
disturbance is a complex challenge. Over 73% of the ridges are located in areas beyond
national jurisdiction (ABN]J), commonly known as the high seas, where no one country has
sole management responsibility and hence international cooperation is necessary. While
the portions of the ridge located within the Chilean and Peruvian exclusive economic
zones (EEZs) have several established marine protected areas (MPAs) (MPAtlas, 2021), the
high seas portions of the ridges are more loosely regulated by intergovernmental agencies
including the International Seabed Authority (ISA), the International Maritime
Organization (IMO), the Inter-American Tropical Tuna Commission (IATTC), and the
South Pacific Regional Fisheries Management Organisation (SPREMO), which regulate
seabed mining, shipping, and fishing, respectively. Despite ongoing United Nations
negotiations to better protect vulnerable marine ecosystems (VMEs) on the high seas
(UNGA, 2007; Rogers & Gianni, 2010), there is no legal mechanism to establish high seas
MPAss that are applicable to all States or sectors. Industrial fishing occurs in an estimated
48% of ABNJ, with fisheries pushing into deeper waters each year as stocks deplete in
shallower waters (Visalli et al., 2020). Commercial fishing in waters surrounding the Salas y
Gomez and Nazca ridges has been relatively limited historically (Wagner et al., 2021),
providing a unique opportunity to protect this diverse region before it is irrevocably
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damaged. However, effecting strong protection in ABNJ is difficult due to the lack of clear
legal mechanisms, competing interests, and lack of sufficient data in lesser-explored
regions (Gjerde et al., 2021).

Species distribution models, also referred to as habitat suitability models, are important
tools that help characterize the distribution and niche of taxa in data-poor regions. These
models can be particularly useful for deep-water taxa on the high seas, where extremely
limited surveys have occurred relative to shallow-water coastal areas (Fujioka ¢» Halpin,
2014; Ortufio Crespo et al., 2019), and data availability is a considerable obstacle to
improved conservation management and scientific advancement (Vierod, Guinotte ¢
Davies, 2014; Wagner et al., 2020). Species distribution models statistically couple the
known distribution of species with relevant environmental parameters to predict niche and
distribution in unsurveyed geographic regions or under varying environmental
conditions (Guisan ¢ Zimmermann, 2000; Miller, 2010). Quantifying the biogeographic
distribution of ecologically important or threatened species is critical for designing
and implementing management plans, shaping future research and exploration efforts,
and assessing past, present, and future anthropogenic impacts. Increasingly, species
distribution models are being developed specifically to inform marine conservation and
management (e.g., Rowden et al., 2017; Georgian, Anderson ¢» Rowden, 2019) or to
predict responses to recent anthropogenic disturbances (e.g., Georgian et al., 2020). Models
have been successfully developed for a large variety of benthic taxa, including global
models for stony corals (Davies ¢ Guinotte, 2011), black corals (Yesson et al., 2017),
octocorals (Yesson et al., 2012), and gorgonian corals (Tong et al., 2013), as well as
large-scale regional sponge models (e.g., Knudby, Kenchington ¢» Murillo, 2013; Chu et al.,
2019). Given their status as foundation species, and the frequent classification of these
taxa as indicators of VMEs, which SPRFMO and other fishery management organizations
are mandated with identifying and protecting (e.g., Penney, Parker & Brown, 2009), it is
critical to quantify their distribution.

An improved understanding of the spatial distribution of key taxa throughout the Salas
y Gomez and Nazca ridges is necessary for the evidence-based conservation of the region.
The suitability modeling in this study will inform ongoing efforts to identify and
prioritize key conservation targets along the ridges (see Wagner et al., 2021), reinforcing
the increasingly clear need to protect sensitive benthic fauna in the region from
further exploitation and disturbance from anthropogenic sources. In addition to
conservation planning, these models will also support future expedition planning, and
will improve our understanding of the niche of cold-water corals and sponges
throughout the region.

MATERIALS & METHODS

Study area

The study area encompassed a large region (15,991,101 km?) of the southeast Pacific
Ocean centered on the Salas y Goémez and Nazca ridges off the coasts of Peru and Chile
(Fig. 1). This area contains 755 seamounts and guyots covering a total area of 561,452 km®
(3.5% of the total area; geomorphology data from Harris et al., 2014). The region includes
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an area that has been recognized as an Ecologically or Biologically Significant Marine Area
(EBSA) by the Conference of the Parties to the Convention of Biological Diversity (CBD,
2014). The EBSA extends around the ridges (Fig. 1) and includes roughly 285 seamounts
and guyots covering a total area of 294,225 km* (17.2% of the EBSA area). The region
is bounded on the eastern side by the Atacama Trench, which along with the Humboldt
Current System isolates the ridges from South America (Von Dassow ¢ Collado-Fabbri,
2014). The Nazca Ridge is comprised primarily of a large plateau, while the Salas y Gémez
Ridge is mostly comprised of a series of smaller seamounts, escarpments, and ridge
features (Fig. S21). Seamounts and features farther east along the ridges are progressively
older and deeper (Rodrigo, Diaz ¢» Gonzdlez-Ferndndez, 2014). Closer to the South
American coast, a series of deep-water canyons extends into the Atacama Trench, while
farther offshore the terrain is dominated by a series of large spreading ridges as well as
smaller seamounts, ridges, and escarpments. The study area is primarily categorized as
abyssal, with the Atacama Trench extending into hadal environments and small areas
along the coasts, islands, and shallower seamounts extending upwards onto the slope and
shelf (Fig. 522).

Occurrence records

Geo-referenced coral and sponge records were obtained from the Ocean Biodiversity
Information System (OBIS, 2020), the NOAA Deep-Sea Coral and Sponge Database
(NOAA, 2020), and records from recent expeditions to the area (J. Sellanes and E. Easton,
2020, unpublished data). All records were obtained as presence-only records, with
duplicate records removed prior to analysis. The bulk of records were focused on the Salas
y Gémez and Nazca ridges, with another cluster of records in the neighboring Juan
Fernandez Islands region. We chose to focus on three higher taxonomic groupings that are
often key foundation species on seamounts: stony corals (Order: Scleractinia, n = 233),
demosponges (Class: Demospongiae, n = 275), and glass sponges (Class: Hexactinellida,
n = 134) (Tables S3-S5).

Pseudoabsence records

Species distribution models are ideally constructed using either presence-absence or
abundance datasets (Winship et al., 2020). However, obtaining high-quality, true absence
data is often difficult or impossible in remote environments, and particularly for
deeper-water species. Even when absences are recorded, they may reflect the lack of
systematic observations throughout the entire study area rather than true absence
(particularly given the narrow field of view of most submersibles or towed camera arrays
and similar issues with other sampling techniques such as tows or dredges). Inferring
suitable habitat from absence data may also be misleading due to dispersal limitation,
biotic interactions, or historical disturbances (e.g., Hirzel et al., 2002). Researchers are
increasingly developing methods that account for the lack of true absence data by using
sophisticated methods to produce better-than-random pseudoabsence or background data
(e.g., Iturbide et al., 2015).
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One of the primary limitations with species distribution models, and especially with
presence-only models, is sampling bias in the occurrence data (Kramer-Schadt et al., 2013;
Syfert, Smith ¢ Coomes, 2013). Although often unaccounted for, sampling bias can
introduce significant errors into models, affecting both their performance and ecological
interpretability (e.g., Syfert, Smith & Coomes, 2013). We chose to reduce the effects of
sampling bias by creating pseudoabsence data that has the same bias found in the presence
data (Elith, Kearney ¢ Phillips, 2010; Huang, Brooke & Li, 2011; Fitzpatrick, Gotelli &
Ellison, 2013). To mirror the sampling bias that likely exists in our presence records,
we created a two-dimensional kernel density estimate of sampling effort based on the
presence locations for each taxon (Figs. S6-S8). Pseudoabsence records (n = 10,000) were
sampled using this density estimate as a probability grid, resulting in a set of unique,
sample-bias corrected pseudoabsences for each taxon.

Environmental data

Within the study area, a suite of 44 environmental variables known to influence the
distribution of corals and sponges were constructed for use in models (Table 1).
Bathymetry for the study area were obtained from the SRTM30+ dataset (Becker et al,
2009; Sandwell et al., 2014) at a resolution of 0.0083° (approximately 1 km) and used in the
creation of several additional layers.

A number of terrain metrics were derived from this bathymetry layer to define the shape
of the seafloor. Slope, roughness, aspect, general curvature, cross-sectional curvature, and
longitudinal curvature were calculated using the ArcGIS (v10.8, ESRI) toolkit ‘DEM
Surface Tools’ (v2; Jenness, 2004; Jenness, 2013). Slope was measured in degrees and
calculated using the 4-cell method (Jones, 1998). Aspect represents the compass direction
of the steepest slope and was converted to an index of eastness using a sine transformation
and an index of northness using a cosine transformation. Curvature metrics assess the
likely flow of water across a feature, with positive values generally indicating convex
features that cause water to accelerate and diverge, in contrast to concave features where
water would be expected to decelerate and converge. Roughness is a measure of
topographical complexity, calculated here as the ratio of surface area to planimetric area,
with more positive values indicating more complex terrain. The Topographic Position
Index (TPI) was calculated using the toolkit Land Facet Corridor Designer (v1.2; Jenness,
Brost ¢ Beier, 2013). TPI assesses the relative height of features compared to the
surrounding seafloor, with positive areas indicating locally elevated features and negative
values indicating depressions. TPI is scale dependent, and was calculated at scales of 1,000,
5,000, 10,000, 20,000, 30,000, 40,000 and 50,000 m. Finally, the Vector Ruggedness
Measure (Hobson, 1972; Sappington, Longshore & Thompson, 2007), which calculates
terrain heterogeneity, was calculated with a neighborhood size of 3, 5, 7, 9, 15, 17 and 21
using the Benthic Terrain Modeler (v3.0; Walbridge et al., 2018).

To complement the suite of terrain metrics, large-scale geomorphological features
expected to provide suitable habitat for corals and sponges were obtained from Harris et al.
(2014), including seamounts, guyots, canyons, ridges, spreading ridges, plateaus and
escarpments. See Fig. S21 for a map of geomorphological features in the study area.
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Table 1 Environmental variables used in model creation.

Variable name Included in final models Units Native Reference
resolution
Bathymetry meters 0.0083° Becker et al., 2009

Sandwell et al., 2014

Terrain Metrics

Aspect-Eastness 0.0083° Jenness, 2013
Aspect-Northness 0.0083° Jenness, 2013
Curvature-General 0.0083° Jenness, 2013
Curvature-Cross-Sectional 0.0083° Jenness, 2013
Curvature-Longitudinal 0.0083° Jenness, 2013
Roughness 0.0083° Jenness, 2013
Slope X degrees 0.0083° Jenness, 2013
Topographic Position Index (TPI) X 0.0083° Jenness, Brost & Beier, 2013
Vector Ruggedness Measure (VRM) X
Geomorphological Features Harris et al., 2014
Seamount Harris et al., 2014
Guyot
Canyon Harris et al., 2014
Ridge Harris et al., 2014
Spreading Ridge Harris et al., 2014
Plateaus Harris et al., 2014
Escarpment Harris et al., 2014
Benthic Conditions
Total alkalinity pmol 1! 3.6 x 0.8-1.8° Steinacher et al. (2009)
Dissolved inorganic carbon pmol 17 3.6 x 0.8-1.8° Steinacher et al. (2009)
Omega aragonite (Q,) X 3.6 x 0.8-1.8° Steinacher et al. (2009)
Omega calcite (Qc¢) 3.6 x 0.8-1.8° Steinacher et al. (2009)
Dissolved oxygen X ml ™ 1° Garcia et al. (2013a)
Salinity pss 0.25° Zweng et al., 2013
Temperature °C 0.25° Locarnini, 2013
Phosphate X pmol 17! 1° Garcia et al. (2013a)
Silicate X pmol 1! 1° Garcia et al. (2013b)
Nitrate X pmol 17! 1° Garcia et al. (2013b)
Particulate organic carbon (POC) X gC m™ year_1 0.05° Lutz et al. (2007)
Regional current velocity ms’ 0.5° Carton, Giese & Grodsky (2005)
Vertical current velocity ms™ 0.5° Carton, Giese & Grodsky (2005)
Surface Conditions
Chlorophyll a mg m~> 4 km Aqua Modis (NOAA)
Sea Surface Temperature °C 4 km Aqua Modis (NOAA)
Note:

Not all variables were retained in the final models produced. ‘Reference’ refers to either the tool used to create the variable (terrain metrics) or the original data source
(other variables).

Data describing benthic conditions at the seafloor were obtained from the World Ocean
Atlas (v2; 2013), including temperature, dissolved oxygen, salinity, nitrate, phosphate, and
silicate. Carbonate data including dissolved inorganic carbon (DIC), total alkalinity,
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and the saturation states of calcite and aragonite, were obtained from Steinacher et al.
(2009). Current data describing regional horizontal and vertical current velocities were
obtained from the Simple Ocean Data Assimilation model (SODA v3.4.1; Carton ¢ Giese,
2008). Particulate organic carbon (POC) flux to the seafloor was obtained from Lutz et al.
(2007). Raw benthic data layers were transformed to match the extent and resolution of the
other environmental variables using the upscaling approach developed by Davies ¢
Guinotte (2011). This upscaling technique incorporates bathymetry data to approximate
conditions at the seafloor and has previously been demonstrated to work effectively on
both global and regional scales for a variety of data (Yesson et al., 2012; Georgian, Anderson
¢ Rowden, 2019). The upscaled WOA data (dissolved oxygen, nitrate, phosphate and
silicate) were compared to quality-controlled bottom-water bottle data from the Global
Ocean Data Analysis Project (GLODAP v2.2019) to assess how much error may have been
present in the raw WOA datasets or introduced via our upscaling approach (see Fig. 523).

Surface conditions were assessed as chlorophyll a and mean sea surface temperature
data obtained from the Aqua MODIS program (Aqua MODIS, 2018). Both layers were
calculated as the mean value from 2002-2016 at a resolution of 4 km, and resampled to
match the extent and resolution of the other environmental layers with no additional
interpolation.

Modeling techniques

Models were constructed using four different techniques that have proven successful in
modeling the distribution of cold-water corals and sponges: Boosted Regression Tree
(BRT), Generalized Additive Models (GAM), Maximum Entropy (Maxent), and Random
Forest (RF). For each modeling technique, the sampling-bias corrected set of
pseudoabsences (n = 10,000) was used in place of either true absences or random
pseudoabsences. Each model outputs a habitat suitability score between 0-1, with higher
scores indicating more suitable habitat. While often erroneously referred to as the
probability of occurrence, this score does not represent a true probability of occurrence in
presence-only models due to the lack of true absences and nonsystematic observation of
the study area. The refinement of model parameters, final model, model evaluations, and
model outputs (e.g., variable importance and response curves) were completed using
‘biomod2’ (Thuiller et al., 2016), ‘gbm’ (Ridgeway, 2004), ‘dismo’ (Hijmans et al., 2017),
‘mgev’ (Wood & Wood, 2015), and ‘randomForest’ (Liaw ¢» Wiener, 2002) in R (v3.6.1;
R Core Team, 2019).

Boosted Regression Tree (BRT) models rely on binary splits in a regression-tree
structure to define the response of species occurrence or abundance to environmental
variables (Elith, Leathwick ¢ Hastie, 2008), and have been successfully used to model the
distribution of deep-sea fauna (e.g., Rowden et al., 2017; Georgian, Anderson ¢ Rowden,
2019). The minimum number of trees was set at 1,000, and a Bernoulli distribution of the
presence-pseudoabsence data was assumed. Tree complexity was set to three to allow
limited interactions between terms.

Maxent (Phillips, Anderson & Schapire, 2006) is a machine learning, presence-only
modeling algorithm that has been shown to outperform other presence-only models
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(Elith et al., 2006; Tittensor et al., 2009) and even presence-absence models (Reiss et al., 2011).
Default model settings were used except the maximum number of iterations was
increased to 500 to ensure that models converged. In addition, the regularization parameter
(default of B = 1) was experimentally tested using values of p = 1-10. Regularization is a
smoothing function that controls the complexity of models, with higher values resulting in
simpler models with fewer parameters. An ultimate value of f = 5 was chosen for all taxa
based on the performance of preliminary models. Previous Maxent modeling of cold-water
corals has shown that increasing p improves model performance in areas or conditions
outside of the training data, essentially by preventing the model from overfitting to its
training data (Georgian, Shedd & Cordes, 2014).

A Generalized Additive Model (GAM) is a type of generalized linear model that
employs smoothing functions for each explanatory variable (Hastle ¢ Tibshirani, 1986).
GAM has frequently been used to model the distribution and niche of a variety of marine
species including corals and sponges (e.g., Rooper et al., 2014). A binomial distribution
of the presence-pseudoabsence data was assumed. Various types of smoothers and degrees
of freedom allowed were explored in preliminary models, resulting in a thin plate
regression spline smoothing function with 12 degrees of freedom used for all variables and
modeling runs. Testing higher degrees of freedom (ranging from 4-15) resulted in
small improvements in model performance but increased computational time, with no
significant model improvements above 12 degrees of freedom (in general agreement with
the findings of Wood, 2017).

Random Forest (RF) models (Breiman, 2001) are a classification or regression,
tree-based algorithm that relies on a random selection of explanatory variables and an
internal bootstrapping metric to produce and then combine a large number of trees.
Default parameters were used except the number of trees was increased to 501 and tree
depth was limited to a value of ten to prevent overfitting to the training data. Various tree
depths (1-20) were investigated in preliminary models, and a tree depth of ten was
ultimately selected as it appeared to improve model performance while preventing models
from strongly overfitting to the training data. Tuning tree depth appropriately has been
shown to improve model performance without significantly affecting computational
time (Duroux & Scornet, 2018), with larger than default values often yielding the best
results (Segal, 2003). It should be noted however that other studies have produced better
results by limiting tree depth (Nadi ¢» Moradi, 2019), suggesting that the correct tuning
value may be dependent on the dataset used as well as how other model parameters
are tuned in conjunction. The optimal value of ‘mtry’ was also experimentally altered
in preliminary models, however, the default value (the square root of the number of
explanatory variables) consistently performed well and was therefore used across all
model runs.

Each modeling approach (BRT, Maxent, GAM and RF) is fundamentally distinct
and depends on different structures and assumptions. Therefore, each will produce
different habitat suitability maps that may reflect tradeoffs in various aspects of model
performance, making it difficult to accurately determine which, if any, model type is
superior (Robert et al., 2016). To create a more robust final model, we generated an
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ensemble model for each taxon based on a performance-weighted average of habitat
suitability scores from each model type. The BRT, Maxent, GM, and RF model for each
taxon were combined using a weighted average of habitat suitability, with weights based
on model performance (AUC scores).

Model testing

Models were tested using a ten-fold cross-validation procedure that randomly partitioned
occurrences into 20% test data and 80% training data. Metrics of model performance
were calculated for each run and averaged across all ten runs, however, final models
were trained using the entire dataset. Model performance was assessed through a
combination of Area Under the Curve (AUC) and the true skill statistic (TSS). AUC is a
threshold-independent performance measure that in presence-only models indicates the
probability that the model correctly ranks occurrences over background locations.

A random model has a theoretical AUC of 0.5, and while the maximum AUC is generally
unknowable in presence-only models it is always less than 1 (Wiley et al., 2003; Phillips,
Anderson ¢ Schapire, 2006). The TSS metric is similar to the conventionally reported
kappa, but is independent of species prevalence as well as the size of the validation dataset
(Allouche, Tsoar & Kadmon, 2006). TSS ranges from —1 to +1 with negative values
indicating more random performance and positive values indicating better performance.
To fine-tune model parameters (see above), the Akaike Information Criterion (AIC) was
also used to assess model performance. AIC helps assess the tradeoff between goodness
of fit and simplicity of models, and is therefore commonly used for model selection.

A similar ten-fold cross validation approach was used to estimate the spatial uncertainty of
the models by randomly withholding 20% of occurrence and pseudoabsence data from
model construction with replacement between runs. Uncertainty was then assessed as the
standard deviation of habitat suitability scores across all ten model runs. This approach
does not account for all possible sources of uncertainty, but provides a useful spatial
measure of how sensitive the model is to the sampling of occurrence data and the
construction of the pseudoabsence dataset.

Variable selection

The inclusion of highly correlated variables in species distribution models can reduce
model performance and make the results more difficult to interpret ecologically (Tittensor
et al., 2009; Huang, Brooke ¢ Li, 2011). Therefore, we employed a variable selection
process to refine our original list of 44 environmental layers to a more parsimonious list of
less-correlated variables. Variable selection was based on (1) preliminary model testing
including predicted variable importance and impact on overall model performance for
BRT, Maxent, GAM, and RF models, (2) correlation and clustering among variables, and
(3) known biological importance for each taxon. When variables were highly correlated
(Pearson’s correlation coefficients >0.7) and clustered together (see Figs. S1 and S2),
preference was given to the variable that exhibited the best model performance, was
less-correlated with other variables, clustered more independently, or was considered to be
more biologically relevant.
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Figure 2 Relationship among the final set of environmental variables used to train the models. Depth
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variables, with variables containing similar information clustering closer together. See Figs. S1 and S2 for
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Depth was artificially removed despite high model performance due to its high correlation
with several, more biologically-relevant variables. The saturation state of aragonite (Q2,) was
included for stony corals due to moderate to high performance in preliminary models
and known importance for structuring cold-water coral distributions (e.g., Georgian,
Shedd & Cordes, 2014; Georgian et al., 2016a). Silicate concentration was included for both
demosponges and glass sponges due to the inclusion of silicate in their skeletal structures and
high performance in preliminary models. POC was retained despite relatively high
correlations with both silicate (—0.684) and Q, (0.769) due to the known biological
importance of all three variables and performance in preliminary models. However, it should
be noted that ecological interpretations can be difficult when variables are highly correlated.

The final variable set included eight variables for each taxon, including dissolved oxygen,
nitrates, phosphates, slope, TPI calculated at a scale of 40,000 m (TPI-40000), VRM
calculated with a neighborhood size of 21 (VRM-21), POG, silicate (demosponge and glass
sponges only), and Q4 (stony corals only). Within the final variable set for each taxon, the
highest correlation among variables was —0.684 (POC and silicate), and variables clustered
relatively independently compared with the original set (Fig. 2 and Table S1).

RESULTS

Model performance
The models performed well across all taxa and modeling algorithms (Table 2). The 10-fold
cross-validation procedure produced test AUC scores that were generally above 0.9, with a
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Table 2 Model performance as evaluated by the AUC, and TSS metrics.

Taxa Model Test data Training data
AUC TSS AUC TSS
Demosponges BRT 0.939 + 0.02 0.783 + 0.04 0.937 0.799
GAM 0.976 + 0.01 0.912 + 0.03 0.974 0.799
Maxent 0.975 = 0.03 0.625 * 0.06 0.817 0.524
RF 0.837 = 0.01 0.932 + 0.03 0.998 0.959
Ensemble - - 0.988 0.916
Glass sponges BRT 0.868 + 0.02 0.718 + 0.04 0.872 0.739
GAM 0.904 + 0.04 0.770 £ 0.05 0.929 0.763
Maxent 0.902 + 0.04 0.738 + 0.06 0.904 0.679
RF 0.948 + 0.04 0.862 + 0.07 0.993 0.961
Ensemble - - 0.968 0.770
Stony corals BRT 0.915 = 0.03 0.821 + 0.07 0.924 0.842
GAM 0.956 + 0.03 0.827 £ 0.06 0.964 0.855
Maxent 0.931 + 0.03 0.820 * 0.06 0.939 0.822
RF 0.965 + 0.02 0.901 + 0.04 0.980 0.940
Ensemble - - 0.973 0.845
Notes:

Higher values (closer to one) indicate better model performance in each metric. Each metric was calculated using test
data during a ten-fold cross-validation procedure withholding 20% of records for testing, and also for the full model using
all available training data. Test value are given as the mean + standard deviation across 10 model runs.

lowest score of 0.837 (RF model for demosponges). Test TSS scores were similarly high,
with an average TSS score of 0.809 across all model types and taxa. Test scores did not
change considerably among different cross-validation runs, suggesting that ten runs were
sufficient to capture the variation caused by withholding different testing data. Glass
sponge models performed slightly worse across all modeling types (average test AUC of
0.905 and training AUC of 0.925), followed by demosponges (average test AUC of 0.932
and training AUC of 0.942). Stony corals performed the best by a small margin with an
average test AUC of 0.942 and training AUC of 0.952.

Test data revealed that GAM and Maxent models consistently performed slightly better
than BRT and RF models. When looking at the evaluation metrics for the final models built
using all available training data, RF consistently outperformed the other approaches,
consistently having the highest AUC and TSS scores. However, when looking at test scores
during cross-validation, RF scores dropped considerably, suggesting that RF models were
slightly overfitting to the training data despite optimization of model parameters.

In contrast, Maxent models, which generally performed slightly worse than RF models
when using training data, had little to no decrease in scores when using testing data, in
some cases even performing better against testing data. This suggests that the optimization
of the Maxent regularization parameter (p = 5, default = 1) was successful in reducing
model complexity to appropriate levels without a large effect on overall model
performance. Testing and training scores were similar for BRT and GAM models, with a
very slight decrease in most testing scores. BRT and RF models generally had the lowest
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Figure 3 Predicted habitat suitability for the demosponge ensemble model. Warmer colors indicate
more suitable habitat. Full-size K&l DOT: 10.7717/peerj.11972/fig-3

uncertainty (Figs. $24-535) compared to GAM and Maxent models, although GAM
uncertainty was highly spatially restricted to very small areas of highly suitable habitat.

The full ensemble models performed well, with an AUC of 0.988 for demosponges,
0.968 for glass sponges, and 0.973 for stony corals. It is interesting that the demosponge
ensemble model performed the best by a small margin, when the individual models
performed slightly worse than the models for stony corals. This suggests that the ensemble
modeling approach was successful in reducing potential structural inadequacies, lack of
ideal model optimization, or bias in each model type that may affect the outputs (Robert
et al., 2016). In general, the scores for the ensemble models suggest that they outperformed
GAM, Maxent, and BRT models, but performed slightly worse than the RF model.
However, this is likely because RF models were overfitting slightly, producing artificially
elevated training scores. Collectively, the performance metrics suggest that the ensemble
models were the best for each taxon.

Distributions

For all three taxa, areas with high predicted habitat suitability were largely restricted to
small pockets clustered around the Salas y Gomez and Nazca ridges, the eastern portion of
the Foundation Seamount Chain, and the waters around the Juan Fernandez Islands
(Figs. 3-5). Glass sponges and stony corals also had strips of low-moderate suitability
along the South American coast and along the west flank of the Atacama Trench. Stony
corals models also predicted low-moderate suitability on a large spreading ridge along the
East Pacific Rise, although there were few highly suitable areas (see Fig. S21). Within the
Salas y Gémez and Nazca ridges, suitability predictions were remarkably similar among
the three taxa, with highly suitable habitat coinciding with the flanks and summits of most
seamount, knoll, and ridge features (see Fig. 6). However, glass sponges appeared to have
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Figure 5 Predicted habitat suitability for the stony coral ensemble model. Warmer colors indicate
more suitable habitat. Full-size K&l DOT: 10.7717/peerj.11972/fig-5

higher suitability predicted on the steeper sides of large seafloor features, while
demosponges and stony corals were predicted to occur on the flanks and especially on the
summits of the same features.

When the predicted distribution of each taxon was assessed against the large-scale
geomorphological classifications (Harris et al., 2014, see Fig. S21), a clear preference for
escarpments, ridges, seamounts, guyots, and plateaus (primarily along the Nazca Ridge)
emerged (Table S2). BRT and RF models typically predicted narrow distributions clustered
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highly suitable seamounts on the western side of the Salas y Goémez Ridge. Depth with 500 m con-
tours is shown in the last panel for reference. Full-size K&l DOT: 10.7717/peerj.11972/fig-6

almost exclusively on seamounts and other large terrain features, while Maxent and
GAM also predicted areas of low-moderate suitability in bands along the coast, spreading
ridges, and smaller-scale terrain features throughout the region (Figs. S$9-520). While the
highly suitability regions were remarkably similar among modeling types, structural
differences or assumptions in each model type did affect the overall suitability predictions,
lending additional support for the creation and use of ensemble models rather than relying
on a single model. It should be noted that model uncertainty was generally highest in
areas with higher predicted habitat suitability (Figs. S24-S35), as well as in more coastal
areas, suggesting that additional field surveys may improve models in these areas.

Niche

The niche of each taxa was assessed via a combination of variable contribution to the
models (Table 3), response curves showing how predicted suitability changes over a range
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Table 3 Percent variable contributions to each model.

Taxa Model Qa Dissolved oxygen  Nitrate Phosphate = POC  Silicate Slope  TPI-40,000 VRM-21
Demosponges BRT - 0.0 0.4 0.3 3.7 8.5 0.1 86.0 1.0
GAM - 19.0 15.9 42 16.7 27.4 3.8 7.4 5.6
Maxent - 0.0 0.0 2.4 19.3 0.2 2.3 50.4 25.4
RF - 0.6 4.5 5.8 6.5 35.5 1.9 37.4 7.7
Glass sponges ~ BRT - 0.1 0.3 0.1 12.5 78.3 7.3 0.6 0.9
GAM - 0.9 8.5 25.7 33 52.5 5.0 35 0.6
Maxent - 32 35 0.8 1.0 62.8 11.8 43 12.7
RF - 35 5.7 7.9 26.8 31.1 13.6 7.5 39
Stony corals BRT 80.3 0.1 0.1 0.0 0.4 - 0.3 18.1 0.6
GAM 48.9 1.0 1.6 37.4 5.2 - 0.5 2.4 2.9
Maxent  89.7 0.1 0.0 0.0 4.8 - 0.3 0.0 5.1
RF 54.1 22 7.0 32 1.6 - 1.1 28.6 2.2

Note:

Q4 was only included in stony coral models. Silicate was only included in demosponge and glass sponge models. POC=particulate organic carbon.
TPI-40,000 = topographic position index calculated at the 40,000 m scale. VRM-21 = vector ruggedness measure calculated with a neighborhood size of 21. The top three
variables for each model are highlighted in bold.

of environmental conditions (Fig. 7), and bean plots showing the environmental
conditions occurring in the known distribution of each taxa compared to background
conditions (Figs. S3-S5).

Terrain metrics consistently contributed a considerable amount of information in each
model. Across all model types for demosponges, slope contributed an average of 2% of
information, TPI-40,000 contributed an average of 45.3%, and VRM-21 contributed an
average of 9.9%. For glass sponges, slope contributed an average of 9.4%, TPI-40,000
contributed an average of 4.0%, and VRM-21 contributed an average of 4.5%. For stony
corals, slope contributed an average of 0.6%, TPI-40,000 contributed an average of 12.3%,
and VRM-21 contributed an average of 2.7%. Considered jointly, terrain comprised
between 15.5-57.3% of information for each taxon, suggesting that the shape of the
seafloor is an important component of their niche. Response curves and bean plots suggest
that stony corals and demosponges have a clear preference for elevated TPI values
(indicating large-scale elevated features). All three taxa show a preference for elevated
VRM values (indicating more varied terrain). Interestingly, VRM-21 correlated and
clustered with seamounts (Pearson’s coefficient of 0.5; Figs. S1 and S2), indicating that at
this scale, VRM-21 was a likely an indicator of features similar in topography to
seamounts, guyots, and knolls. Bean plots showed that the known distribution of all three
taxa coincides with higher slope values of approximately 5-20 degrees compared with
background data, however, response curves indicated a more complex relationship.
Demosponges exhibited a small preference for elevated slopes, while glass sponges had a
large preference for slopes up to approximately 15 degrees, and then a lower preference for
steeper slopes. Stony corals had a negative affinity for slopes steeper than 5°.

Silicate was the highest performing variable for glass sponge models (average
contribution of 56.2 across model types), and the second highest for demosponges (average
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Figure 7 Response curves showing how the model fit changes over the range of each environmental variable. Values were calculated for the final
variable set using the ensemble model for each taxa. Silicate was only included in demosponge and glass sponge models, and Q4 was only included in
the stony coral model. Full-size K] DOT: 10.7717/peerj.11972/fig-7

contribution of 17.9% across model types). Response curves indicated that both sponge
taxa have a large drop-off in predicted suitability once silicate values exceed approximately
30-40 pumol 17!, and bean plots show that both taxa occur at lower than expected silicate
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values relative to the background environment. It should be noted that silicate had high
correlations with other retained variables, including POC (Pearson’s coefficient of —0.684)
and nitrates (Pearson’s coefficient of 0.538), which complicates the ecological
interpretation of these results.

For stony corals, Q5 contributed by far the most information in each model type with
an average of 68.3% across all models. A clear preference in both response curves and bean
plots for elevated Q4 values above 1.5 indicated a need for a supersaturated environment.
All three taxa were also moderately-highly influenced by POC, with response curves

indicating a small spike in suitability between 0-10 g C m™>

, and then a rapid decrease in
suitability at higher concentrations. However, an analysis of the bean plots indicates that
POC values > 5 g C m™” are rare in the study area, and that all three taxa occur at higher
than expected concentrations compared with background values.

Dissolved oxygen, nitrate, and phosphate concentrations were only moderately
important in the models for each taxon, generally only entering the top three variables in
GAM models, which typically included more moderate contributions from all variables
rather than receiving large contributions for a few variables. Response curves indicated
that glass sponges preferred elevated dissolved oxygen concentrations, while demosponges
and stony corals did not have a clear response. Both sponge taxa appeared to moderately
prefer higher nitrate values, while stony corals indicated a small preference for lower
values. All three taxa exhibited a moderate preference for lower phosphate concentrations.

DISCUSSION

Overview

In order to better inform the spatial management of fisheries and other human activities in
the Salas y Gomez and Nazca ridges, we developed ensemble species distribution models
for three taxa that are frequently classified as indicator taxa for VME:s (e.g., Penney, Parker
¢ Brown, 2009; Parker, Penney ¢ Clark, 2009: demosponges, glass sponges, and stony
corals). These taxa act as critical foundation species in deep waters due to their habitat
creation and other critical ecosystem services (Roberts et al., 2009). These areas are VMEs
due to their susceptibility to disturbance based on the fragility, rarity, functional
significance, and life history traits of their members (FAO, 2009). The United Nations
require that states and associated intergovernmental agencies identify and protect VMEs,
including the closure of fisheries when necessary (UNGA, 2007). A better understanding of
the spatial distribution and niche of key VME taxa is a critical step towards enacting
protection for these fragile and diverse habitats.

The models show that only a small portion of the total study area contained moderately
or highly suitable habitat, with the most suitable habitat clustered around topographic
highs along the Salas y Gomez and Nazca ridges, the waters around the Juan Fernandez
Islands, and the Foundation Seamount Chain. The patchy nature of the predicted
distribution of all three taxa highlights the difficulties in achieving optimal spatial
management with limited observation data, and reinforces the need for species distribution
modeling to fill in key knowledge gaps. While the total area of highly suitable seafloor was
predicted to be small, these patches extend over large distances, necessitating a regional
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conservation approach. It is also important to note that most large-scale features (e.g.,
seamounts, guyots, ridges, and escarpments) were predicted to be highly suitable for all
three taxa, particularly within the Salas y Gomez and Nazca ridges. Surveys in the area have
shown that seamounts along the ridges have unique assemblages, including species not
found elsewhere along the ridges (Comité Oceanogrdfico Nacional de Chile, 2017), further
supporting the argument that protecting all of these features should be a high priority for
conservation.

Influence of environmental conditions

Elevated and more complex seafloor topography has long been known to exert a

strong influence on the success of many benthic species including corals and sponges
(e.g., Rowden et al., 2017; Chu et al., 2019). As suspension and filter feeders, corals and
sponges are heavily reliant on local and regional currents to increase food supply (Purser
et al., 2010), transport larva (Piepenburg ¢ Miiller, 2004), and prevent sedimentation of
both tissues and benthic surfaces required for recruitment (Rogers, 1994). Elevated and
complex terrain affect current regimes in ways that can be favorable for the recruitment
and success of cold-water corals and sponges (Masson et al., 2003; Bryan ¢ Metaxas, 2006).
Accordingly, all three taxa in our study appeared to have a strong affinity for seamounts,
guyots, ridges, and escarpments, with a clear preference for high TPI and VRM values
(indicating locally elevated and complex surfaces).

It was surprising that stony corals appeared to prefer flatter surfaces, while both sponge
groups preferred steeper slopes. The response of stony corals to slope may be explained
by the low variable contribution of slope to the stony coral model, and the larger
contribution of other terrain features. However, a closer examination of the habitat
suitability predictions around large seafloor features showed that stony corals appeared to
prefer the summits of seamounts and flat-topped guyots to their steeper flanks, suggesting
that this relationship may reflect a real preference for being on the tops, rather than the
sides, of large terrain features. In contrast, highly suitable glass sponge habitats clustered
preferentially on the steeper slopes of large features while also showing a preference for
steeper slopes. The flanks and summits of seamounts can contain drastically different
environmental conditions due to depth gradients, extreme hydrological forces, exposure to
oxygen-minimum zones, and the topography and sediment type of the summit (Clark
et al., 2010). Further observations on a finer scale than achieved here are necessary to
confirm and explain this pattern.

The waters surrounding the Salsas y Gémez and Nazca ridges are generally
oligotrophic (Von Dassow & Collado-Fabbri, 2014; Gonzilez et al., 2019) and oxygen-poor
(Espinoza-Morriberon et al., 2019), suggesting that these variables could play large roles in
determining species distributions throughout the region. Nitrate and phosphate only
contributed a low-moderate amount of information to the models for each taxon, although
response curves did indicate that both sponge taxa had an apparent preference for higher
nitrate and lower phosphate concentrations. However, research suggests that phosphate
and nitrate uptake in sponges is negligible and unlikely to significantly limit distribution
(Yahel et al., 2007; Perea-Blazquez, Davy & Bell, 2012).
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Dissolved oxygen concentration is frequently suggested as being critically important for
cold-water corals (Dodds et al., 2007; Lunden et al., 2014) and sponges (Whitney et al.,
2005). However, it generally did not contribute considerable information to the models in
this study, and only glass sponges demonstrated a notable increase in suitability in
response to higher dissolved oxygen concentrations. For stony corals and demosponges,
this may suggest that dissolved oxygen is not a limiting factor in the region, congruent with
other work showing that cold-water coral communities can grow successfully even in very
low oxygen conditions (e.g., approximately 2.5 ml ™" at deep-water reefs in the Gulf of
Mexico; Georgian et al., 2016a). Similarly, research suggests that some sponges can tolerate
periods of hypoxia, although they do so at the expense of other metabolic functioning (Leys
¢ Kahn, 2018). In contrast, low dissolved oxygen concentrations have been suggested
to be the primary limiting growth factor for glass sponge reefs in some regions (Leys et al.,
2004), suggesting that dissolved oxygen may partially limit their distribution on the Salas y
Gomez and Nazca ridges.

POC flux to the seafloor represents a proxy for food supply to benthic communities and
is critically important for the success of deep-water corals and sponges (Wagner et al.,
2011; Kahn et al., 2015). POC contributed significantly to the models for all taxa in this
study, with suitability predicted to be highest at POC fluxes between approximately 5-50 g
C m™>. It was surprising that habitat suitability for each taxon actually decreased after
POC fluxes of approximately 50 g C m~>. However, correlations with other variables
including depth, dissolved oxygen, temperature, (24, and silicate may explain this trend.
POC values greater than 50 g C m > were also spatially rare within the study region, with
higher values almost exclusively occurring in shallower, coastal waters. In the offshore
regions containing deep-water coral and sponge habitats, POC flux was extremely low
(generally <10 g C m™?), suggesting that these communities may be food limited by default.
However, corals and sponges may also uptake dissolved organic carbon (DOC) (Weisz,
Lindquist ¢» Martens, 2008; Gori et al., 2014), or receive food from the lateral transport of
POC (e.g., Rowe et al., 2008), potentially decoupling the relationship between vertical POC
flux to the seafloor and food supply.

Stony corals produce their hard skeletons using the aragonite form of calcium
carbonate, with this mineral often serving as the foundation of entire deep-water
ecosystems. The saturation state of aragonite ({2,) represents the tendency for aragonite to
form or dissolve in seawater, with values >1 indicating supersaturated waters where
formation is thermodynamically favored. In our study, Q5 was the dominant contributing
variable in each model type for stony corals, with response curves indicating a clear
preference for supersaturated (), values above approximately 1.5. This conforms with
numerous field surveys (Lunden et al., 2014; Georgian et al., 2016a), experimental results
(Georgian et al., 2016b; Kurman et al., 2017), and modeling studies (e.g., Guinotte et al,
2006; Davies ¢ Guinotte, 2011) suggesting that aragonite supersaturation is a primary
requirement for the growth and success of deep-water stony corals. While survival is still
possible in undersaturated waters (Thresher et al., 2011), there are large energetic costs
associated with calcifying under these conditions (McCulloch et al., 2012; Wall et al., 2015),
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which generally require additional resources via increased feeding rates (Georgian et al.,
2016D).

While silicate was important in both sponge models, it was surprising that demosponge
and glass sponge suitability was lower in areas with higher silicate concentrations, as
both taxa produce extensive silicate skeletal materials (as much as 80% of the dry weight of
glass sponges can be made up of silicate; Chu et al., 2011). Previous work has found
clear links between sponge distributions and silicate concentrations (e.g., Whitney et al,
2005; Howell et al., 2016), with silicate uptake becoming more energetically costly when
environmental concentrations are low (Krasko et al., 2000). However, extensive glass
sponge reefs have been documented at similar silicate concentrations (approximately 50
umol 1% Chu et al., 2011) that still coincided with predicted high suitability in our study,
with response curves indicating a steep decline in suitability in concentrations starting
only around 30 umol 17", This suggests that it is possible that once a minimum
concentration of silicate is reached, there is little additional biological benefit to growing in
higher concentrations, allowing the relative importance of other variables to become
more important. This finding aligns well with previous research suggesting that a lower
silicate level of approximately 30-40 umol 1" may be the lower limit for optimal sponge
growth (Leys et al., 2004).

It is also possible that the lower native resolutions of the nutrient, POC, aragonite
saturation state, and dissolved oxygen datasets (see Table 1) precluded a more important
role in the models, as well as potentially complicating their ecological interpretability.

In addition, as comparisons of interpolated layers were not perfectly correlated with
water-controlled bottle data from GLODAP (Fig. 523), it is likely that the environmental
layers used in our study contain small errors, or that these data are temporally variable.
These potential sources of error may complicate the ecological interpretation of these
variables, especially when variables are already moderately to highly correlated with other
variables (whether included or excluded in final models; see Table S1). However, bean plots
and response curves generally demonstrated a strong habitat preference for most key
variables, suggesting that these variables are more important on regional scales where the
effects of small errors should be negligible. Future work should be completed to improve
variable resolution and validate these data in order to more accurately assess how these
environmental conditions affect the distribution and niche of these taxa throughout the
region. Improved datasets would also considerably improve our ability to predict and map
the potential shift in suitable habitat under future scenarios expected with ongoing
warming, ocean acidification, shifts in primary productivity, and deoxygenation.

Threats

Anthropogenic impacts to deep-sea environments are increasing at an unprecedented
rate and scale (reviewed in Ramirez-Llodra et al., 2011). Despite their remote offshore
location, the Salas y Gdmez and Nazca ridges are not immune to the risks posed by human
activities, including commercial fishing, pollution, climate change, and potential seabed
mining (reviewed by Wagner et al., 2021). Bottom fisheries are frequently cited as one
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of the most damaging activities for deep-water coral and sponge habitats (Watling ¢
Norse, 1998; Pusceddu et al., 2014), given the indiscriminate and destructive nature of the
trawls, lines, and other equipment used. Suitable habitat for corals and sponges often
overlaps with bottom fisheries due to the strong association of many demersal fish species
with seamounts and similar features, as well as with the habitat structures created by corals
and sponges themselves (Baillon et al., 2012; Kutti et al., 2014). The Salas y Gémez and
Nazca ridges have been sporadically but not heavily trawled in the past, with a bottom
trawl closure for orange roughy enacted by SPREMO in 2006 (reviewed in Tingley ¢ Dunn,
2018). Long-lining and pelagic fisheries do target the ridges, but for most target species,
fishing effort in the region has been historically low (Wagner et al., 2021). Therefore, this
area presents a unique opportunity to implement strong protections before widespread
and irrevocable damage occurs.

Like every major marine habitat studied, the Salas y Gémez and Nazca ridges are
affected by marine debris pollution including abandoned fishing gear and plastics, with the
bulk of materials stemming from high seas fisheries in the South Pacific (Luna-Jorquera
et al., 2019) or coastal regions via the confluence of the Humboldt Current System and
the South Pacific Subtropical Gyre (Thiel et al., 2018). Plastic pollution alone is estimated
to affect more than 97 species in the region through entanglement and ingestion, including
fish, sea turtles, seabirds, and marine mammals. While the harmful effects of marine
debris are better documented in pelagic species, microplastics have been found to
significantly reduce the growth and feeding of deep-water corals, and derelict fishing gear
causes physical damage to deep-water reefs and harms mobile fauna via ghost fishing
(Chapron et al., 2018; La Beur et al., 2019).

Seabed mining is a new but imminent threat to many deep-sea environments including
the Salas y Gomez and Nazca ridges. Deposits of cobalt, manganese, and polymetallic
massive sulfides are known to exist on or near the ridges (Hein et al., 2013; Miller et al.,
2018; Garcia et al., 2020), leaving this area susceptible to future mining interests. While
seabed mineral extraction has not yet occurred, rising demand for minerals coupled
with technological advances in mining equipment are rapidly increasing global interest in
the mining industry. If allowed to occur, seabed mining will cause widespread and serious
harm to sensitive benthic habitats via the physical disruption of the seafloor and
sedimentation of neighboring habitats (Van Dover et al., 2017).

One of the largest threats to most marine habitats is anthropogenic emissions, which are
driving unprecedented rates of warming, deoxygenation, acidification, and decreased
productivity in deep-sea environments (Mora et al., 2013). For coral and sponge habitats
along the Salas y Gémez and Nazca ridges that already experience average or seasonally
low dissolved oxygen, low Q,4, high temperatures, or low POC flux, climate change
may rapidly render even highly suitable habitats unviable for the long-term survival of
these taxa. If the rate of environmental change is faster than species can adapt or acclimate,
the distribution of many fauna may be considerably reduced, potentially resulting in
widespread ecosystem collapse (e.g., Ullah et al., 2018). Climate change will also exacerbate
local stressors including fishing and pollution, reducing both the resiliency of ecosystems
as well as their ability to recover from disturbances. However, marine protected areas are
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increasingly viewed as a viable tool to mitigate the results of climate change (Mumby &
Harborne, 2010; Micheli et al., 2012; Roberts et al., 2017).

Implications for high seas conservation and management

ABNJ, commonly known as the high seas, cover more than 61% of the global ocean surface
and 73% of its volume. These remote ocean areas are not only vast, but also critical for
sustaining life on Earth, as they contain nearly 90% of the total ocean biomass, produce
nearly half of the oxygen, and capture over 1.5 billion tons of carbon dioxide each year
(Van den Hove & Moreau, 2007; Global Ocean Commission, 2014; Laffoley et al., 2014).
Yet only 1.3% of ABN] are currently protected within marine protected areas (MPAtlas,
2021), despite widespread and rapidly increasing threats. The lack of high seas protections
is in large part due to the makeshift legal framework that is currently in place to protect
ABN]J (Molenaar ¢ Elferink, 2009; Gjerde et al., 2016), as well as the lack of awareness
that important ecosystems exist within these remote ocean areas. The results of this study
indicate that deep-sea corals and sponges, which build the foundation for some of the most
abundant and diverse communities in the deep sea (Rogers, 1999; Costello et al., 2005;
Kenchington, Power ¢ Koen-Alonso, 2013), are widespread on seamounts and ridges
located in high seas waters of the South Pacific. Given the ecological importance of
deep-sea corals and sponges, and their high vulnerability to human impacts, areas that host
these communities should be protected from exploitation using the best available
conservation measures. Regional fishery management organizations that manage fisheries
in this region, namely SPRFMO and IATTC, as well as the ISA which manages seabed
mining in international waters globally, already have established mechanisms to protect
sensitive marine habitats. Commercial fishing in this region has been very limited in recent
years, and deep-sea mineral exploration has not occurred (Wagner et al., 2021), providing
a time-sensitive opportunity to protect this region without significantly impacting those
industries. We thus urge member States of SPREMO, IATTC, and ISA to close this region
to fishing and mining activities before it is too late.

CONCLUSIONS

The scarcity of data concerning the distribution of key habitat-forming fauna represents an
obstacle to conservation efforts. We found that highly suitable habitat for demosponges,
glass sponges, and stony corals likely occurs throughout the study area, particularly on
large terrain features including seamounts, guyots, ridges, and escarpments of the Salas y
Goémez and Nazca ridges. When previously visited during the limited expeditions to the
area, these taxa were found to support abundant and diverse ecosystems housing a

wide array of associated species (e.g., Comité Oceanogrdfico Nacional de Chile, 2017). It is
our hope that these models will inform expedition planning and future research, improve
our understanding of the niche and distribution of key taxa, and be considered in a
science-based spatial management plan for the region. Anthropogenic disturbance in the
deep sea is increasing at an alarming rate, making it imperative to enact strong, permanent
protection before these communities are irrevocably damaged.
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